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Power laws in superspreading 
events: Evidence from 
coronavirus outbreaks and 
implications for SIR models1

Masao Fukui2 and Chishio Furukawa3

Date submitted: 11 June 2020; Date accepted: 12 June 2020

While they are rare, superspreading events (SSEs), wherein a few 
primary cases infect an extraordinarily large number of secondary 
cases, are recognized as a prominent determinant of aggregate 
infection rates (R0). Existing stochastic SIR models incorporate SSEs 
by fitting distributions with thin tails, or finite variance, and therefore 
predicting almost deterministic epidemiological outcomes in large 
populations. This paper documents evidence from recent coronavirus 
outbreaks, including SARS, MERS, and COVID-19, that SSEs follow 
a power law distribution with fat tails, or infinite variance. We then 
extend an otherwise standard SIR model with the fat-tailed power law 
distributions, and show that idiosyncratic uncertainties in SSEs will 
lead to large aggregate uncertainties in infection dynamics, even with 
large populations. That is, the timing and magnitude of outbreaks 
will be unpredictable. While such uncertainties have social costs, we 
also find that they on average decrease the herd immunity thresholds 
and the cumulative infections because per-period infection rates have 
decreasing marginal effects. Our findings have implications for social 
distancing interventions: targeting SSEs reduces not only the average 
rate of infection (R0) but also its uncertainty. To understand this 
effect, and to improve inference of the average reproduction numbers 
under fat tails, estimating the tail distribution of SSEs is vital.

1	 We thank the Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working Group for 
making their dataset available. We are grateful to Hiroshi Nishiura for detailed guidance on epidemiology 
literature, and Quentin Leclerc for responding to our inquiries; Abhijit Banerjee, Andrew Foster, Alex Toda, 
Hiroaki Matsuura, Anna Mikusheva, and Charles Wyplosz for their encouragement and helpful advice; Philip 
MacLellan for his thoughtful editorial support that substantially improved our exposition. All errors are ours.

2	 Department of Economics, Massachusetts Institute of Technology.
3	 Department of Economics, Massachusetts Institute of Technology.
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1 Introduction

On March 10th, 2020, choir members were gathered for their rehearsal in Washington. While
they were all cautious to keep distance from one another and nobody was coughing, three
weeks later, 52 members had COVID-19, and two passed away. There are numerous similar
anecdotes worldwide.1 Many studies have shown that the average basic reproduction number
(R0) is around 2.5-3.0 for this coronavirus (e.g. Liu et al., 2020), but 75% of infected cases do
not pass on to any others (Nishiura et al., 2020). The superspreading events (SSEs), wherein
a few primary cases infect an extraordinarily large number of others, are responsible for the
high average number. As SSEs were also prominent in SARS and MERS before COVID-19,
epidemiology research has long sought to understand them (e.g. Shen et al., 2004). In particu-
lar, various parametric distributions of infection rates have been proposed, and their variances
have been estimated in many epidemics under an assumption that they exist (e.g. Lloyd-Smith
et al., 2005). On the other hand, stochastic Susceptible-Infectious-Recovered (SIR) models have
shown that, as long as the infected population is moderately large, the idiosyncratic uncertain-
ties of SSEs will cancel out each other (Roberts et al., 2015). That is, following the Central Limit
Theorem (CLT), stochastic models quickly converge to their deterministic counterparts, and be-
come largely predictable. From this perspective, the dispersion of SSEs is unimportant in itself,
but is useful only to the extent it can help target lockdown policies to focus on SSEs to efficiently
reduce the average ratesR0 (Endo et al., 2020).

In this paper, we extend this research by closely examining the distribution of infection rates,
and rethinking how its dispersion influences the uncertainties of aggregate dynamics. Using
data from SARS, MERS, and COVID-19 from around the world, we provide consistent evidence
that SSEs follow a power law, or Pareto, distribution with fat tails, or infinite variance. That is,
the true variance of infection rates cannot be empirically estimated as any estimate will be an
underestimate however large it may be. When the CLT assumption of finite variance does not
hold, many theoretical and statistical implications of epidemiology models will require rethink-
ing. Theoretically, even when the infected population is large, the idiosyncratic uncertainties in
SSEs will persist and lead to large aggregate uncertainties. Statistically, the standard estimate of
the average reproduction number (R0) may be far from its true mean, and the standard errors
will understate the true uncertainty. Because the infected population for COVID-19 is already
large, our findings have immediate implications for statistical inference and current policy.

We begin with evidence. Figure 1 plots the largest clusters reported worldwide for COVID-
19 from data gathered by Leclerc et al. (2020). If a random variable follows a power law distri-
bution with an exponent α, then the log of its scale (e.g. a US navy vessel had 1,156 cases tested
positive) and the log of its severity rank (e.g. that navy case ranked 1st in severity) will have a
linear relationship, with its slope indicating −α. Figure 1 shows a fine fit of the power law dis-

1See Table A.2 in Appendix for a list of several examples.
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COVID−19 Cluster Sizes Worldwide
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Source: CMMID COVID−19 Working Group online database (Leclerc et al., 2020)
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Figure 1: Log cluster size vs log rank for COVID-19 worldwide
Notes: Figure 1 plots the number of total cases per cluster (in log) and their ranks (in log) for COVID-19,
last updated on June 3rd. It fits a linear regression for the clusters with size larger than 40. The data
are collected by the Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working
Group (Leclerc et al., 2020).

tribution.2 Moreover, the slope is very close to 1, indicating a significant fatness of the tail to the
extent that is analogous to natural disasters such as earthquakes (Gutenberg and Richter, 1954)
that are infrequent but can be extreme3. While data collection through media reports may be
biased towards extreme cases, analogous relationships consistently hold for other SARS, MERS,
and COVID-19 data based on surveillance data, with exponents often indicating fat tails. Note
that other distributions, including the negative binomial distributions commonly applied in

2In Appendix A.2.2, we also estimate the exponent with a small sample bias correction proposed by Gabaix
and Ibragimov (2011), which shows the exponent is 1.16, and the R2 is 0.98. With maximum likelihood estimation,
the exponent is 1.01. When using the Kolmogorov-Smirnov test (Clauset et al., 2009), the p-value given α = 1.01
is 0.75, failing to reject the null hypothesis that the empirical observation arises from the power law distribution.
On the other hand, the p-value given α = 2 is 0.000, rejecting the null hypothesis that the distribution is observed
from power law distribution with a finite variance.

3The power law distribution with α = 1 is called the Zipf’s law.
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epidemiology research, cannot predict these relationships, and significantly underestimate the
risks of extremely severe SSEs.

Using fat-tailed power law distributions, we show that stochastic SIR models predict sub-
stantial uncertainties in aggregate epidemiological outcomes. Concretely, we consider a stochas-
tic model with a population of one million, whereby a thousand people are initially infected,
and apply epidemiological parameters adopted from the literature. We consider effects of tails
of distribution while keeping the average rate (R0) constant. Under thin-tailed distributions,
such as the estimated negative binomial distribution or power law distribution with α = 2, the
epidemiological outcomes will be essentially predictable. However, under fat-tailed distribu-
tions close to those estimated in the COVID-19 data worldwide (α = 1.1), there will be immense
variations in all outcomes. For example, the peak infection rate is on average 14%, but its 90the
percentile is 31% while its 10th percentile is 4%. Under thin-tailed distribution such as negative
binomial distribution, the average, 90th percentile and 10th percentile of the peak infection is
all concentrated at 26-27%, generating largely deterministic outcomes.

While our primary focus was on the effect on aggregate uncertainty, we also find important
effects on average outcomes. In particular, under a fat-tailed distribution, the cumulative and
peak infection, as well as the herd immunity threshold, will be lower, and the timing of out-
break will come later than those under a thin-tailed distribution, on average. For example, the
average herd immunity threshold is 66% with thin-tailed distribution, it is 39% with a fat-tailed
distribution.These observations suggest that the increase in aggregate uncertainty over R0 has
effects analogous to a decrease in average R0. This relationship arises because the average fu-
ture infection will be a concave function of today’s infection rate: because of concavity, mean
preserving spread will lower the average level. In particular, today’s higher infection rate has
two countering effects: while it increases the future infection, it also decreases the suscepti-
ble population, which decreases it. We provide theoretical interpretations for each outcome by
examining the effect of mean-preserving spread ofR0 in analytical results derived in determin-
istic models.

Our findings have critical implications for the design of lockdown policies to minimize the
social costs of infection. Here, we study lockdown policies that target SSEs. We assume that
the maximum size of infection rate can be limited to a particular threshold (e.g., 50, 100, or 1000
per day) with some probabilities by banning large gatherings. Because both the uncertainty
and mean of the infection rate in the fat-tailed distribution are driven by the tail events, such
policies substantially lower the uncertainty and improve the average outcomes. Because the
cost of such policy4 is difficult to estimate reliably, we do not compute the cost-effectiveness of
such policy. Nonetheless, we believe this is an important consideration in the current debates
on how to re-open the economy while mitigating the risks of subsequent waves.

Finally, we also show the implications of a fat-tailed distributions for the estimation of the
4For example, it is prohibitively costly to shut down daycare, but it is less costly to prevent a large concert.
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average infection rate. Under such a distribution with small sample sizes, the sample mean
yields estimates that are far from the true mean and standard errors that are too small. To ad-
dress such possibility, it will be helpful to estimate the power law exponent. If the estimate
indicates a thin-tailed distribution, then one can be confident with the sample mean estimate. If
it indicates a fat-tailed distribution, then one must be aware that there is much uncertainty in the
estimate not captured by its confidence interval. While such fat-tailed distributions cause no-
toriously difficult estimation problems, we explore a “plug-in” method that uses the estimated
exponent. Such estimators generate median estimates closer to the true mean with adequate
confidence intervals that reflect the substantial risk of SSEs.

Related Literature. First, our paper belongs to a large literature on stochastic epidemiolog-
ical models. The deterministic SIR model was initiated by Kermack and McKendrick (1927),
and later, Bartlett (1949) and Kendall (1956) developed stochastic SIR models (see Britton (2010,
2018) , Britton et al. (2015) for surveys). The traditional view of the stochastic SIR model is that
while useful when the number of infected is small, once the infected population is moderately
large, it behaves similarly to the deterministic model due to the CLT. Britton (2010) writes “Once
a large number of individuals have been infected, the epidemic process may be approximated
by the deterministic counter-part.” Roberts (2017) also considers an SIR model with small fluc-
tuations of epidemiological parameters, but shows that deterministic models approximate its
average reasonably. Here, we consider large aggregate fluctuations arising from idiosyncratic
shocks and show that even the average deviates significantly from preditions of deterministic
models. There are recent applications of stochastic SIR models that study the very beginning of
COVID-19 outbreaks when the number of infection is small (for example, Abbott et al. (2020),
Karako et al. (2020), Simha et al. (2020) and Bardina et al. (2020)). However, the major model-
ing effort has been to use deterministic models based on the common justification above. Our
point is that when the distribution is fat-tailed, which we found an empirical support for, the
CLT no longer applies, and hence the stochastic model behaves qualitatively differently from
its deterministic counterpart even with a large number of infected individuals.

Second, the empirical importance of SSEs is widely recognized in the epidemiological lit-
erature before COVID-19 (Lloyd-Smith et al., 2005; Galvani and May, 2005) and for COVID-19
(Frieden and Lee, 2020; Endo et al., 2020). These papers fit the parametric distribution that is
by construction thin-tailed, such as negative binomial distribution. It has been common to es-
timate “the dispersion parameter k” of the negative binomial distribution. We argue that the
fat-tailed distribution provides a better fit to the empirical distribution of SSEs, in which a tail
parameter, α, parsimoniously captures the fatness of the tail. A recent contribution by Cooper
et al. (2019) consider Pareto rule in the context of malaria transmission, but they nonetheless
estimate the dispersion with finite variance for the entire infections.

Third, our paper also relates to studies that incorporate heterogeneity into SIR models, in-
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corporating differences in individual characteristics or community structures. Several recent
papers point out that the permanent heterogeneity in individual infection rates lower the herd
immunity threshold (Gomes et al., 2020; Hébert-Dufresne et al., 2020; Britton et al., 2020). Al-
though we obtain a similar result, our underlying mechanisms are distinct from theirs. In our
model, there is no ex-ante heterogeneity across individuals, and thus their mechanism is not
present. Zhang et al. (2013) and Szabó (2020) consider a model in which individuals have
heterogeneous infection rates that follow power laws in scale-free networks, but their hetero-
geneity is permanent (i.e. due to individual characteristics). Instead, what matters for us is
the aggregate fluctuations in R0 (i.e. due to idiosyncratic variations in environments), which
their models do not exhibit. Some recent papers emphasize the importance of age-dependent
heterogeneity and its implications for lockdown policies (Acemoglu et al., 2020; Davies et al.,
2020; Gollier, 2020; Rampini, 2020; Glover et al., 2020; Brotherhood et al., 2020). We emphasize
another dimension of targeting: targeting toward large social gatherings, and this policy re-
duces the uncertainty regarding various epidemiological outcomes. Roberts (2013) analyzes a
deterministic model in which basic reproduction number is estimated with noise, and derives
probability distributions over epidemiological outcomes due to the uncertainty of the estimates.

Finally, it is well-known that many variables follow a power law distribution. These include
the city size (Zipf, 1949), the firm size (Axtell, 2001), income (Atkinson et al., 2011), wealth
(Kleiber and Kotz, 2003), consumption (Toda and Walsh, 2015) and even the size of the earth-
quakes (Gutenberg and Richter, 1954), the moon craters and solar flares (Newman, 2005). Re-
garding COVID-19, Beare and Toda (2020) document that the cumulative number of infected
population across cities and countries is closely approximated by a power law distribution.
They then argue that the standard SIR model is able to explain the fact. We document that the
infection at the individual level follows a power law. We are also partly inspired by economics
literature which argue that the fat-tailed distribution in firm-size has an important consequence
for the macroeconomics dynamics, originated by Gabaix (2011). We follow the similar route in
documenting that the SSEs are well approximated by a power law distribution and arguing that
such empirical regularities have important consequences for the epidemiological dynamics.

Roadmap. The rest of the paper is organized as follows. Section 2 documents evidence that
the distribution of SSEs follows power law. Section 3 embed the evidence into an otherwise
standard SIR models to demonstrate its implications for the epidemiological dynamics. Sec-
tion 4 studies estimation of the reproduction numbers under fat-tailed distribution. Section 5
concludes by discussing what our results imply for ongoing COVID-19 pandemic.
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2 Evidence

We present evidence from SARS, MERS, and COVID-19 that the SSEs follow power law dis-
tributions. Moreover, our estimates suggest the distributions are often fat-tailed, with critical
implications for the probabilities of extreme SSEs. Evidence also suggests a potential role of
policies in reducing the tail distributions.

2.1 Statistical model

Let us define the SSEs and their distribution. Following the notations of Lloyd-Smith et al.
(2005), let zit ∈ {0, 1, 2, ...} denote the number of secondary cases5 an infected individual i has
at time t. Then, given some threshold Z, an individual i is said to have caused SSE at time t if
zit ≥ Z . To make the estimation flexible, suppose the distribution for non-SSEs, zit < Z, needs
not follow the same distribution as those for SSEs.

In this paper, we consider a power law (or Pareto) distribution on the distribution of SSE.
Denoting its exponent by α, the countercumulative distribution is

P (zit ≥ Z) = π (Z/Z)−α for Z ≥ Z, (1)

where π is the probability of SSEs. Notably, its mean and variance may not exist when α is suf-
ficiently low: while its mean is α

α−1 Z if α > 1, it is ∞ if α ≤ 1. While its variance is α
(α−1)2(α−2)Z2

if α > 2, it is ∞ if α ≤ 2. In this paper, we formally call a distribution to be fat-tailed if α < 2 so
that they have infinite variance. While non-existence of mean and variance may appear patho-
logical, a number of socioeconomic and natural phenomenon such as city sizes (α ≈ 1), income
(α ≈ 2), and earthquake energy (α ≈ 1) have tails well-approximated by this distribution as
reviewed in the Introduction. One concrete example6 that can explain a power law distribution
is due to the result in Beare and Toda (2019): suppose each participant can invite some others
with some probability. Conditional on inviting, the number of people each paritipant invites
follows some distributions such as log-normal distribution. Then, the resulting distribution of
all participants follows a power law.

This characteristics stands in contrast with the standard assumption in epidemiology liter-
ature that the full distribution of zit follows a negative binomial (or Pascal) distribution7 with
finite mean and variance. The negative binomial distribution has been estimated to fit the data

5Note that the number of “secondary” cases include only direct transmissions and exclude indirect transmis-
sions. This is how the COVID-19 data in Figure 1 were also collected (Leclerc et al., 2020).

6Another theoretical reason why this distribution could be relevant for airborne diseases is that the number of
connections in social networks often follow a power law (Barabasi and Frangos, 2014).

7Denoting its mean by R and dispersion parameter by k, the distribution is

P (zit ≥ Z) = 1−
Z

∑
z=0

Γ(z + k)
z!Γ(k)

(
R
k

)z (
1 +
R
k

)−(z+k)
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better than Poisson or geometric distribution for SARS (Lloyd-Smith et al., 2005), and given its
theoretical bases from branching model (e.g. Gay et al., 2004), it has been a standard distribu-
tional assumption in the epidemiology literature (e.g. Nishiura et al., 2017).

2.2 Data

This paper uses five datasets of recent coronavirus outbreaks for examining the distribution of
SSEs: COVID-19 data from (i) around the world, (ii) Japan, and (iii) India, and (iv) SARS data,
(v) MERS data.

(i) COVID-19 data from around the world: this dataset contains clusters of infections found
by a systematic review of academic articles and media reports, conducted by the Centre of the
Mathematical Modelling of Infectious Diseases COVID-19 Working Group (Leclerc et al., 2020).
The data are restricted to first generation of cases, and do not include subsequent cases from
the infections. The data are continuously updated, and in this draft, we have used the data
downloaded on June 3rd. There were a total of 227 clusters recorded.

(ii) COVID-19 data from Japan: this dataset contains a number of secondary cases of 110
COVID-19 patients across 11 clusters in Japan until February 26th, 2020, reported in Nishiura
et al. (2020). This survey was commissioned by the Ministry of Health, Labor, and Welfare of
Japan to identify high risk transmission cases.

(iii) COVID-19 data from India: this dataset contains the state-level data collected by the
Ministry of Health and Family Welfare, and individual data collected by covid19india.org.8 We
use the data downloaded on May 31st.

(iv) SARS from around the world: this dataset contains 15 incidents of SSEs from SARS
in 2003 that occured in Hong Kong, Beijing, Singapore, and Toronto, as gathered by Lloyd-
Smith et al. (2005)9 through a review of 6 papers. The rate of community transmission was
not generally high so that, for example, the infections with unknown route were only about
10 percent in the case of Beijing. The data consist of SSEs, defined by epidemiologists (Shen
et al., 2004) as the cases with more than 8 secondary cases. For Singapore and Beijing, the
contact-tracing data is available from Hsu et al. (2003) and Shen et al. (2004), respectively. When
compare the fit to the negative binomial distribution, we compare the fit of power law to that
of negative binomial using these contact tracing data.

(v) MERS from around the world: this dataset contains MERS clusters reported up to Au-
gust 31, 2013. The cases are classified as clusters when thee are linked epidemiologically. The

The variance of this distribution is R
(

1 + R
k

)
. The distribution nests Poisson distribution (as k → ∞) and geo-

metric distribution (when k = 1.)
8https://www.kaggle.com/sudalairajkumar/covid19-in-india. covid19india.org is a volunteer-based or-

ganization that collects information from municipalities.
9Even though Lloyd-Smith et al. (2005) had analyzed 6 other infectious diseases, SARS was the only one with

sufficient sample sizes to permit reliable statistical analyses.
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data come from three published studies were used in Kucharski and Althaus (2015). Total of
116 clusters are recorded.

We use multiple data sets in order to examine the robustness of findings.10 Having multiple
data sets can address each other’s weaknesses in data. While data based on media reports is
broad, they may be skewed to capture extreme events; in contrast, data based on contact tracing
may be reliable, but are restricted to small population. By using both, we can complement each
data’s weaknesses.

2.3 Estimation

The datasets report cumulative number of secondary cases, either ∑i zit (when a particular
event may have had multiple primary cases) or ∑t zit (when an individual infects many oth-
ers through multiple events over time). Denoting these cumulative numbers by Z, we consider
this distribution for some Z ≥ Z∗. As discussed in Appendix A.1, we can interpret the esti-
mates of this tail distribution as approximately the per-period and individual tail distribution
and therefore map directly to the parameter of the SIR model in the next section. The thresholds
for inclusion, Z∗, will be chosen to match the threshold for SSEs when possible, but also adjust
for the sample size. For COVID-19 in the world, we apply Z = 40 to focus on the tail of the
SSE distribution. For SARS, we apply Z = 8 as formally defined (Shen et al., 2004). For other
samples, we apply Z = 2 because the sample size is limited.

To assess whether the distribution of Z follows the power law, we adopt the regression-
based approach that is transparent and commonly used. If Z follows power law distribu-
tion, then by (1), the log of Z and the log of its underlying rank have a linear relationship:
log rank(Z) = −α log Z + log(NπZα). This is because, when there are N individuals, the ex-
pected ranking of a realized value Z is Erank(Z) ' P(z ≥ Z)N for moderately large N. Thus,
when N is large, we obtain a consistent estimate of α by the following regression:

log rank(Z) = −α log Z + log(NπZα) + ε (2)

When N is not large, however, the estimate will exhibit a downward bias because log is a con-
cave function and thus E log rank(Z) < log Erank(Z). While we present the analysis according
to (2) in Figures 1 and 2 for expositional clarity, we also report the estimates with small sam-
ple bias correction proposed by Gabaix and Ibragimov (2011) in Appendix A.2.2.11 We also

10he infectious diseases considered here share some commonalities as SARS-CoV that causes SARS, MERS-CoV
that causes MERS, and SARS-CoV-2 that causes COVID-19 are human coronaviruses transmitted through the air.
They have some differences in terms of transmissibility, severity, fatality, and vulnerable groups (Petrosillo et al.,
2020). But overall, as they are transmitted through the air, they are similar compared to other infectious diseases.

11Their approach is to turn the dependent variable into log
[
rank(Z)− 1

2

]
instead of log [rank(Z)]. We examine

the performance of their bias correction method through a estimating regression given random variables generated
from power law distributions. While their bias correction almost eliminates bias when N is moderately large, it

9
C

ov
id

 E
co

no
m

ic
s 3

0,
 1

9 
Ju

ne
 2

02
0:

 1
-4

3



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

estimate using the maximum likelihood in Appendix A.2.2. Note that when there are ties (e.g.
second and third largest had 10 infections), we assigned different values to each observation
(e.g. assigning rank of 2 and 3 to each observation).

Next, we also compare the extent to which a power law distribution can approximate the
distribution of SSEs adequately relative to the negative binomial distribution. First, we plot
what the predicted log-log relationship in (2) would be given the estimated parameters of neg-
ative binomial distribution.12 Second, to quantify the predictive accuracy, we compute the ratio
of likelihood of observing the actual data.

2.4 Results

Our analysis shows that the power law finely approximates the distribution of SSEs. Figure 1
visualizes this for COVID-19 from across the world, and Figure 2 for SARS, MERS, and COVID-
19 in Japan and India. Their R2 range between 0.93 and 0.99, suggesting high levels of fit to the
data. Because our focus is on upper-tail distribution, Figure 1 truncates below at the cluster
size 40, Figure 2 truncates at 8 for SARS and at 2 for MERS and COVID-19 in India and Japan.
Figure A.1 in Appendix presents a version of Figure 1 truncated below at 20.

In addition, the estimates of regression (2) suggest that the power law exponent, α, is below
2 and even close to 1. Table 1 summarizes the main findings. The estimated exponents near
1 suggest that extreme SSEs are not uncommon. For COVID-19 in Japan and India, the esti-
mated exponents are larger than 1 but often below 2. Since applying the threshold of Z∗ = 2
is arguably too low, we must interpret out-of-sample extrapolation from these estimates with
caution. When higher thresholds are applied, the estimated exponents tend to be higher. For
example, when applying the threshold of Z∗ = 8 as in SARS 2003 to COVID-19 in India, the
estimated exponent is 1.85 or 2.25. This pattern is already visible in Figure 2. Table A.1 in Ap-
pendix A.2.2 presents results using bias correction technique of Gabaix and Ibragimov (2011)
as well as maximum likelihood. The results are very similar.

Notably, the estimated exponent of India is higher than those of other data. There are two
possible explanations. First, the lockdown policies in India have been implemented strictly rel-
ative to moderate approaches in Japan and some other parts of the world during the outbreaks.
By discouraging and prohibiting large-scale gatherings, sometimes by police enforcement, they
may have been successful at targeting SSEs. Second, contact tracing to ensure data reliability
may have been more difficult in India until end of May than in Japan until end of February.13

has an upward bias of α whereas the equation (2) has a downward bias. The magnitude of bias is similar when
N = 10 or N = 15. Thus, our preferred approach is to refer to both methods for robustness.

12This approach stands in contrast with a common practice to plot the probability mass functions. Unlike such
approaches where differences in tail densities are invisible since it is very close to zero, this approach highlights
the differences in tail densities.

13Concretely, there were only 248 cases of more than one secondary infections reported in the data among
27,890 primary cases in the data from India. That is, only 0.8 percents of primary cases were reported to have
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Figure 2: Log size vs log rank for COVID-19

Notes: Figure 2 plots the number of total cases per cluster (in log) and their ranks (in log) for MERS,
and the number of total cases per cluster (in log) and their ranks (in log) for SARS and COVID-19 in
Japan and India. The data for SARS are from Lloyd-Smith et al. (2005), and focus on SSEs defined
to be the primary cases that have infected more than 8 secondary cases. The data for MERS come
from Kucharski and Althaus (2015). The data for Japan comes from periods before February 26, 2020,
reported in Nishiura et al. (2020). The data for India are until May 31, 2020, reported by the Ministry
of Health and Family Welfare, and covid19india.org. The plots are restricted to be the cases larger than
2.
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COVID-19 SARS MERS

World Japan India World Singapore Beijing World

(1) (2) (3) (4) (5) (6) (7)

α̂ 1.07 1.17 1.62 0.85 0.75 0.75 1.17

(0.04) (0.10) (0.03) (0.06) (0.08) (0.06) (0.07)

Z 40 2 2 8 2 2 2

Obs. 60 11 109 15 19 8 36

R2 0.98 0.93 0.97 0.96 0.91 0.94 0.96

log10 LR - 11.39 - - 19.51 8.04 40.89

Table 1: Estimates of power law exponent (α̂) and their fit with data

Notes: Table 1 summarizes the estimates of power law exponent (α̂) given as the coefficient of regression
of log of number of infections (or size of clusters) on the log of their rankings. Heteroskedasticity-
robust standard errors are reported in the parenthesis. Z denote the threshold number of infection to
be included. log10(LR) denotes “likelihood ratios”, expressed in the log with base 10, of probability
of observing this realized data with power law distributions relative to that with estimated negative
binomial distributions. Columns (1)-(3) report estimates for COVID-19; columns (4)-(6) for SARS, and
column (7) for MERS.

While missing values will not generate any biases if the attritions were proportional to the num-
ber of infections, large gatherings may have dropped more than in Japan where the SSEs were
found through contact tracing. Nonetheless, these estimates suggest that various environments
and policies could decrease the risks of the extreme SSEs. This observation motivates our policy
simulations to target SSEs.

Next, we compare the assumption of power law distribution relative to that of a negative
binomial distribution. Figure 3 shows that the negative binomial distributions would predict
that the extreme SSEs will be fewer than the observed distribution: while it predicts the overall
probability of SSEs accurately, they suggest that, when they occur, they will not be too extreme
in magnitude. Table 1 reports the relative likelihood, in logs, of observing the data given the
estimated parameters. It shows that, under the estimated power law distribution relative to the
estimated negative binomial distribution, it is 108− 1020 times more likely to observe the SARS
data (1040 times more for MERS, and 1011 times more COVID-19 data in Japan). Such large
differences emerge because the negative binomial distribution, given its implicit assumption
of finite variance, suggests that the extreme SSEs are also extremely rare when estimated with

infected more than one persons. In contrast, there were 27 cases with more than one secondary infections among
110 primary cases in Japan. That is, 25 percent of primary cases were infectious. This difference in ration likely
reflects the data collection quality than actual infection dynamics.
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Figure 3: Comparison of power law and negative binomial distributions

Notes: Figure 3 plots the predicted ranking of infection cases given the estimated negative binomial
(NB) distribution, in addition to the log-log plots and estimated power law (PL) distributions. The
negative binomial distribution is parameterized by (R, k), where R is mean and k is the dispersion
parameter with the variance being R(1 + R/k). The estimates for SARS Singapore come from our own
estimates using the maximum likelihood (R = 0.88, k = 0.09); MERS come from the world (R =

0.47, k = 0.26) estimated in Kucharski and Althaus (2015); and COVID-19 in Japan were from our own
estimates using the maximum likelihood (R = 0.56, k = 0.21). The estimates of Singapore is slightly
different from Lloyd-Smith et al. (2005) because we pool all the samples.

entire data sets14. If our objective is to predict the overall incidents of infections parsimoniously,
then negative binomial distribution is well-validated and theoretically founded (Lloyd-Smith
et al., 2005).15 However, if our goal is to estimate the risks of extreme SSEs accurately, then
using only two parameters with finite variance to estimate together with the entire distribution
may be infeasible.

These distributional assumptions have critical implications for the prediction of the extreme
SSEs. Table 2 presents what magnitude top 1%, top 5%, and top 10% among SSEs will be given
each estimates of the distribution. Given the estimates of the negative binomial distribution,
even the top 1% of SSEs above 8 cases will be around the magnitude of 19-53. However, given
a range of estimates from power law distribution, the top 1% could be as large as 569. Thus, it
is no longer surprising that the largest reported case for COVID-19 will be over 1,000 people.

14For example, the binomial distribution estimate suggests an incidence of 185 cases (residential infection in
Hong Kong) only has a chance of 9.5× 10−10 occurring for any single primary case.

15Since the power law distribution is fitted only to SSEs, estimated power law distribution may fit the data
better than the estimated negative binomial distribution that was meant to fit the entire data set. Rather than
making such comparison, this estimation is intended to illustrate the magnitude of difference between the two
distributional assumptions. Because of significant missing values for the low number of infections in the COVID-
19 from across the world and India, we will not use the data sets for estimation of negative binomial distributions.
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Power Law Negative Binomial
α = 1.08 α = 1.1 α = 1.2 α = 1.5 α = 2 SARS MERS COVID-19

1% 569 526 371 172 80 44 18 19
5% 128 122 97 59 36 31 15 15
10% 67 65 55 37 25 25 13 14

Table 2: Probabilities of extreme SSEs under each distribution

Notes: Table 2 shows the size of secondary cases at each quantile, top 1 percentile, 5 percentile, and 10
percentile, given each distributions. The negative binomial distribution’s estimates for SARS are from
Singapore, for COVID-19 are from Japan, and for MARS is from around the world.

In contrast, such incidents have vanishingly low chance under binomial distributions. Since
the SSEs are rare, researchers will have to make inference about their distribution based some
parametric methods. Scrutinizing such distributional assumptions along with the estimation of
parameters themselves will be crucial in accurate prediction of risks of extreme SSEs.

3 Theory

Motivated by the evidence, we extend an otherwise standard stochastic SIR model with a fat-
tailed SSEs. Unlike with thin-tailed distributions, we show that idiosyncratic risks of SSEs
induce aggregate uncertainties even when the infected population is large. We further show
that the resulting uncertainties in infection rates have important implications for average epi-
demiological outcomes. Impacts of lockdown policies that target SSEs are discussed.

3.1 Stochastic SIR model with fat-tailed distribution

Suppose there are i = 1, ..., N individuals, living in periods t = 1, 2, .... Infected individuals pass
on and recover from infection in heterogeneous and uncertain ways. Let βit denote the number
of new infection in others an infected individual i makes at time t. Let γit ∈ {0, 1} denote the
recovery/removal, where a person recovers (γit = 1) with probability γ ∈ [0, 1]. Note that,
whereas zit in Section 2 was a stochastic analogue of “effective” reproduction number, βit here
is such analogue of “basic reproduction number.” Assuming enough mixing in the population,
these two models are related by zit = βit

St
N , where St is a number of susceptible individuals in

the population.
This model departs from other stochastic SIR models only mildly: we consider a fat-tailed,

instead of thin-tailed, distribution of infection rates. Based onthe evidence, we consider a power
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Parameter Description Value Source
A. Common parameters
γ recovery & death rate 7/18 Wang et al. (2020)
N total population 105

I0 initially infected populatoion 103 1% of population
R0 ≡ E[βit]/γ mean basic reproduction number 2.5 Remuzzi and Remuzzi (2020)
B. Power law
π probability of infecting 0.25 Nishiura et al. (2020)
α tail parameter {1.08, 1.1, 1.2, 1.5, 2}
C. Negative binomial
k overdispersion parameter 0.16 Lloyd-Smith et al. (2005)

Table 3: Parameter values

law distribution of βit: its countercumulative distribution is given by

P (βit ≥ β) = π(β/β)−α

for the exponent α and a normalizing constant β, and π ∈ [0, 1] is the probability that β ≥ β.
Note that the estimated exponent α can be mapped to this model, as discussed in Appendix A.1.
If we assume βit is distributed according to exponential distribution or negative binomial dis-
tribution, we obtain a class of stochastic SIR models commonly studied in the epidemiological
literature (see Britton (2010, 2018) for surveys). We will compare the evolution dynamics under
this power law distribution against those under negative binomial distribution as commonly
assumed, keeping the average basic reproduction number the same. To numerically implement
this, we will introduce normalization to the distributions.

The evolution dynamics is described by the following system of stochastic difference equa-
tions. Writing the total number of infected and recovered/removed populations by It and Rt,
we have

St+1 − St = −
It

∑
i=1

βit
St

N
(3)

It+1 − It =
It

∑
i=1

βit
St

N
−

It

∑
i=1

γit (4)

Rt+1 − Rt =
It

∑
i=1

γit. (5)

This system is a discrete-time and finite-population analogue of the continuous-time and continuous-
population differential equation SIR models.
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Parametrization: we parametrize the model as follows. The purpose of simulation is a
proof of concept, rather than to provide a realistic numbers. We take the length of time to
be one week. We set the sum of the recovery and the death rate per day is 1/18 following
Wang et al. (2020), so that γ = 7/18. The total population is set to N = 105, and initially
infected population is 1% of the total population. As a benchmark case, we set α = 1.1, which
is in line with the estimates for the COVID-19 data worldwide, but we explore several other
parametrization, α ∈ {1.08, 1.2, 1.5, 2}. As documented in Nishiura et al. (2020), 75% of people
did not infect others. We therefore set π = 0.25. This number is also in line with the evidence
from SARS reported in Lloyd-Smith et al. (2005), in which 73% of cases were barely infectious.
We choose β, which controls the mean of βit, so that the expected R0 ≡ Eβit/γ per day is 2.5,
corresponding to the middle of the estimates obtained in Remuzzi and Remuzzi (2020). This
leads us to choose β = 0.354 in the case of α = 1.1.

We will contrast the above model to a model in which βit is distributed according to negative
binomial, βit/γ ∼ negative binomial(R0, k). The mean of this distribution is Eβit/γ = R0,
ensuring that it has the same mean basic reproduction number as in the power law case, and
the variance is R0(1 +R0/k). The smaller values of k indicate greater heterogeneity (larger
variance). We use the estimates of SARS by Lloyd-Smith et al. (2005), k = 0.16. The mean is set
to the same value as power law case,R0 = 2.5,

3.2 Effects of fat-tailed distribution on uncertainty

Figure 4a shows 10 sample paths of infected population generated through the simulation of
the model with α = 1.1. One can immediately see that even though all the simulation start
from the same initial conditions under the same parameters, there is enormous uncertainty in
the timing of the outbreak of the disease spread, the maximum number of infected, and the final
number of susceptible population. The timing of outbreak is mainly determined by when SSEs
occur. To illustrate the importance of a fat-tailed distribution, Figure 4b shows the same sample
path but with a thin-tailed negative binomial distribution. In this case, as already 1,000 people
are infected in the initial period, the CLT implies the aggregate variance is very small and the
model is largely deterministic. This is consistent with Britton (2018). Britton (2018) shows that
when the total population is as large as 1,000 or 10,000, the model quickly converges to the
deterministic counterpart.

Figure 5 compares the entire distribution of the number of cumulative infection (top-left),
the herd immunity threshold (top-right), the peak number of infected (bottom-left), and the
days it takes to infect 5% of population (bottom-right). The herd immunity threshold is defined
as the cumulative number of infected at which the number of infected people is at its peak. The
histogram contrast the case with power law distribution with α = 1.1 to the case with negative
binomial distribution. It is again visible that uncertainty remains in all outcomes when the
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(a) Power law (α = 1.1)
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(b) Negative binomial

Figure 4: Ten sample paths from simulation

Note: Figure 4 plots 10 sample path of the number of infected population from simulation, in which
we draw {βit, γit} randomly every period in an i.i.d. manner. Figure 4a plots the case with power law
distribution, and Figure 4b plots the case with negative binomial distribution.

distribution of infection rate is fat-tailed. For example, the cumulative infection varies from
65% to 100% in the power law case, while the almost all simulation is concentrated around 92%
in the case of negative binomial distribution.

Table 4 further shows the summary statistics for the epidemiological outcomes for various
power law tail parameters, α, as well as for negative binomial distribution. With fat-tails, i.e. α

close to one, the range between 90th percentile and 10th percentile for all statistics is wide, but
this range is substantially slower as the tail becomes thinner (α close to 2). For example, when
α = 1.08 the peak infection rate can vary from 6% to 32% as we move from 10the percentile
to 90th percentile. In contrast, when α = 2, the peak infection rate is concentrated at 26–
27%. Moreover, when α = 2, the model behaves similarly to the model with negative binomial
distribution because the CLT applies to both cases.
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Figure 5: Histogram from 1000 simulation

Note: Figure 5 plots the histogram from 1000 simulations, in which we draw {βit, γit} randomly every
period in an i.i.d. manner. The cumulative number of infected is ST , where we take T = 204 weeks.
The herd immunity threshold is given by the cumulative number of infected, at which the infection is
at the peak. Formally, St∗ where t∗ = arg maxt It. The peak number of infected is maxt It.

3.3 Effects of fat-tailed distribution on average

While our primary focus was the effect on the uncertainty of epidemiological outcomes, Figure
5 also shows significant effects on the mean. In particular, fat-tailed distribution also lowers
cumulative infection, the herd immunity threshold, the peak infection, and delays the time it
takes to infect 5% of population, on average. Why could such effects emerge?

To understand these effects, we consider a deterministic SIR model with continuous time
and continuum of population. In such a textbook model, we consider the effect of small un-
certainties (i.e. mean-preserving spread) in R0. Such theoretical inquiry can shed light on the
effect because the implication of fat-tailed distribution is essentially to introduce time-varying
fluctuation in aggregateR0. We can thus examine how the outcome changes byR0, and invoke
Jensen’s inequality to interpret the results.16

16This assumes thatR0 is drawn at time 0, and stay constant thereafter for each simulation. This exercise is not
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Power law Negative
α = 1.08 α = 1.1 α = 1.2 α = 1.5 α = 2 binomial

1. Cumulative infected
mean 60% 73% 89% 92% 92% 92%
90th percentile 85% 91% 95% 93% 92% 92%
50th percentile 59% 71% 88% 92% 92% 92%
10th percentile 39% 59% 84% 91% 92% 92%

2. Herd immunity threshold
mean 39% 49% 62% 65% 66% 66%
90th percentile 65% 75% 78% 71% 69% 69%
50th percentile 35% 45% 59% 65% 66% 66%
10th percentile 17% 29% 51% 60% 62% 64%

3. Peak infection
mean 14% 18% 25% 27% 27% 27%
90th percentile 31% 34% 36% 29% 28% 27%
50th percentile 9% 13% 22% 26% 27% 27%
10th percentile 4% 7% 18% 25% 26% 26%

4. Days infecting 5%
mean (days) 137 93 47 37 35 35
90th percentile 252 147 56 42 35 35
50th percentile 119 84 49 35 35 35
10th percentile 49 42 35 35 35 35

Table 4: Summary statistics for epidemiological outcomes

Note: Table 4 shows the summary statistics from 1000 simulations for five different tail parameters for
the case of power law distribution, and for the negative binomial distribution.

1. Effect on cumulative infection: note that the cumulatively infected population is given
by 1 − S∞/N, where S∞ is the ultimate susceptible population as t → ∞. Taking the
standard derivation, S∞ satisfies the following equation:17

log(S∞/N) = −R0(1− S∞/N) (6)

In Appendix B, we prove that S∞ is a convex function ofR0 ifR0 > 1.125, , which is likely
to be met in SARS or COVID-19.18 Thus, the cumulative infection is concave in R0, and
the mean-preserving spread inR0 lowers the cumulative infection.

exactly the same as our original SIR model because thereR0 fluctuates over time within a simulation. Thus this is
for providing intuition, rather than a proof.

17Here, we set the initially recovered population to zero, R0 = 0.
18Numerically, we did not find any counterexample even whenR0 ∈ [1, 1.125].
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2. Effect on herd immunity threshold: denoting the number of recovered/removed and
infected population by R, the infection will stabilize when R0

(N−R
N
)
= 1. Rearranging

this condition, the herd immunity threshold, R∗ is given by

R∗

N
= 1− 1

R0
, (7)

where R0 ≡ β/γ. Since R∗ is concave in R0, the mean-preserving spread in R0 lowers
the herd immunity threshold.

3. Effect on timing of outbreak: let us consider the time t∗ when some threshold of outbreak( I
N
)∗

is reached. Supposing S/N ≈ 1 at the beginning of outbreak, t∗ satisfies(
I
N

)∗
≈ I0

N
exp(

1
γ
(R0 − 1)t∗) (8)

Thus, t∗ is convex in R0, and the mean-preserving spread in R0 delays the timing of the
outbreak.

4. Effect on peak infection rate: the peak infection rate, denoted by Imax

N , satisfies

Imax

N
= 1− 1

R0
− 1
R0

log(R0S0), (9)

where S0 is initial susceptible population. We show in the Appendix that (9) implies that
the peak infection, Imax/N, is a concave function of R0 if and only if R0 ≥ 1

S0
exp(0.5). If

we let S0 ≈ 1, this impliesR0 ≥ exp(0.5) ≈ 1.65. This explains why we found a reduction
in peak infection rate, as we have assumed R0 = 2.5. Loosely speaking, since the peak
infection rate is bounded above by one, it has to be concave for sufficiently highR0.

Overall, we have found that the increase in the uncertainty over R0 has effects similar to a
decrease in the level ofR0. This is because the aggregate fluctuations inR0 introduce negative
correlation between the future infection and the future susceptible population. High value of
today’s R0 ≡ E

βit
γ increases tomorrow’s infected population, It+1, and decreases tomorrow’s

susceptible population, St+1. That is, Cov(St+1, It+1) < 0. Because the new infection tomorrow
is a realization of βt+1 multiplied by the two (that is, βt+1 It+1

St+1
N ) this negative correlation

reduces the spread of the virus in the future on average, endogenously reducing the magnitude
of the outbreak.

This interpretation also highlights the importance of intertemporal correlation of infection
rates, Cov(βt, βt+1). When some individuals participate in events at infection-prone environ-
ments more frequently than others, the correlation will be positive. Such effects can lead to a
sequence of clusters and an extremely rapid rise in infections (Cooper et al., 2019) that over-
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whelm the negative correlation between St+1 and It+1 highlighted above. On the other hand,
when infections take place at residential environments (e.g. residential compound in Hong
Kong for SARS, and dormitory in Singapore for COVID-19), then the infected person will be
less likely to live in another residential location to spread the virus. In this case, the correlation
will be negative. In this way, considering the correlation of infection rates across periods will
be crucial.

Note that the mechanism we identified on herd immunity thresholds is distinct from the
ones described in Gomes et al. (2020); Hébert-Dufresne et al. (2020); Britton et al. (2020). They
note that when population has permanently heterogenous activity rate, which captures both
the probability of infecting and being infected, the herd immunity can be achieved with lower
threshold level of susceptible. They explain this because majority of “active” population be-
comes infected faster than the remaining population. Our mechanism does not hinge on the
permanent heterogeneity in population, which could have been captured by Cov(βit, βit+1) =

1. The fat-tailed distribution in infection rate alone creates reduction in the required herd im-
munity rate in expectation.

3.4 Lockdown policy targeted at SSEs

How could the policymaker design the mitigation policies effectively if the distribution of in-
fection rates is fat-tailed? Here, we concentrate our analysis on lockdown policy. Unlike the
traditionally analyzed lockdown policy, we consider a policy that particularly targets SSEs.
Specifically we assume that the policy can impose an upper bound on βit ≤ β̄ with probability
φ. The probability φ is meant to capture some imperfection in enforcements or impossibility in
closing some facilities such as hospitals and daycare19. Here, we set φ = 0.5. For tractability,
we assume that the government implements targeted lockdown policies for entire periods. We
experiment with β̄ for various values: 1000 cases per day, 100 cases per day, and 50 cases per
day.

While Table B.3 in Appendix presents results in detail, we briefly summarize the main re-
sults here. First, the policy reduces the mean of the peak infection rate if and only if the dis-
tribution features fatter tails. Second, the targeted lockdown policy is effective in reducing the
volatility of the peak infection rate in the case that such risks exist in the first place. For ex-
ample, consider the case with α = 1.1. Moving from no policy to the upper-limit of 100 cases
reduces the 90th percentile of peak infection from 31% to 17%.20 In contrast, when α = 2 or

19Note that, even though the theoretical variance is infinite, the realized variance in numerical simulations will
always be finite. Therefore, such stochastic reductions can still reduce the simulated variance even though the
theoretical variance remains infinite.

20We may be concerned that the unbounded support of power law distribution is unrealistic; at the extreme
case, one cannot infect more than 8 billion people since that will exceed the world population. Imposing some
upperbound on the distribution of infection rate will be equivalent to imposing a lockdown policy with perfect
implementation (φ = 1). As shown in the results of lockdown policy, imposing such upperbounds can significantly
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with negative binomial distribution, the policy has virtually no effect. Therefore the policy is
particularly effective in mitigating the upward risk of overwhelming the medical capacity. This
highlights that while the fat-tailed distribution induces the aggregate risk in the epidemiologi-
cal dynamics, the government can partly remedy this by appropriately targeting the lockdown
policy.

We conclude this section by discussing several modeling assumptions. First, we have as-
sumed that {βit} is independently and identically distributed across individuals and over time.
This may not be empirically true. For example, a person who was infected in a big party is more
likely to go to a party in the next period. This introduces ex ante heterogeneities as discussed
in (Gomes et al., 2020; Hébert-Dufresne et al., 2020; Britton et al., 2020), generating positive cor-
relation in {βit} along the social network. Or, a person who tends to be a superspreader may
be more likely to be a superspreader in the next period. This induces a positive correlation
in {βit} over time. If the resulting cascading effect were large, then the average effects on the
epidemiological outcomes we have found may be overturned. Second, we have exogenously
imposed power law distributions without fully exploring underlying data generation mecha-
nisms behind them. The natural next step is to provide a model in which individual infection
rate follows a power law. We believe SIR models with social networks along the line of Pastor-
Satorras and Vespignani (2001), Moreno et al. (2002), Castellano and Pastor-Satorras (2010),
May and Lloyd (2001), Zhang et al. (2013), Gutin et al. (2020), and Akbarpour et al. (2020) are
promising avenue to generate endogenous power law in individual infection rates.

4 Estimation methods

We began with the evidence that SSEs follow a power law distribution with fat tails in many
settings, and showed that such distributions substantively change the predictions of SIR mod-
els. In this Section, we discuss the implications of power law distributions for estimating the
effective reproduction number.

4.1 Limitations of sample means

Estimation of average reproduction numbers (Rt) has been the chief focus of empirical epi-
demiology research (e.g. Becker and Britton, 1999). Our estimates across five different data sets
suggest that the exponent satisfies α ∈ (1, 2) in many occasions: that is, the infection rates have
a finite mean but an infinite variance. Since the mean exists, by the Law of Large Numbers,
the sample mean estimates (see e.g. Nishiura, 2007) that have been used in the epidemiology

reduce the volatility relative to the unbounded case, and nonetheless, some uncertainties will persist and remain
much larger than the predictions of negative binomial distributions.
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Estimates under distributions with thin tails
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(a) Thin tails

Estimates under distributions with fat tails
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(b) Fat tails

Figure 6: An example of sample mean estimates

Notes: Figure 6 depicts an example of sample mean estimates for thin-tailed and fat-tailed distributions.
The draws of observations are simulated through the inverse-CDF method, where the identical uniform
random variable is applied so that the sample means are comparable across four different distributions.
All distributions are normalized to have the mean of 2.5. The negative binomial (NB) distribution has
the dispersion parameter k = 0.16 taken from (Lloyd-Smith et al., 2005). The range of power law (PL)
parameters is also taken from the empirical estimates.

research will be consistent (i.e. converge to the true mean asymptotically) and also unbiased
(i.e. its expectation equals the true mean with finite samples.)

Due to the infinite variance property, however, the sample mean will converge very slowly
to the true mean because the classical CLT requires finite variance. Formally, while the conver-
gence occurs at a rate

√
N for distributions with finite variance, or thin tails, it occurs only at

a rate N1− 1
α for the power law distributions with fat tails, α ∈ (1, 2) (Gabaix, 2011).21 Under

distributions with infinite variance, or fat tails, the sample mean estimates could be far from
the true mean with reasonable sample sizes, and their estimated 95 confidence intervals will
be too tight. Figure 6 plots a Monte Carlo simulation of sample mean’s convergence property.
For thin-tailed distributions such as the negative binomial distribution or the power law distri-
bution with α = 2, even though the convergence is slow due to their very large variance, they
still converge to the true mean reasonably under a few 1,000 observations. In contrast, with fat-

21For α = 1 exactly, the convergence will occur at rate ln N.
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tailed distributions such as power law distribution with α = 1.1 or α = 1.2, the sample mean
will remain far from the true mean. Their sample mean estimates behave very differently as the
sample size increases. Every so often, some extraordinarily high values occur that significantly
raises the sample mean and its standard errors. When such extreme values are not occurring,
the sample means gradually decrease. With thin tails, such extreme values are rare enough not
to cause such sudden increase in sample means; however, with fat tails, the extreme values are
not so rare.

4.2 Using power law exponents to improve inference

What methods could address the concerns that the sample mean may be empirically unstable?
One approach may be to exclude some realizations as an outlier, and focus on subsamples with-
out extreme values22. However, such analysis will neglect major source of risks even though
extreme "outlier" SSEs may fit the power law distributions as shown in Figure 1. While esti-
mating the mean of distributions with rare but extreme values has been notoriously difficult23,
there are some approaches to address this formally.

With power law distributions, the estimates of exponent have information that can improve
the estimation of the mean. Figure 7 shows that the exponents α can be estimated adequately
with reasonable sample sizes.24 If α > 2, as may be the case for the India under strict lockdown,
then one can have more confidence in the reliability of sample mean estimates. However, if
α < 2, the sample mean may substantially differ from the true mean. At the least, one can be
aware of the possibility.

One transparent approach is a “plug-in” method: to estimate the exponent α̂, and plug into
the formula of the mean α̂

α̂−1 Z. This method yields a valid 95 confidence intervals (C.I.) of the
median25 since the estimated α̂ has valid confidence intervals.26 Figure 7 shows the estima-
tion results for the same data with α = 1.1, 1.2 as shown in Figure 6. First, while the sample
mean in Figure 6 had substantially underestimated the mean, this estimated median is close to

22In Japan, the case of over 620 infections in the cruise ship Diamond Princess was excluded from all other
analyses.

23Consider, for example, a binary distribution of infection rates such that one infects N others with 1/N prob-
ability, and 0 others with 1− 1/N probability. In this case, the true mean Rt = 1. Suppose a statistician observes
10 infected cases for each estimation. If N were 1,000, then with 99(≈ 0.99910) percent chance, nobody becomes
infected so that R̂t = 0, and the estimates’ confidence interval will be [0, 0]. But with less than 1 percent chance
when any infection occurs, R̂t will be larger than 100. Thus, the 95 percent confidence interval contains the true
mean in less than 1 percent of the time. To the best of our knowledge, there is no techniques that can help us
completely avoid this problem given the fundamental constraint of small sample size.

24The standard errors are computed by the maximum likelihood approach, as the linear regressions are known
to underestimate the standard errors (see Gabaix and Ibragimov, 2011).

25Note that the estimate corresponds to the median estimate because α̂
α̂−1 is a non-linear transformation of α̂.

26To be more formal, the correct C.I. will be to consider the uncertainties with the mean of observations below Z.
To focus on the uncertainty from upper tail, we construct the 95 percent C.I. from that of the estimate of $\alpha$
here.
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Estimates of power law exponents (α)

Number of observations (from 100)

E
st

im
at

es
 (

w
ith

 9
5 

%
 C

.I.
)

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

100 1000 2000 3000 4000 5000

PL (α=1.1)
PL (α=1.2)
1.1
1.2

(a) Power law exponents estimates

Estimates under distributions with fat tails

Number of observations (from 100)

M
ed

ia
n 

es
tim

at
es

 (
w

ith
 9

5 
%

 C
.I.

)

With estimation of power law exponents

0
2.

5
5

10

100 1000 2000 3000 4000 5000

PL (α=1.1)
PL (α=1.2)
true mean

(b) Sample median using the estimated exponents

Figure 7: An example of “plug-in” estimates

Notes: Figure 7 plots the estimates of power law exponents and the resulting estimates of sam-
ple median, using the same data as in Figure 6. Note that while the number of observations
contains all observations, the data points contributing to the estimates are only above some
thresholds: only less than 25 percents of the data contribute to the estimation of the exponents.

the true mean. Second, while the sample mean estimation imposed symmetry between lower
and upper bounds of 95 percent confidence intervals, this estimate reflects the skewness of un-
certainties: upward risks are much higher than downward risks because of the possibility of
extreme events. Third, the standard errors are much larger, reflecting the inherent uncertainties
given the limited sample sizes.27 Fourth, the estimates are more stable and robust to the ex-
treme values28 than the sample mean estimates that have sudden jumps in the estimates after
the extreme values.

Table 5 demonstrates the validity of the “plug-in” method through a simulation experiment.
The table shows the comparison of the probability that the constructed 95% C.I. covers the true
mean using the 1,000 Monte-Carlo simulation. When the estimate is unbiased and has correct

27When the number of observations is less than 1000, the estimated confidence interval of α contains values
less than 1.0, turning the upper bound of the mean to be ∞. This does not mean that a correct expectation is ∞
infections in the near future, but that there is serious upward risks in infection rates.

28This is because the estimation through log-likelihood will take the log of the realized value, instead of its
level.
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α = 1.08 α = 1.1 α = 1.2 α = 1.5 α = 2
1. N = 100

Sample means 21% 26% 42% 74% 89%
Plug-in 98% 98% 98% 94% 87%

2. N = 500
Sample means 24% 29% 45% 78% 90%
Plug-in 98% 98% 95% 94% 84%

3. N = 1000
Sample means 24% 26% 48% 78% 92%
Plug-in 97% 97% 93% 93% 86%

Table 5: Coverage probability of 95% confidence interval

Note: Thable 5 reports the probability that the 95% confidence interval, constructed in two different
ways, covers the true value in 1000 simulation. “Sample means” is simply uses the sample mean.
“Using power laws uses” first estimates the Pareto exponent using the maximum likelihood, and then
convert it to the mean estimates.

standard errors, this coverage probability is 95%. When the power law exponent is close to
one, the traditional “sample means” approach has the C.I. that covers the true mean only with
20-40% for all sample sizes. By contrast the “plug-in” method covers the true estimates close
to 95%. As the tail becomes thinner toward α = 2, the difference between the two tends to
disappear, with “sample mean” approach performing better some times. When the underlying
distribution has fat-tails, however, estimation using the plug-in method is preferred.

While the C.I. in the plug-in method has adequate coverage probabilities, it is often very
large and possibly infinite. Figure 7 visualizes this. This large C.I. occurs especially when
α ' 1 because the mean of a power law distribution is proportional to α

1−α . How could the
policymakers plan their efforts do given such large uncertainty in R0? Given the theoretical
results in Section 3 that the epidemiological dynamics will be largely uncertain even when α ' 1
is perfectly known, we argue that applying the estimated R0 into a deterministic SIR model
will not lead to a reliable prediction. Instead of focusing on the mean, it will be more adequate
and feasible to focus on the distribution of near-future infection outcomes. For example, using
the estimated power law distribution, policymakers can compute the distribution of the future
infection rate. The following analogy might be useful: in planning for natural disasters such as
hurricanes and earthquakes, policymakers will not rely on the estimates of average rainfall or
average seismic activity in the future; instead, they consider the probabilities of some extreme
events, and propose plans contingent on realizations. Similar kinds of planning may be also
constructive regarding preparation for future infection outbreaks.

To overcome data limitations, epidemiologists have developed a number of sophisticated
methods such as backcalculation assuming Poisson distribution (Becker et al., 1991), and ways
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to account for imported cases. There are also a number of methods developed to account for
fat-tailed distributions (see e.g. Stoyanov et al., 2010, for a survey), such as tail tempering (Kim
et al., 2008) and separating the data into sub-groups (Toda and Walsh, 2015). In the future, it
will be important to examine what power law distributions will imply about existing epidemio-
logical methods, and how statistical techniques such as plug-in methods can be combined with
epidemiological techniques to allow more reliable estimation of risks.

5 Conclusion: implications for COVID-19 pandemic

Most research on infection dynamics has focused on deterministic SIR models, and have esti-
mated its key statistics, the average reproduction number (R0). In contrast, some researchers
have concentrated on SSEs, and estimated the dispersion of infection rates using negative bino-
mial distributions. Nonetheless, stochastic SIR models based on estimated distributions have
predicted that idiosyncratic uncertainties in SSEs would vanish when the infected population
is large, and thus, the epidemiological dynamics will be largely predictable. In this paper,
we have documented evidence from SARS, MERS, and COVID-19 that SSEs actually follow a
power law distribution with the exponent α ∈ (1, 2): that is, their distributions have infinite
variance, or fat tails. Our stochastic SIR model with these fat-tailed distributions have shown
that idiosyncratic uncertainties in SSEs will persist even when the infected population is large,
inducing major unpredictability in aggregate infection dynamics.

Since the currently infected population is estimated to be around 3 million in the COVID-
19 pandemic,29 our analysis has immediate implications for policies of today. For statistical
inference, the aggregate unpredictability suggests caution is warranted on drawing inferences
about underlying epidemiological conditions from observed infection outcomes. First, large
geographic variations in infections may be driven mostly by idiosyncratic factors, and not by
fundamental socioeconomic factors. While many looked for underlying differences in public
health practices to explain the variations, our model shows that these variations may be more
adequately explained by the presence of a few, idiosyncratic SSEs. Second, existing stochastic
models would suggest that, keeping the distribution of infection rates and pathological envi-
ronments constant, recent infection trends can predict the future well. In contrast, our analysis
shows that even when the average number of new infections may seem to have stabilized at a
low level in recent weeks, subsequent waves can suddenly arrive in the future.

Such uncertainties in outbreak timing and magnitude introduce substantial socioeconomic
difficulties, and measures to assess and mitigate such risks will be invaluable. The death rate
is shown to increase when the medical capacity binds. Thus, reducing uncertainties can reduce
average fatality. Furthermore, uncertainties can severely deter necessary investments and im-

29According to worldometers.info, the cumulative infection worldwide is 7 million, among which 4 million
have already recovered or died, as of June 9, 2020.
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pede planning for reallocation and recovery from the pandemic shocks. To assess such risks,
we can estimate the tail distributions to improve our inference on the average number. To ad-
dress such risks, social distancing policies and individual efforts can focus on large physical
gatherings in infection-prone environments. Our estimates suggest, like earthquakes, infection
dynamics will be largely unpredictable. But unlike earthquakes, they are a consequence of so-
cial decisions, and efforts to reduce SSEs can significantly mitigate the uncertainty the society
faces as a whole.
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Appendix

A Empirical Appendix

A.1 Relating empirical distribution of Z to theoretical distribution of βit

In this paper, we have used the estimates from the data to simulate the evolution dynamics of
the epidemiological model. The key step in our argument is that the tail distribution of ∑i zit

or ∑t zit, the cumulative “effective” number of infections, is equivalent to the tail distribution of
βit, the individual and per-period “basic” number of infection. However, in general, this needs
not hold: for example, even if βit were normally distributed (i.e. thin tailed), Z may follow a t-
distribution (i.e. fat-tailed). Under what conditions is our interpretation about the relationship
between distribution of Z and distribution of βi valid? Are they plausible in the settings of the
coronaviruses?

To clarify this question, let us lay out a model. Formally, Z is a mixture distribution of the
weighted sum of βit. Here, we provide notations for ∑t zit but the identical argument will also
apply to ∑i zit. Specifically, suppose i stays infected for t periods, and let the probability mass
be δ

(
t
)
. In the case of exponential decay as in the SIR model, δ

(
t
)
= γt. Denoting the counter-

cumulative distribution of Zi by Φ, and that of βit by F, we have

Φ (Zi) =
∞

∑
t=1

δ
(
t
)

Gt

(
t

∑
t=1

St

N
βit

)
, βit ∼ F,

where Gt denotes the distribution of ∑t
t=1

St
N βit.

A.1.1 Empirical evidence on causes of SSEs

First, we may be concerned that, even if Φ is a power law distribution, F may not be a power law
distribution. A counterexample is that a geometric Brownian motion with stochastic stopping
time that follows exponential distribution can also generate power law distributions of the tail
(Beare and Toda, 2020). That is, the tail property of Φ needs not be due to tails of F: for ∑t zit , it
could also due to some individuals staying infectious for an extremely long periods. For ∑i zit,
it could also be due to some events having extremely high number of infected primary cases.

While we acknowledge such possibilities, we argue that for superspreaders or SSEs of the
coronaviruses, the main mechanism of extremely high number of cumulative infection is pri-
marily due to some extreme events at particular time t. Let us be concrete. If the counterexam-
ple’s reasoning were true for ∑t zit, then a superspreader is someone who goes, for example, to
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a restaurant and infect two other people at time t, and then goes to a shopping mall and infects
three other people at time t + 1, and then goes to meet her two friends and infect them, and
so on. However, this interpretation is inconsistent with numerous anecdotes. Instead, a super-
spreader infects many people because he attends a SSE that has infection-prone environment at
a particular time t. Conferences, parties, religious gatherings, and sports gyms are a particular
place that can infect many at the same time. Moreover, Nishiura et al. (2020) paper whose data
we use has identified particular environment that has caused SSEs. This interpretation is impor-
tant because, if the extremely high cumulative number of infection were due to some staying
infectious for a long time or some events having extremely high number of primary cases, then
our model’s prediction of sudden outbreak due to SSE is no longer a valid prediction.

A.1.2 Theoretical analysis on interpretation of exponents

Second, we may be concerned that the exponent of Φ (Zi) may be different than the exponent
of F (βiτ), even if both have tails that follow power laws. We use two steps to show that this is
not a concern:

(i) if a random variable has a power law distribution with exponent α, then its weighted sum
also has a tail distribution that follows a power law with exponent α (see e.g. Jessen and
Mikosch (2006) or Gabaix (2009)). Thus, neither summation over multiple periods nor the
weights of Sτ

N will change this.

(ii) the tail property of distribution can be examined by considering αF (Z) = f (Z)
f (cZ) for some

c 6= 1 and taking its limit. In particular, if F has a power law distribution, then αF (Z) =
cα.30 Denoting the probability mass of Gt (·) by gt (·), and the normalizing constant of
each t by At,

lim
Z→∞

αΦ (Z) =
∑∞

t=1 δ
(
t
)

limZ→∞ gt (Z)

∑∞
t=1 δ

(
t
)

limZ→∞ gt (cZ)
=

∑∞
t=1 δ

(
t
)

AtZ
−α

∑∞
t=1 δ

(
t
)

At (cZ)−α = cα.

Thus, the exponent of Φ (Zi) will be identical to the exponent of F (βiτ) asymptotically.

This discussion suggests that whenever possible, it is desirable to take the estimates from the
tail end of the distribution instead of using moderate values of Z. For the COVID-19 from the
world, the distributions are estimated from the very extreme tail. But when the sample size of
SSEs is limited, choice of how many observations to include thus faces a bias-variance trade-off.
Nonetheless, as many statistical theories are based on asymptotic results, these arguments show
that it is theoretically founded to interpret the exponent of Φ (Zi) as the exponent of F (βiτ), at
least given the data available.

30This capture the essence of power laws – that whatever the value of Z, its frequency and frequency of cZ has
the same ratio.
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A.2 Robustness

We present several robustness checks on our empirical results.

A.2.1 Figure 1 with a different cut-off

In Figure 1, we truncated the size of cluster from below at 40. Figure A.1 instead show results
with a cut-off of 20. The fit is worse at the lower tail of the distribution, which suggests that
the lower tail may not be approximated by power law distribution. This is a common feature
among many examples. However, what matters for the existence of variance is the upper tail
distribution, we do not think this is a concern. Moreover, given that the data partly come
from media reports, the clusters of small sizes likely suffer from omission due to lack of media
coverage.

A.2.2 Robustness of power law exponents estimates

Gabaix and Ibragimov (2011) show that an estimate of 2 is biased in a small sample and propose
a simple bias correction method that replace the dependent variable with ln(rank− 1/2). Panel
A of Table A.1 show the results with this bias correction method. The results are broadly very
similar to our baseline results in Table 1.

Panel B of Table A.1 conduct another robustness check, where we estimate using the maxi-
mum likelihood. Again, the point estimates are overall similar to the baseline results, although
standard errors are larger.

A.3 Additional Tables and Figures

Table A.2 shows fseveral examples of superspreading events during COVID-19 pandemic.
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COVID−19 Cluster Sizes Worldwide
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Source: CMMID COVID−19 Working Group online database (Leclerc et al., 2020)
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log(rank) =  − 0.95 log(num)  + 3.27

R2 = 0.97

Figure A.1: Log size vs log rank for Superspreading Events in SARS 2003
Notes: Figure A.1 plots the number of total cases per cluster (in log) and their ranks (in log) for COVID-
19, last updated on June 3rd. It fits a linear regression for the clusters with size larger than 20. The data
are collected by the Centre for the Mathematical Modelling of Infectious Diseases COVID-19 Working
Group (Leclerc et al., 2020).
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Panel A. Bisas corrected regression estimates

COVID-19 SARS MERS

World Japan India World Singapore Beijing World

(1) (2) (3) (4) (5) (6) (7)

α̂ 1.16 1.45 1.70 1.02 0.86 0.96 1.29

(0.07) (0.16) (0.06) (0.10) (0.12) (0.10) (0.11)

Z 40 2 2 8 2 2 2

Obs. 60 11 109 15 19 8 36

R2 0.97 0.93 0.96 0.95 0.89 0.93 0.95

log10 LR - 11.73 - - 19.92 8.05 41.19

Panel B. Maximum likelihood estimates

COVID-19 SARS MERS

World Japan India World Singapore Beijing World

(1) (2) (3) (4) (5) (6) (7)

α̂ 1.01 1.96 1.71 0.89 1.21 0.87 1.49

(0.13) (0.59) (0.16) (0.23) (0.28) (0.31) (0.25)

Z 40 2 2 8 2 2 2

Obs. 60 11 109 15 19 8 36

log10 LR - 11.93 - - 20.34 8.07 46.93

Table A.1: Estimates of power law exponent: robustness

Notes: Table A.1 summarizes two robustness check exercises of power law exponent (α̂). Panel A. bias
corrected estimates take log(rank− 1

2 ) as the dependent variable. This is a small sample bias correction
proposed by Gabaix and Ibragimov (2011). Heteroskedasticity-robust standard errors are reported in
the parenthesis. Panel B. presents the maximum likelihood estimates. Standard errors are reported in
the parenthesis. In both panels, log10(LR) denotes “likelihood ratios”, expressed in the log with base
10, of probability of observing this realized data with power law distributions relative to that with
estimated negative binomial distributions. Columns (1)-(3) report estimates for COVID-19; columns
(4)-(6) for SARS, and column (7) for MERS.
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Major super-spraeding evernts Confirmed cases Date
Choir practice in Washington, the US 52 03/10
Conference in Boston, the US 89 02/26
Religious gathering in Daegu, South Korea 49 02/19
Religious gathering in Frankfurt, Germany 49 02/19
Wedding ceremony in New Zealand 76 03/21
Prison in IL, the US 351 04/23
Food processing plant in Ghana 533 05/11
Dormitory in Singapore 797 04/09

Table A.2: Examples of superspreading events
Noes: Table A.2 summarizes some examples of superspreading events, their dates and the number of
confirmed cases for COVID-19. Source: COVID-19 settings of transmission - database (accessed, June
4, 2020)
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B Theory Appendix

B.1 Proof that S∞ is convex inR0 ifR0 >
9

8(1−R0)

We show that S∞ is a concave function inR0. Recall that S∞ is a solution to

log S∞ = −R0(1− S∞).

By the implicit function theorem,

dS∞

dR0
= − 1(

1
S∞
−R0

) (1− S∞)

< 0.

because S∞ < 1/R0. Applying the implicit function theorem again,(
1

S∞
−R0

)
︸ ︷︷ ︸

>0

d2S∞

dR2
0
=

dS∞

dR0︸︷︷︸
<0

(
2− 1/S∞ − 1

1−R0S∞

)
.

It remains to show that
(

2− 1/S∞−1−R0
1−R0S∞

)
< 0. We can rewrite this as

f (S0) ≡ 2R0S2
∞ − 3S∞ + 1 > 0.

Note that f (·) is minimized at S∗∞ = 3
4R0

. The minimum value is

min
S0

f (S∞) = − 9
8R0

+ 1.

Therefore f (S∞) > 0 for all S∞ if and only if R0 > 9
8 . This implies that when R0 > 9

8 , S∞ is a
concave function ofR0.

B.2 Proof that Imax is concave inR0 if and only ifR0 >
1
S0

exp(0.5)

Recall that the peak infection rate is given by

Imax/N = 1− 1
R0
− 1
R0

log(R0S0).

41
C

ov
id

 E
co

no
m

ic
s 3

0,
 1

9 
Ju

ne
 2

02
0:

 1
-4

3



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

The derivative is

dImax/N
dR0

=
1

(R0)2 log(R0S0).

The second derivative is

d2(Imax/N)

dR2
0

=
1

(R0)3 (1− 2 log(R0S0)) ,

which is negative if and only ifR0 > 1
S0

exp(0.5).

B.3 Results for targeted lockdown policy experiment

Table B.3 shows the simulation results with lockdown policies targeted at SSEs. β̄ is the daily
upperbound of infection rates due to policies, and we consider cases of β̄ = 1000, 100, 50. As
already discussed in the main text, when the distribution is fat-tailed, the targeted policy is not
only effective in reducing the mean of the peak infection rate, but also its volatility (the interval
between 90 percentile and 10 percentile).
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Power law Negative

α = 1.08 α = 1.1 α = 1.2 α = 1.5 α = 2 binomial

1. β̄: 1000 cases per day

mean 11% 15% 23% 27% 27% 27%

90th percentile 19% 23% 29% 29% 28% 27%

50th percentile 8% 12% 21% 26% 27% 27%

10th percentile 4% 7% 17% 25% 26% 26%

3. β̄: 100 cases per day

mean 9% 12% 20% 26% 27% 27%

90th percentile 17% 20% 26% 27% 28% 27%

50th percentile 5% 8% 18% 26% 27% 27%

10th percentile 3% 5% 16% 24% 26% 26%

3. β̄: 50 cases per day

mean 8% 11% 19% 26% 27% 27%

90th percentile 14% 19% 26% 27% 28% 27%

50th percentile 4% 8% 17% 25% 27% 27%

10th percentile 2% 5% 14% 24% 26% 26%

Table B.3: Peak infection under targeted lockdown policy

Note: Table B.3 shows the summary statistics for peak infection rates from 1000 simulations with vari-
ous policy parameters β̄, where β̄ is the upperbound on the infection imposed by the policy.
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Mass gathering contributed to 
early COVID-19 spread: Evidence 
from US sports1
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Social distancing is important to slow the community spread of 
infectious disease, but it creates enormous economic and social cost. 
It is thus important to quantify the benefits of different measures. We 
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1. Introduction

Due to the lack of vaccines and effective antiviral drugs, countries have to rely on a set of non-
pharmaceutical interventions (NPI) in response to the Coronavirus Disease 2019 (COVID-19) pan-
demic. The goal of these measures is to prevent a sharp peak of infections, to take pressure off
healthcare systems, and ultimately to save lives. In addition to good personal hygiene and mandatory
face masks, social distancing is perhaps the most important NPI (Cowling & Aiello 2020). Since
maintaining physical distance inevitably creates enormous economic and social cost, it is crucial to
quantify the benefits of different measures in controlling epidemics.

One important public policy to promote physical distancing is to ban mass gatherings (Memish et al.
2019).1 Such events may foster the transmission of contagious disease as a result of large crowds being
in close contact, often for extended periods of time. A temporary mass gathering ban is relatively
cheap and easy to implement compared to, for example, school and workplace closures. In response to
the spread of SARS-CoV-2, the pathogen leading to COVID-19, several prominent events have been
canceled or postponed, even before widespread quarantine measures were enacted (McCloskey et al.
2020). These include religious, cultural, and sporting events.

We quantify how much National Basketball Association (NBA) and National Hockey League (NHL)
games have contributed to the spread of COVID-19 in theUnited States.2 Before the leagues suspended
play on March 12, up to 12 games per league with an average audience of about 18,000 people were
held per day. We analyze how much the number of games held between March 1 and March 11 has
contributed to the community spread of COVID-19 in counties surrounding NBA and NHL venues.
Since the game schedules were determined long before the first COVID-19 case became public, their
spatial and temporal distribution should be unrelated to the initial spread of COVID-19 in the US.3 In
fact, we can show that game schedules are not correlated with observable county characteristics and
that game attendance did not systematically change until the NBA and NHL suspended play.

Our results suggest that one additional mass gathering between March 1 and 11 in the form of a NBA
or NHL game increased the cumulative number of COVID-19 cases (measured on April 30, 2020) in
affected counties by at least 379 per one million population (p < 0.05) or 13 percent, and the number
of COVID-19 deaths per million by 16 (p < 0.05) or 11 percent. These effects are larger in colder
regions and in states where shelter-in-place orders (SIPOs) were implemented late. We conclude that
banning mass gatherings has an enormous potential to save lives, which is especially important given
that such measures are relatively easy and cheap to implement.

1The World Health Organization (WHO) describes a mass gathering as “a planned or spontaneous event where the
number of people attending could strain the planning and response resources of the community or country hosting the
event. The Olympic Games, The Hajj, and other major sporting, religious, and cultural events are all examples of a mass
gathering.”

2We focus on NBA and NHL because their seasons were ongoing when COVID-19 broke out. The National Football
League (NFL) was in offseason and Major League Baseball (MLB) in spring training, which involves scrimmage games
in smaller ballparks held in Arizona and Florida.

3The first known case in the US was a man in Washington State who returned January 15, 2020 from Wuhan. The
NBA 2019/20 schedule had been released on August 12, 2019, the NHL schedule on June 25, 2019.
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Our results contribute to the literature evaluating the role of mass gatherings in the spread of infectious
disease, and the benefits of social distancing more generally. In a recent survey of the literature,
Nunan & Brassey (2020) conclude that the impact of mass gatherings on COVID-19 is still poorly
understood. So far, evidence comes almost solely from case reports. For other infectious diseases
there is more evidence, but mostly in the form of retrospective observational studies (Rainey et al.
2016, Hoang & Gautret 2018, Karami et al. 2019). We are not aware of any design-based estimation
of the impact of mass gatherings on the community spread of infectious disease.4 The best available
evidence suggests multiple-day events with crowded communal accommodations are most associated
with increased risk of infection (Nunan & Brassey 2020).

Other NPIs have received more attention in the context of COVID-19. These studies differ with respect
to outcomes, interventions, and geographic coverage. Gupta et al. (2020) demonstrate how different
state- and county-level measures that aim at fostering social distancing have affected people’s mobility.
The authors proxy mobility with cell signal data, and find SIPOs to have the largest mobility-reducing
impact. Two studies examine the impact of SIPOs on COVID-19 cases and deaths. Dave et al. (2020)
exploit variation in SIPOs across time and all US states. Their results suggest that approximately three
weeks following the adoption of a SIPO, cumulative COVID-19 cases fell by 44 percent. Friedson
et al. (2020) focus on California, which was the first state to enact a SIPO. Using a synthetic control
design, they find that California’s SIPO reduced cases by 125.5 per 100,000 population and deaths by
1,661. Methodologically, all papers use a difference-in-differences approach.5 Goodman-Bacon &
Marcus (2020) provide a critical account of this estimation approach in the context of NPIs.

There is extensive evidence on previous pandemics available. However, the majority of these studies
are descriptive in nature. Studying the 1918 influenza pandemic, Markel et al. (2007), Bootsma &
Ferguson (2007), and Hatchett et al. (2007), for example, find a strong correlation between excess
mortality and how early public health measures were enacted in US cities. It is difficult to infer
causality from these results, however, because NPIs are not exogenous and may be enacted in response
to preexisting trends in death rates. Barro (2020) attempts to account for this endogeneity by using
the distance to army ports in Boston as instrumental variables for NPI introduction. He argues that,
because the influenza spread from Boston to other US cities, the farther away cities are from Boston,
themore time they had to react and implement NPIs. Barro finds no effect on overall deaths, but that the
ratio of peak to average deaths decreased (i.e., a flatter curve). Chapelle (2020) finds a similar pattern
using a difference-in-differences model exploiting differences in the timing of NPI introduction. He
claims that the lack of herd immunity in subsequent years offset the initial reduction in deaths during
the peak of the pandemic, which led to an overall zero effect on deaths.

For recent influenza waves, there is some suggestive evidence that school closures (e.g., Earn 2012,
Wheeler et al. 2010) and workplace social distancing (e.g., Ahmed et al. 2018, Miyaki et al. 2011) may
be associated with lower disease transmission. However, this literature consists mostly of small case

4A notable contribution is Mangrum & Niekamp (2020), who present evidence that college student travel contributed
to the spread of COVID-19. Their estimates show that counties with more early spring break students had higher confirmed
case growth rates than counties with fewer early spring break students.

5There are also a number of non-US studies. Fang et al. (2020) study the case of Wuhan (China), and Hsiang et al.
(2020) study localities within China, France, Iran, Italy, South Korea, and the US.
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studies on scheduled school closures (for example, during holidays) or single firms. Viner et al. (2020)
conclude that school closures were largely ineffective in controlling past Coronavirus outbreaks (i.e.,
SARS and MERS).

The cost of school and workplace closures are massive. For example, Sadique et al. (2008) estimate
that school closures in the US could cost up to £1.2 billion per week. In the early stages of COVID-19,
Alexander & Karger (2020) find that people already traveled 9% less and made 13% fewer visits
to non-essential businesses. Their preliminary evidence suggests that consumer spending for over 1
million small US business may be reduced by 40%. In a recent survey, respondents reported average
wealth losses due to COVID-19 of about $33,000 (Coibion et al. 2020). However, Greenstone &
Nigam (2020) find that even a moderate form of social distancing (i.e., isolation of suspect cases and
their family members and social distancing of the elderly) can reduce COVID-19 fatalities by almost
1.8 million over the next 6 months, amounting to economic benefits of almost $8 trillion. Similarly,
Thunström et al. (forthcoming) estimate the potential benefits of social distancing at around $5.2
trillion.

The remainder of the paper is structured as follows. Section 2 describes our data sources. In Section 3,
we present our estimation strategy. Sections 4 and 5 report the main results and a heterogeneity
analysis. Section 6 provides concluding comments. Additional figures and tables we delegate to a
web appendix.

2. Data

We use information on NBA and NHL games played between March 1 and March 11.6 During this
time span, 78 NBA games (on average about 7 per day) and 57 NHL games (on average 5 per day)
were played in US venues. Both leagues suspended all remaining games for the 2019/20 season
indefinitely on March 12. The NBA cancelled two games right before tip-off on March 11: Utah Jazz
at Oklahoma City Thunder, where Utah player Rudy Gobert tested positive for Sars-Cov-2 prior to
the game, and New Orleans Pelicans at Sacramento Kings, due to a suspected infection involving a
referee who was part of the officiating crew in a game involving the Utah Jazz earlier the same week.

In our estimation sample, we focus on 38 counties which host either a NBA or a NHL venue, or
both, and all their 204 neighboring counties, which we call the ‘perimeter’ (see Figure A.1 in the
Web Appendix for a map). For all affected venue and perimeter counties, we collect information
on COVID-19 cases and related deaths.7 In Figure 1, we show the number of cases (panel a) and
deaths (panel b) per million population measured on March 13 (indicated by the left scatter) and on

6The information on NBA games is scraped from Basketball Reference (see basketball-reference.com). Data on
NHL games are collected from Hockey Reference (see hockey-reference.com). Since we focus on US territory, we
disregard 16 NHL games played in Canada. No NBA game was played in Toronto during the relevant time span.

7The information on COVID-19 cases and deaths up to April 30, 2020 is obtained from a database maintained
by The New York Times, which collects county-level information from reports of state and local health agencies (see
nytimes.com/interactive/2020/us/coronavirus-us-cases.html). In our main analysis, we exclude New York
City. Data on COVID-19 cases and deaths are not available for city boroughs separately. Adjacent counties in New Jersey
and New York are coded as affected by games in New York City.
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Table 1 — Descriptive statistics for main variables

By county type

Venue Perimeter

Total number of games (NBA + NHL) between March 1–11 3.74 3.48
(3.06) (2.71)

Cumulative number of COVID-19 infections†
On March 13 9.08 4.92

(14.18) (13.28)
On April 30 3,846.71 2,834.96

(4,425.77) (4,792.83)

Cumulative number of COVID-19 deaths†
On March 13 0.05 0.02

(0.20) (0.22)
On April 30 211.30 139.18

(329.72) (249.98)
Total county population (in mio.) 1.79 0.38

(1.79) (0.45)
Population density 3,506.84 835.78

(3,915.39) (1,588.35)

Population characteristics
% female 51.20 50.57

(0.85) (1.10)
% non-white pop. 33.50 17.03

(13.43) (12.89)
% pop. 60+ 18.46 21.62

(2.52) (5.28)

Number of counties 38 204
Notes: Sample means with standard deviations in parentheses.
† Per one million population.

April 30 (the right scatter) for each venue county, grouped by state, in our data. Additionally, we
compute the average number of cases and deaths across each set of neighboring counties. The highest
increases are in Essex County, NJ; Orleans Parish, LA; and Suffolk County, MA.

To generate covariates, we collect county-level data on population by age, sex, and ethnicity from the
2016 US census provided by the National Bureau of Economic Research.8 To stratify our analysis,
we use, among others, information on population density, climate, and the timing of SIPOs. The
information on county land area is collected from the US Census Bureau.9 Data on historical
county climate, including data on April temperature, are collected from the National Centers for
Environmental Information.10 Finally, information on the introduction of SIPOs on the state level is
taken from Dave et al. (2020). Descriptive statistics for all variables used in our empirical analysis by
county type are presented in Table 1.

8Data are available at data.nber.org/seer-pop/desc/.
9Data are available at https://data.census.gov/cedsci.
10TheNOAA’sClimateDivisionalDatabase is available atdata.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00005.
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Figure 1 — Change in reported COVID-19 cases and deaths per venue and perimeter county over time
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3. Estimation Strategy

In our estimation analysis, we aim to explain the cumulative number of COVID-19 infections and
deaths in a given county c in state s adjacent to, or hosting, venue v. Our sample comprises two types
of counties, those which host an NBA or NHL venue (hereafter venue county) and those adjacent to a
venue county. This sample definition provides us with a clear match between each county c and venue
v. The dependent variable, COVID-19 deathsc,v(s), is defined as the cumulative number of COVID-19
deaths in county c (measured on April 30, 2020) per one million population. The mean of the death
rate in venue counties is 211.3 with a standard deviation of 329.7 (see Table 1).

The explanatory variable of primary interest, gamesc,v(s), varies across venues and measures the
cumulative number of games (NBA and NHL) at venue v between March 1 and 11. Starting from
March 12, both leagues suspended their seasons and all games were canceled.11 There were on average
12.3 games with considerable variation to exploit. The number of games varies between 0 and 16,
with a standard deviation of 3.52. This set-up translates to the following estimation model:

COVID-19 deathsc,v(s) = β · gamesc,v(s) + Xcδ +
∑

γs + εc,v(s), (1)

where Xc are county-level controls, and γs are venue-state fixed-effects. Our county-level controls
comprise population density and the sex-race-age distribution.

Our main parameter of interest is β, which captures the impact of an additional mass gathering due to
a NBA or NHL game on the cumulative number of COVID-19 deaths. Given that the game schedules
were determined long before the first COVID-19 case became public, there should be no correlation
between gamesc,v(s) and the error term εc,v(s). This identifying assumption is supported by the fact
that the number of games does not correlate with observed county characteristics (see Appendix
Table A.1). A potential issue for the interpretation of our estimate would be anticipation effects, in
the sense that people may had increasingly refrained from visiting games prior to the lockdown. This
would lead to an attenuation bias and our results being a lower bound of the actual effect. However, we
can show that game attendance did not systematically change before suspension of play (see Appendix
Figure A.2).

4. Main Estimation Results

Our estimation results are summarized in Table 2. We estimate the model in equation (1) both on the
cumulative number of COVID-19 cases (panel A) and deaths (panel B) per one million population.
We find a significant positive effect of the number of mass gatherings on both of these outcomes.
Our most conservative estimates indicate that each additional mass gathering between March 1 and
11 increased cases by 379 per one million (column 4) and deaths by approximately 16 per million
population (column 3). These are substantial effects. Compared to the average case and death rates

11Prior to that only two games on March 11 were cancelled. In both cases, players were tested/suspected for COVID-19.
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Table 2 — Impact of pre-scheduled mass gatherings on COVID-19 infections and death rate

(1) (2) (3) (4) (5)

Panel A. Cumulative number of confirmed COVID-19 infections per million populationa
Cum. number of games 485.679** 452.777** 383.526** 379.147** 380.524**

(208.756) (202.890) (183.365) (174.000) (174.385)
Population density 0.277* 0.314* 0.320*

(0.141) (0.178) (0.178)
Perc. non-white population 69.612***

(17.147)
Perc. population aged 60+ −0.356

(30.150)
Perc. population female −288.475

(536.027)
Days since SIPO in placec 47.235

(35.065)
Sex-race-age distributione No No No Yes Yes
Venue-state fixed effects No Yes Yes Yes Yes
Venue county (1 = yes, 0 = no) No No Yes Yes Yes

Panel B. Cumulative number of COVID-19 deaths per million populationb
Cum. number of games 29.470*** 23.597** 15.825** 16.350** 16.410**

(11.067) (9.767) (7.064) (6.598) (6.610)
Population density 0.004 0.012 0.012

(0.007) (0.009) (0.009)
Confirmed COVID-19 casesd 4.635*** 4.633*** 4.656***

(0.517) (0.589) (0.599)
Perc. non-white population 2.997***

(0.717)
Perc. population aged 60+ 2.419*

(1.316)
Perc. population female 1.541

(9.605)
Days since SIPO in placec 2.858

(2.126)
Sex-race-age distributione No No No Yes Yes
Venue-state fixed effects No Yes Yes Yes Yes
Venue county (1 = yes, 0 = no) No No Yes Yes Yes

Notes: The number of observations is 242. Robust standard errors are presented in parentheses, stars indicate significance: * p < 0.10, **
p < 0.05, *** p < 0.01. a The dependent variable in Panel A is the number of confirmed COVID-19 infections per million inhabitants on
April 30, 2020 with a mean of 2,993.83 (std. dev. 4,742.62). b The dependent variable in Panel B is the death rate, defined as the number of
COVID-19 deaths per million population on April 30, 2020 with a mean of 150.50 (std. dev. 264.61). The number of games measures all NBA
and NHL games which took place between March 1 and March 12. c The number of days Shelter-in-Place Orders were active on April 30
2020 in the observed county; source: Dave et al. (2020). d The number of confirmed COVID-19 infections per county and 1,000,000 county
residents. e The sex-race-age distribution is defined as a set of 16 variables capturing the share of the total population of sex g, of race h, and
in age-group i, where h is white and non-white, and i is 0 − 19, 20 − 39, 40 − 59, 60+.

across the counties in the data, our estimates correspond to increases of 13 percent and 11 percent per
game, respectively. Both are statistically significant at the 5 percent level.

These findings are robust across different specifications. In column (1), we show the unconditional
relationship between cases/deaths and games. In column (2), we introduce venue-state fixed effects.
In column (3), we additionally include a binary indicator capturing whether the county hosts one or
multiple venues, the population density, and the shares of females, people above 60 years of age, and
non-whites in the population. In column (4), we alternatively use the full sex-race-age distribution,
defined as a set of 16 variables capturing the share of sex g, of race h, and in age-group i in the
population; where h is white or non-white, and i is 0–19, 20–39, 40–59, or 60+. In column (5), we
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control also for the number of days a statewide SIPO had been in place in state the observed county c

is located in. When analyzing deaths in panel B, columns (3) to (5), we additionally control for the
number of confirmed cases by March 13. Our covariates do not have causal interpretations, hence we
refrain from interpreting them. However, we note that the negative sign on “Days since SIPO in place”
may simply point towards the fact that states with high early case and death counts had to introduce
SIPOs sooner.

In Figure 2, we provide an overview on the dynamics underlying these effects. The horizontal axis
measures time from March 1 to April 30. The squares capture the cumulative number of games
(NBA plus NHL) before the leagues suspended play, indicated by the red vertical line. The hollow
circles measure the estimated effect of an additional game on the cumulative number of COVID-19
cases (Panel A) and deaths (Panel B) on each day between March 13 and April 30. Each estimate
comes from a separate regression, with the dependent variable being measured on different days. The
right-most estimate is our baseline. A priori, we expect effects to be strongest around day 14 after the
shutdown. This is precisely what we find. The effect of games starts to pick up around March 28 and
increases at a decreasing rate since then. This is true for both cases and deaths. Furthermore, we see
that cases respond earlier than deaths, which makes sense given the natural lag between diagnosis and
death. In terms of magnitudes, estimates for COVID-19 deaths (cases) range between −0.003 (0.996)
on March 13 and 16.350 (379.147) on April 30.
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Figure 2 — Estimated effect of non-canceled games on confirmed deaths and cases.

(a) Reported cases per million population
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(b) Reported deaths per million population
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Notes: The squares capture the cumulative number of games (NBA plus NHL) before suspension of the leagues (red
vertical line). The hollow circles measure the estimated effect of one additional game on the cumulative number of
COVID-19 cases (Panel A) and deaths (Panel B) on each day between March 13 and April 30. Each estimate comes from
a separate regression, with dependent variables measured on different days, and the control variables as in column (4) of
Table 2 are used.
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Figure 3 — Treatment effect heterogeneity
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Notes: We replicate our results in sub-samples defined by the median of the respective stratification variable. Estimates
base on county level population density are based on the split along the median of the population density distribution of
all 242 counties in our data. The county level share of African American population was calculated using 2016 US census
data provided by the National Bureau of Economic Research. The third sample split is based on the maximum temperature
in April for the 20 most recent years, 1998− 2019. low indicates counties below the median of this long-term temperature
median, high indicates above the median. Finally, we split along the median of days statewide SIPO regulations were in
place by April 30, source: Dave et al. (2020). States without statewide SIPO regulations (MA,MN,OK,TN and UT) are
coded 0.

5. Heterogeneity

So far, we have established that mass gatherings in earlyMarch increased COVID-19 deaths in counties
surrounding NBA and NHL venues by 11 percent. Additionally, we are interested whether there is
heterogeneity in these effects by county characteristics. In Figure 3, we therefore stratify our sample
by population density, ethnic composition (measured by the share of Black people in the population),
average temperature, and policy responsiveness (i.e., when SIPOs were first introduced). We split
each variable by its sample median and repeat our regressions from above.

Effects tend to be stronger in counties with a denser population, but the difference to less densely-
populated counties is not significant. Splitting the sample by the share of Black people in the population
gives a similar picture. This is surprising, given that early reports in the medical literature suggest
that Black people tend to be affected more strongly by COVID-19 than other ethnic groups (e.g.,
Yancy 2020). Splitting by temperature, we find that colder areas clearly drive our effects. In counties
with below-median temperatures, the effect on deaths is almost twice as high than in the baseline.
This is in line with the idea that the virus replicates more easily in lower-temperature conditions.
However, the literature has not yet reached consensus whether this is indeed the case. While some
early reports from China document a negative correlation between temperature and COVID-19 spread
(e.g., Wang et al. 2020), others find no such (or even a positive) connection (e.g., Yao et al. 2020,
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Ma et al. 2020). Finally, we use the time since statewide SIPO orders were enacted as a measure of
policy responsiveness. Here we find that mass gatherings have the largest effects in counties situated
in late-adopter states. This is perhaps because the virus can spread more easily without SIPOs in
place.

6. Policy Conclusions

In this paper, we present estimates for the impact of mass gatherings in the form of NBA or NHL games
on the community spread of COVID-19. We find that one additional game increased the cumulative
number of COVID-19 deaths in affected US counties by 11 percent. We conclude that banning mass
gatherings is an effective NPI to slow the spread of COVID-19.

Common estimates in NBA circles, for example, suggest that each game yields an average $1.2 million
in gate revenue.12 This figure comprises all game-day revenue, including tickets and concessions, but
excludes revenues from TV and sponsoring deals, and the resulting consumer surplus. The latter two
components might not be lost if games are played without audience. Thus, even if the full 82 game
season in 2020 would have been canceled, this would not have exceeded $100 million in losses, which
is considerably less than what estimates suggest school closures in the wake of COVID-19 cost. Since
we now know that most of the season is merely postponed instead of canceled completely, we expect
the league to recover at least part of these losses.

We suggest that public health officials recommend canceling or postponing mass gatherings during
COVID-19 and future pandemics.

12See, for example, nbcsports.com/chicago/bulls/report-nba-could-lose-nearly-500-million-ticket-revenue-without-games,
accessed June 9, 2020.
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Appendix

This appendix provides additional tables and figures.
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A.1 — NBA and NHL venues and adjacent venues in the United States

Notes: This map provides an overview on the counties we use in our analysis. The light-gray shaded areas are counties that are adjacent to either a NBA or a NHL venue,
the dark-gray shaded counties are in the perimeter of both a NBA and a NHL venue. Counties where venues are located are marked with red dots.
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Figure A.2 — Average absolute attendance by NBA and NHL game between February 1 and March 11
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Notes: This figure displays the average attendance of all NBA and NHL games held between February 1 and March 11
in venues located in the US. On March 12, the NBA cancelled two games before tip-off. After March 11 both leagues
suspended the seasons indefinitely.
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Table A.1—Correlation of the number of NBA and NHL games betweenMarch 1 andMarch 11 with observed
county characteristics

(1) (2)

Population density 0.000** 0.000
(0.000) (0.000)

Share female −0.146 0.249
(0.160) (0.160)

Share non-white 0.008 −0.003
(0.013) (0.013)

Share elderly −0.029 −0.050
(0.030) (0.035)

Max. Temp. Aprila −0.021 0.092
(0.018) (0.081)

Venue-state fixed effects No Yes
Venue county (1 = yes, 0 = no) No Yes

Number of Observations 242 242
Notes: The number of observations is 242. Robust standard errors are presented
in parentheses, stars indicate significance: * p < 0.10, ** p < 0.05, ***
p < 0.01. The dependent variable is the number of all NBA and NHL games
which took place between March 1 and March 12 in the observed county.
Independent variables correspond to those use in specification (4) of Table 2.
a measures the monthly average maximum temperature in April, based on the
20 most recent years, 1998 − 2019.
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1. Introduction 
Since late 2019, at the time of writing, Covid-19 has resulted in over 7 million confirmed 
cases and over 400,000 deaths globally (Worldometer, 2020). Non-essential businesses, 
schools and public areas closed across many countries, with half of the world’s population 
having spent time under some form of lockdown (Muhammad, Long, & Salman, 2020). 
Social distancing, self-isolation and travel restrictions have impacted all sectors of the 
economy (Nicola et al., 2020). While many have lost their jobs, others have switched to 
working-from-home (Adams-Prassl, Boneva, Golin, & Rauh, 2020; Brynjolfsson et al., 2020; 
Dingel & Neiman, 2020; Foucault & Galasso, 2020). The related reduction in commuters has 
had unexpected positive consequences for the environment (Gupta, Tomar, & Kumar, 2020; 
Helm, 2020; Isaifan, 2020; Muhammad et al., 2020). Now, as governments ease lockdown 
measures, we examine whether a workers ability to practice socially distancing and to work 
remotely relates to their commuting choice.  
 Covid-19 has provided data for an important environmental experiment (Helm, 2020). 
A consensus has emerged in recent decades about the need to reduce greenhouse gas (GHG) 
emissions. With the adoption of the Paris Agreement in 2015, 189 countries agreed to limit 
global warming to between 1.5-2°C above pre-industrial levels. While global integrated 
assessment modelling (IAM), which underpins the scenarios developed by the 
Intergovernmental Panel on Climate Change (IPCC) to develop pathways consistent with the 
Paris agreement, has mainly focussed on CO2 mitigation from low-carbon fuel and 
technology measures (Sims et al., 2014), recent focus has turned to the importance of 
demand-side measures (Faber et al., 2012; Hickel & Kallis, 2020; Mundaca, Ürge-Vorsatz, & 
Wilson, 2019). Studies have found that down-sizing the global energy system by reducing 
energy service demands, such as personal transport, will dramatically improve the feasibility 
of meeting the Paris Agreement temperature targets (Grubler et al., 2018).  
 Transportation accounts for 23% of global energy-related GHG emissions, is a major 
source of ambient (outdoor) air pollution, and has many implications for human health.4 
Carbon dioxide (CO2) emissions from road transport in Ireland amounted to 12 million 
tonnes in 2018, representing 31% of total emissions (EPA, 2020). Emissions from road 
transport have grown by nearly 150% since 1990, despite efficiency gains in the vehicle fleet 
(O’Mahony, Zhou, & Sweeney, 2012). Despite policies to mitigate this growth including a 
carbon tax, and regulations to mandate and incentivize electric vehicles, biofuels and engine 
efficiency, emissions from road transport are projected to continue growing (EPA, 2019). 
This contradicts Ireland’s obligation of reduce emissions from transport, heat and agriculture 
by 30% on 2005 levels by 2030 (European Commission, 2018).  
 Any changes in commuting behaviour, related to an increase in remote working will 
have implications for transport emissions and environmental outcomes. The introduction of 
stay-at-home restrictions, to slow the spread of Covid-19, has greatly reduced transport-
related emissions. NASA (2020) and ESA (2020), for example, have shown that lockdown 
measures have resulted in significant reductions in nitrogen dioxide (NO2),5 while the 
European Environment Agency (2020) found that NO2 levels have almost halved in many 
major European cities. As lockdown measures ease, those returning to their workplaces will 
be required to practice social distancing. They will need to keep at least one metre from 
anyone outside their household, including their colleagues, customers, and those they interact 

 
4The World Health Organisation (2018) estimates that 4.2 million deaths are caused by ambient (outdoor) air 
pollution each year. While many of these deaths occur in low- and middle-income countries, almost 500,000 
occur in Europe, of which 1,180 occur in Ireland (European Environmental Agency, 2019). An additional 1.35 
million premature deaths worldwide are caused by road accidents. 
5 Nitrogen dioxide (NO2) emissions from traffic is a major cause of ambient air pollution (Bishop, Peddle, 
Stedman, & Zhan, 2010; Muhammad et al., 2020). 
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with on their daily commute (Block et al., 2020; Galbadage, Peterson, & Gunasekera, 2020; 
World Health Organization, 2020). Workers who cannot practice social distancing are 
encouraged to work from home or to remain off work.  
 The literature teaches us little about the relationship between occupation, commuting 
choice and the ability to socially distance in the workplace (or to work from home). We know 
that the majority of workers commute to work by car (90.5% in US (Kopf, 2016); approx. 
70% in Europe (Blanckaert, 2019)). We also know that while public transport, walking and 
cycling are less utilised means of commuting, they are crucial if Europe is to meet its long-
term sustainability goals (EEA, 2019). However, we do not know whether workers who drive 
to work will find it easier to practice social distancing than those who walk, cycle or take 
public transport. Nor do we know if their occupations can facilitate working from home, or, if 
they are more likely to lose their jobs. This paper examines the variability of people to 
engage in remote work and social distancing by commuter type in Ireland. 

The rest of the paper is organised as follows. Section 2 presents a brief overview of the 
related literature. Section 3 presents the data and explains how the social distancing and 
remote working indices are calculated for Ireland. Section 4 presents the results, while 
Section 5 concludes the study and presents the implications of our findings. 

 
2. Literature Review 
Covid-19 is severely disrupting labour markets. Since the virus spreads mainly through 
droplet transmission workers relying on face-to-face communication or close physical 
proximity in the workplace are particularly vulnerable. While interventions such as social 
distancing and working from home are deemed necessary responses to the pandemic by 
governments worldwide, how these labour market disruptions will affect commuting and, in 
turn, the environment in the longer term are largely unknown.  

In commuting choice models, commuters are assumed to make deliberate evaluations 
around the attributes of the different transport options available to them and to choose the 
transport mode that will provide them with maximum utility (Ortúzar & Willumsen, 2011). 
However, it has also been posited that commuting behaviours are habitual and that changes to 
commuting choice are more likely at the time of major life events such as moving house, job, 
relationship breakdowns, or the birth of a child (Clark, Chatterjee, & Melia, 2016). The 
Covid-19 crisis will most likely represent a major life event for many commuters. Stay-at-
home and lockdown measures have restricted commuting for all workers, and particularly for 
those operating in non-essential businesses. Many transport modes such as buses, trains, taxis 
and underground transport systems represent high-risk environments for the spread of the 
coronavirus resulting in an increased likelihood of a structural break to commuting habits for 
many, as they attempt to avoid contracting the virus. Previously, in the US, Kopf (2016) 
found a link between commuting choice and occupation noting that those working in the 
Physical and Social Science are more likely to cycle to work while those working in Law, 
Computer Science, Finance and Media are more likely to take public transport. However, the 
pandemic has completely altered normal everyday commuting activities and little is known 
about the relationship between commuting choice and occupational social distancing, or 
remote working potential. 

Since workplace interactions constitute the majority of social contacts among people 
of working age (Lewandowski, 2020), those who cannot practice social distancing are 
advised, where possible, to work from home. The concept of ‘social distancing’ and the 
important role it can play in mitigating pandemics is not new to the literature (e.g. Glass, 
Glass, Beyeler, & Min, 2006; Kelso, Milne, & Kelly, 2009; Rashid et al., 2015). Frequently 
used interventions include the bans on public events, the closure of schools, universities and 
non-essential businesses, restrictions on travel, movement, and physical interactions (Block et 
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al., 2020). The goal of these measures is to delay the spread of influenza while scientists 
search for a vaccine or treatment. While restrictions on travel and the cancelation of public 
gatherings have been shown to be effective, the effectiveness of business and school closures 
is less well understood (Aledort, Lurie, Wasserman, & Bozzette, 2007; Jackson, Vynnycky, 
Hawker, Olowokure, & Mangtani, 2013; Rashid et al., 2015). Ahmed, Zviedrite, and 
Uzicanin (2018), focusing on workplace social distancing, note that when the reproduction 
number (R0)6 is low then social distancing in the workplace, combined with other 
interventions, is effective. More recent studies examining Covid-19 find that workplace 
social distancing is easier in some occupations (e.g. Agriculture, Forestry and Fishing, 
Information and Communication) than others (e.g. Retail Trade, Accommodation and Food 
Services, Human Health) (see Barbieri, Basso, & Scicchitano, 2020; Crowley & Doran, 2020; 
Koren & Pető, 2020; Mongey, Pilossoph, & Weinberg, 2020). Nevertheless, even if the 
reproduction number is low and workplace social distancing is feasible, it is likely that people 
will avoid commuting to work, especially if they have the capacity to conduct their work 
remotely during Covid-19. 
 Prior to the pandemic, only 14% of the Irish workforce worked remotely (Redmond & 
McGuinness, 2020), with higher and lower professional workers being more likely to fall into 
this category (Fu, Andrew Kelly, Peter Clinch, & King, 2012). Remote working was 
marginalised by businesses and lacked appropriate regulation and guidelines (Hynes, 2014). 
The Covid-19 pandemic has shown that a greater proportion of jobs can be done from home, 
including those in the Educational Services, Professional, Scientific, and Technical Services, 
Finance and Insurance, and Information Technology sectors (Crowley & Doran, 2020; 
Dingel & Neiman, 2020; Gallacher & Hossain, 2020; Gottlieb, Grobovšek, & Poschke, 2020; 
Mongey et al., 2020; Mongey & Weinberg, 2020; Montenovo et al., 2020). Restricted 
movement in Ireland resulting from the pandemic has forced and accelerated digital and 
remote working adoption by employers and employees, with 34% now stating that they are 
working from home (CSO, 2020). Until a vaccine to protect against Covid-19 is developed 
and freely available, many workers will be required to continue working from home. In the 
long term, many of these workers may choose to continue working from home for family, 
health, and productivity reasons (Kramer & Kramer, 2020). 
 Remote work is often suggested by policymakers as a remedy for reducing the 
environmental and socio-economic impacts of transport and mobility patterns on society 
(Cerqueira, Motte-Baumvol, Chevallier, & Bonin, 2020; Hynes, 2014; Van Lier, de Witte, 
Macharis, & Research, 2014). Remote working has been identified to reduce travel distances 
and number of trips (Choo, Mokhtarian, & Salomon, 2005; Helminen & Ristimäki, 2007). 
Previously, using the Irish case, Fu et al. (2012) identified that at least an average net saving 
of 9.33 kWh per day can be achieved from an individual converting to working from home. If 
the negative ‘rebound effects’ that have been identified with remote working, such as 
increases in personal non-work trips and residential relocation, can be minimised (Cerqueti, 
Correani, & Garofalo, 2013; He & Hu, 2015), then the Covid-19 crisis may represent a 
strategic opportunity for policymakers to transform transportation networks. This could in 
turn reduce congestion and the negative externalities associated with transportation, such as 
greenhouse gas emissions. If those who normally drive can work remotely, then traffic 
pollution caused by commuters should reduce in the short and the long term, thereby 
resulting in a positive impact for the environment without harming the economy.  
 Next, we outline the data we use to examine the variability of people to engage in 
remote work and social distancing by commuter type in Ireland. 

 
6 R0 is the average number of secondary cases produced by a typical infectious case in a fully susceptible 
population. 
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3. Data 
This paper makes use of two datasets. Firstly, similar to many papers in this field of research 
information is acquired which provides information on worker tasks, context and activities 
from O*Net. This data facilitates the generation of social distancing and remote working 
potential indices. Secondly, we utilise 2011 Irish Census data from IPUMS international to 
examine what types of people are less (or more) exposed from social distancing and remote 
work. Specifically, we focus on the primary method of transport individuals use to go to work 
in order to gain a better understanding of the potential impact of social distancing and remote 
working measure on their jobs and their travel patterns. 
 

3.1 Social Distancing and Remote Working Index 
The social distancing and remote working indexes that we use are constructed by Crowley 
and Doran (2020) and Crowley, Doran, and Ryan (2020) and are detailed in these papers. We 
present a concise summary of these indexes and their construction here and refer interested 
readers to the Appendix7 where we provide details on the precise O*Net questions used in the 
construction of the indexes by Crowley and Doran (2020) and Crowley et al. (2020). 
 The indexes are based on O*NET data, which is the primary source of occupational 
information in the United States and is used to understand the changing world of work and 
how it impacts on the workforce and the economy. It has been used extensively in 
occupational studies of automation (Frank, Sun, Cebrian, Youn, & Rahwan, 2018; Frey, 
Berger, & Chen, 2017; Frey & Osborne, 2017) but recently also in the identification of the 
occupations which are most likely to be disrupted due to (i) enforced social distancing 
protocols in workplaces and (ii) the ability/lack of ability to engage in remote working 
(Delaporte & Peña, 2020; Dingel & Neiman, 2020; Gottlieb et al., 2020; Mongey et al., 2020; 
Mongey & Weinberg, 2020). This data is based on US occupational codes and therefore it is 
necessary to translate this to Irish occupational classifications, which is completed by 
Crowley and Doran (2019) and results in 318 detailed occupations for the Irish case. 
 The social distancing index is constructed based on work by Koren and Pető (2020), 
who constructed a social distancing index for the U.S. The index is comprised of information 
from 15 different questions using O*Net data. A detailed list and the precise questions and 
coding are displayed in Appendix 2. There are three broad categories to which the underlying 
questions used in the index relate, which include teamwork requirements, customer 
orientation and physical presence. A further underlying commonality of the questions is how 
they relate to the degree to which face-to-face interaction is required for each occupational 
role and in turn, the ability of workers with the associated occupation to engage in social 
distancing measures in a workplace. Each variable takes a value ranging from 0 to 100 and an 
unweighted average of the social distancing indicator is used as a measure of social 
distancing potential for each occupation. The higher the value of this index then the less team 
work intensive, customer’s contact-intensive or physical presence intensive the job is.8  
 The remote working index is based on work by Dingel and Neiman (2020). The 
construction of the index again exploits O*Net data using information from 17 questions. The 
precise questions obtained from O*Net which comprise this index are presented in Appendix 
3. In summary, the questions contain data that relates to workers being able to use remote 
communications such as e-mail, whether the job requires the operation of specialised 
equipment, the degree to which workers need to use protective equipment and whether the 

 
7 Appendix 1 details the matching of US occupational codes to Irish occupational codes. Appendix 2 describes 
the O*Net questions used to generate the social distancing potential index. Appendix 3 describes the O*Net 
questions used to generate the remote working potential index.  
8 This is the inverted form of the social distancing measure presented by Koren and Peto (2020), where the 
potential to social distance in a job ranges from low to high. 
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worker performs for people or directly serves customers. Again, the values range for each 
indicator from 0 to 100 and the unweighted average of the 17 indicators is used as the 
indicator for remote working potential value for each occupation. The higher the value of this 
index then the greater the potential to be able to work from home. 
 

3.2 Sample of Ammonised Individual Level Irish Census Data 2011 
For our individual level data, we obtain data from IPUMS International for the Irish Census 
of 2011. We are specifically interested in those in the sample who are in employment, which 
results in 156,287 observations of individuals in Ireland in the year 2011. In the 2011 Census, 
1,807,369 individuals were identified as being in employment indicating that our sample 
captures 8.64% of the entire Irish workforce. The sample is a random sample of the total 
population and is designed to provide a representative sample. In order to match in the social 
distancing and remote working index for each individual we match these at the three-digit 
occupational code level with each individual in the Census sample. 
 The primary explanatory variable of interest in our analysis is the means of transport 
to work variable. In the 2011 Irish Census respondents were asked “How do you usually 
travel to work, school or college?” A total of 10 travel options were provided and the IPUMS 
data condenses these to the categories presented in Table 1. An ‘other’ category is also 
included but this is excluded from our analysis as this captures a variety of alternative (non-
comparable) transport options.9 We note that the primary method of transport for individuals 
is auto (driver), accounting for a total of 71.53% of all individuals in our sample. This is 
followed by walking, bus or trolley bus, auto (passenger), railroad or train, bicycle, and 
finally, motorcycle or moped. 
 
Table 1: Descriptive Statistics for Transport Choice 
Means of transportation to work Freq. Percent 

Walking 14,836 11.03 
Auto (driver) 96,211 71.53 
Auto (passenger) 6,003 4.46 
Motorcycle or moped 743 0.55 
Bicycle 3,612 2.69 
Bus or trolley bus 8,038 5.98 
Railroad or train 5,065 3.77 
 
In addition to this, the Irish census provides detailed information on a variety of socio-
economic characteristics which may also impact individual’s abilities to socially distance in 
their work place or engage in remote work. Therefore, we also include information on the 
gender of individuals, marital status, their highest level of educational attainment, whether 
the individual has a disability or not, the age of the individual, the NUTS3 region in which 
the individual lives, whether they are a national or non-national and finally the NACE sector 
in which the individual is employed. 
 
4. Empirical Model 
When considering the relationship between individuals usual transport to work choice and 
their ability to engage in social distancing in their workplace and their ability to work 
remotely, we estimate equation (1) below. We estimate this model twice, once for each index. 
 

 
9 The number of individuals in this ‘other’ category is 11,645. 
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𝐼𝑛𝑑𝑒𝑥! = 𝛽" + 𝛽#𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐶ℎ𝑜𝑖𝑐𝑒! + 𝛽$𝑍! + 𝜀! (1) 
 
Where, 𝐼𝑛𝑑𝑒𝑥! is the dependent variable, which is the relevant index in equation (either the 
social distance or remote working index). 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐶ℎ𝑜𝑖𝑐𝑒! is a series of dummy variables 
indicating the usual method of transport individual i uses to commute to work. 𝑍! is a matrix 
of control variables which were outlined in Section 3 previously. The 𝛽 values are the 
coefficients of the model. 𝜀! is the error term. 
 The model is estimated using ordinary least squares (OLS) with heteroskedastic 
robust standard errors. Variance of Inflation (VIF) tests for potential multicollinearity are 
applied and in all cases report a mean VIF of below 5, suggesting that multicollinearity is not 
a problem within the model. 
 
5. Results 
Table 2 presents the results of our estimations of equation (1). 
 
Table 2: Estimation Results 

 (1) (2) 
VARIABLES Social Distance Index Remote Work 

Index 
   
Means of transportation to work - base Auto (driver)   
   Walking 0.396*** -0.151** 
 (0.0497) (0.0616) 
   Auto (passenger) 0.245*** -1.052*** 
 (0.0727) (0.0901) 
   Motorcycle or moped 0.626*** -0.463* 
 (0.199) (0.246) 
   Bicycle 0.675*** -0.331*** 
 (0.0929) (0.115) 
   Bus or trolley bus 0.850*** 0.361*** 
 (0.0656) (0.0813) 
   Railroad or train 1.250*** 1.110*** 
 (0.0810) (0.100) 
Female 1.530*** 3.352*** 
 (0.0322) (0.0399) 
Marital status   
   Married -0.0381 0.329*** 
 (0.0378) (0.0469) 
   Separated (including divorced) -0.0549 -0.0804 
 (0.0713) (0.0884) 
   Widowed 0.173 -0.119 
 (0.146) (0.181) 
Highest level of education completed   
   Lower secondary 0.246*** 1.583*** 
 (0.0837) (0.104) 
   Upper secondary 0.921*** 4.078*** 
 (0.0773) (0.0958) 
   Third level, non-degree 0.852*** 5.885*** 
 (0.0947) (0.117) 
   Third level, degree or higher 1.357*** 8.292*** 
 (0.0798) (0.0989) 
Class of worker   
   Self-employed with paid employees -1.109*** 2.048*** 
 (0.0701) (0.0869) 
   Self-employed without paid employees -0.582*** -0.686*** 
 (0.0670) (0.0831) 
No disability -0.0952 -0.0440 
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 (0.0641) (0.0794) 
Age   
   Age 0.0428*** 0.0734*** 
 (0.00923) (0.0114) 
   Age Squared -0.000271** -0.000359*** 
 (0.000106) (0.000131) 
Region   
   Dublin 0.245*** 1.025*** 
 (0.0559) (0.0693) 
   Mid-East -0.0260 0.330*** 
 (0.0639) (0.0792) 
   Midlands -0.335*** -0.142 
 (0.0784) (0.0972) 
   Mid-West -0.164** 0.0107 
 (0.0714) (0.0885) 
   South-East -0.156** -0.232*** 
 (0.0672) (0.0834) 
   South-West -0.116* -0.00360 
 (0.0614) (0.0761) 
   West -0.135** -0.289*** 
 (0.0680) (0.0843) 
Irish  0.402*** 1.953*** 
 (0.0415) (0.0515) 
Constant 43.45*** 35.34*** 
 (0.260) (0.322) 
   
Observations 134,508 134,508 
R-squared 0.283 0.441 

Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.1 
 
Tables 3 and 4 present a summary of a series of t-tests for each transport coefficient against 
the others to determine a hierarchy in terms of which modes of transport are associated with 
individuals who have the greatest potential to engage in social distancing in work or work 
remotely. A plus sign (+) indicates that an individual travelling by mode of transport (listed 
in column 2) is more likely to be able to engage in social distancing/remote work than an 
individual in the corresponding mode of transport (listed in columns 3 through 8). A negative 
sign (–) indicates that the individual travelling by mode of transport (listed in column 2) is 
less likely to be able to engage in social distancing/remote work than an individual in the 
corresponding mode of transport (listed in columns 3 through 8). An equals sign (=) indicates 
that the individual travelling by mode of transport (listed in column 2) is just as likely to be 
able to engage in social distancing/remote work than an individual in the corresponding mode 
of transport (listed in columns 3 through 8). 
 If we take row (5) in Table 3, as an example, we observe that individuals who 
commute to work by bike are more likely to be able to engage in social distancing in their 
workplace than those who commute by walking, auto (driver), or auto (passenger), but they 
are just as likely to be able to socially distance as those who commute by motorcycle or 
moped. The results clearly show that versus all other modal choices auto (drivers) are the 
least able to engage in social distancing at work. While those who use public transport in the 
form of bus or trolley bus, and railroad or train are the most likely to be able to engage in 
social distancing in their workplace. 
 Regarding Table 4, which shows the corresponding t-tests for remote working, we 
observe significant differences in the patterns which are emerging relative to our social 
distancing index. We note again that individuals who commute by railroad or train 
commuters are more likely to be able to remote work than any other type of commuter. 
Further, in this remote working index, auto (drivers) fair reasonable well. However, we 
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observe that relative to those who walk, are auto (passengers), use motorcycles or mopeds, or 
use bicycles; individuals who commute by auto (driver) have higher remote work potential.  
 
Table 3: T-test of differences for transport variables for social distancing index 

Row  Walking Auto 
(driver) 

Auto 
(passenger) 

Motorcycle 
or moped Bicycle 

Bus or 
trolley 

bus 
(1) Walking       

(2) Auto (driver) -      

(3) Auto (passenger) - +     

(4) Motorcycle or moped + + +    

(5) Bicycle + + + =   

(6) Bus or trolley bus + + + = =  

(7) Railroad or train + + + + + + 

 
Table 4: T-test of differences for transport variables for remote working index 

Row  Walking Auto 
(driver) 

Auto 
(passenger) 

Motorcycle 
or moped Bicycle 

Bus or 
trolley 

bus 
(1) Walking       

(2) Auto (driver) +      

(3) Auto (passenger) - -     

(4) Motorcycle or moped = - +    

(5) Bicycle = - + =   

(6) Bus or trolley bus + + + + +  

(7) Railroad or train + + + + + + 

 
6. Conclusions and Discussion 
Policies to reduce road transport emissions have to date not addressed structural mobility 
patterns, which encompass the number and distance of trips people make and their choice of 
mode. The shutdown of economic and social activity as part of measures to contain the 
spread of Covid-19 in 2020 have caused a dramatic change in mobility patterns and may 
represent a game changing situation for policymakers: within two days of the first stage of 
lockdown on March 12th, the number of cars counted by traffic cameras halved. Ultimately, 
car traffic fell by nearly 80% in April. Nitrous dioxide pollution detected from air quality 
monitoring stations halved, while the reduction in road traffic is estimated to reduce Ireland’s 
energy-related CO2 emissions by 1.5 million tonnes in 2020, representing 5% of all energy-
related emissions (Glynn et al., 2020). 
 Given this dramatic structural break in mobility and work practice, the question is 
whether emissions savings can be achieved from increased home working in the short and 
long term. In this paper, we examined, by commuter type, the degree to which there is 
variability in individuals’ ability to engage in social distancing in their workplace and in their 
ability to remote work. Our analysis used O*Net data to construct social distancing and 
remote work indexes and Irish Census data to identify commuting choice and other individual 
factors that may affect social distancing and remote working potential. 
 Our results suggest short and long run direct implications for commuting outcomes. In 
the short term, individuals who commute by train or bus are more likely to be able to remote 
work and to practice occupational social distancing than any other type of commuter. Since 
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the perceived risk of contracting the virus is higher by going by train or bus, these commuters 
may switch to car commuting, which could have a negative impact on the environment. This 
is something policymakers will need to consider in the short run, as the economy starts 
opening up. Further, in the short term, where social distancing measures are set to continue in 
workplaces, individuals who commute by car are less likely to be able to engage in social 
distancing in their workplace. This means that their physical presence in work may be 
restricted. As a result, it is likely that the number of commuters by car for work purposes will 
fall in the short term. While this will be negative in terms of the employment prospects of the 
individuals, it may have positive environmental impacts due to a reduction in car usage and 
greenhouse gas emissions. When this finding is coupled with the insights gained from the 
analysis on remote working, further potential long-term impacts emerge. Our analysis shows 
that those who commute by car have a relatively high potential for remote work. This 
suggests that in the short term these individuals, who may not be able to attend work 
physically due to social distancing regulations, have a greater capacity work from home. 
 In the longer term, if this trend of working from home was to be incentivized to last 
beyond the Covid-19 time horizon this would suggest that there would be potential to 
continue to reduce car commuting for work purposes, without a negative impact on 
employment outcomes. This would result in significant benefits for the environment as car 
transport is a major contributor to greenhouse gas emissions and is the only key sector where 
total emissions have increased in the last three decades (European Environmental Agency, 
2018; Hulshof & Mulder, 2020). Previously, in the Irish case, home working was identified 
as a valuable energy saving option. Fu et al. (2012) estimated that a 5 per cent shift of the 
regular commuting workforce to full time remote working would result in net energy savings 
of 0.36 per cent relative to total transport energy use. Although, increased remote working 
can have immediate and direct environmental benefits, as evidenced by the Covid-19 crisis 
(European Environment Agency, 2020), in the longer run, indirect costs or ‘rebound effects,’ 
associated with non-urban residential relocation, an increase in non-work related trips, car 
dependency and a modification of consumption patterns for remote workers, may nullify any 
benefits (Cerqueira et al., 2020; He & Hu, 2015; Ory & Mokhtarian, 2006; Pérez, Sánchez, 
de Luis Carnicer, & Jiménez, 2004). Consequently, policymakers need to carefully consider 
policy interventions and incentives that promote remote working, induced by the Covid-19 
crisis, to ensure a positive net environmental impact.  
 There are two limitations with this study that we would like to note. Firstly, the 
occupational data used for constructing the social distancing and remote working index uses 
U.S. O*NET data on the description of tasks associated with each occupation. As a result, 
this should be viewed as an approximation of the workplace environment for the same 
occupations in Ireland. Secondly, the individual data is not from the most recent Irish Census 
as ammonised individual level data and individual level transport choice decisions are 
currently unavailable for the 2016 Irish Census. Lastly, we would like to suggest a potential 
area for future research. We have identified that Covid-19 is likely to have significant 
outcomes on transport mobility in the short and long run, which will have implications for 
GHG emissions. It would be worthwhile for future work to quantify the ‘potential’ emission 
savings that could be achieved by remote working in the long run. This would put any future 
policy interventions in the area of remote working on a more solid foundation. Conversely, 
any likely ‘rebound effects’ should also be quantified and mitigation measures identified.  
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Appendix 1: Matching US occupational codes to Irish occupational codes 
 
O*Net provides 968 occupational codes which match to 2010 US Standard Occupational Classifications 
(SOCs). These occupational codes do not directly match to Irish occupational codes as the Irish Central 
Statistics Office (CSO) bases their occupational classifications on the UK SOC system. We apply a crosswalk in 
the same was as Crowley and Doran (2019). The US and UK SOC are not directly comparable and there is no 
direct conversion available. Therefore, in order to convert the US codes to their UK counterparts (which are 
approximately identical to the Irish codes used by the CSO) we transform these data using a series of established 
international classifications. This is accomplished through the use of the International Standard Occupational 
Classifications (ISOC). The US SOCs can be converted using the Bureau of Labour Statistics official 
conversion (Bureau of Labor Statistics, 2012). The codes available from O*Net are 6-digit US SOCs. When 
converting these to the ISOC there is not a one to one match. This is due to the ISOC codes being at a higher 
aggregation level. Therefore, in some instances, two or more of the US SOC codes are combined into one ISOC 
code. Where this occurs, any data on occupations is averaged to provide a single value. Once the codes are in 
ISOC format it is possible to convert these ISOC codes to the UK SOC codes using a conversion framework 
developed by the Office for National Statistics (2010). In doing so, again there are a small number of 
occupations which have more than a one for one match and therefore there is a need to average any occupational 
details associated with these occupations. It is possible, once this process has been completed, to translate these 
UK SOC codes to Irish SOC codes in a perfect one for one match. When the merge process is complete, out of a 
possible 327 SOC codes available in Ireland we have occupational data for 318 of these codes at 4-digit level. 
As the census uses 3-digit occupational codes it is necessary to aggregate these 318 codes to the 88 3-digit 
codes. When doing so we calculate the weighted average of the 318 codes. 
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Appendix 2: Definition of elements of Social Distancing Index 
Variable Original Coding Recoding Context 
How important is it to work 
with others in a group or 
team in this job? 

0 - Not important at all 
25 - Fairly important 
50 - Important  
75 - Very important 
100 - Extremely important 

0 - Extremely important 
25 - Very important 
50 - Important  
75 - Fairly important 
100 - Not important at all 

Face to face discussions 
several time a week and 
often more than e-mails, 
letters, and memos. 

Providing guidance and 
expert advice to 
management or other 
groups on technical, 
systems-, or process-related 
topics. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Getting members of a group 
to work together to 
accomplish tasks. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Providing guidance and 
direction to subordinates, 
including setting 
performance standards and 
monitoring performance. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Encouraging and building 
mutual trust, respect, and 
cooperation among team 
members. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

How important is it to work 
with external customers or 
the public in this job? 

0 - Not important at all 
25 - Fairly important 
50 - Important  
75 - Very important 
100 - Extremely important 

0 - Extremely important 
25 - Very important 
50 - Important  
75 - Fairly important 
100 - Not important at all 

Face to face discussions 
several times a week 

Performing for people or 
dealing directly with the 
public. This includes 
serving customers in 
restaurants and stores, and 
receiving clients or guests. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Providing personal 
assistance, medical 
attention, emotional 
support, or other personal 
care to others such as 
coworkers, customers, or 
patients. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Developing constructive 
and cooperative working 
relationships with others, 
and maintaining them over 
time. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Using hands and arms in 
handling, installing, 
positioning, and moving 
materials, and manipulating 
things. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Density of co-workers like 
shared office or more 

Running, maneuvering, 
navigating, or driving 
vehicles or mechanized 
equipment, such as forklifts, 
passenger vehicles, aircraft, 
or water craft. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
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Servicing, repairing, 
adjusting, and testing 
machines, devices, moving 
parts, and equipment that 
operate primarily on the 
basis of mechanical (not 
electronic) principles. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Servicing, repairing, 
calibrating, regulating, fine-
tuning, or testing machines, 
devices, and equipment that 
operate primarily on the 
basis of electrical or 
electronic (not mechanical) 
principles. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Inspecting equipment, 
structures, or materials to 
identify the cause of errors 
or other problems or 
defects. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

To what extent does this job 
require the worker to 
perform job tasks in close 
physical proximity to other 
people? 

0 - I don't work near other 
people (beyond 100 ft.)  
25 - I work with others but 
not closely (e.g., private 
office) 
50 - Slightly close (e.g., 
shared office) 75 - 
Moderately close (at arm's 
length       
100 - Very close (near 
touching)  

0 - Very close (near 
touching) 
25 - Moderately close (at 
arm's length       
50 - Slightly close (e.g., 
shared office) 
75 - I work with others 
but not closely (e.g., 
private office) 
0 - I don't work near other 
people (beyond 100 ft.) 

Physical Proximity 
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Appendix 3: Definition of elements of Remote Working Index 
Variable definition Original coding New coding 
How often do you use electronic 
mail in this job? 

0-Never 
25 - Once a year or more but not 
every month 50 - Once a month or 
more but not every week 
75 - Once a week or more but not 
every day 
100 - Every day 

same as original 

How often does this job require 
working outdoors, exposed to all 
weather conditions? 

0 - Never 
25 - Once a year or more but not 
every month 
50 - Once a month or more but not 
every week  
75 - Once a week or more but not 
every day 
100 - Every day 

0 – Every day 
25 – Once a week or more but not 
every day 
50 – Once a month or more but 
not every week 
75 – Once a year or more but not 
every month 
100 - Never 

How often does this job require 
working outdoors, under cover 
(e.g., structure with roof but no 
walls)? 

0 - Never 
25 - Once a year or more but not 
every month 
50 - Once a month or more but not 
every week  
75 - Once a week or more but not 
every day 
100 - Every day 

0 – Every day 
25 – Once a week or more but not 
every day 
50 – Once a month or more but 
not every week 
75 – Once a year or more but not 
every month 
100 - Never 

How frequently does this job 
require the worker to deal with 
physical aggression of violent 
individuals? 

0 - Never 
25 - Once a year or more but not 
every month 
50 - Once a month or more but not 
every week  
75 - Once a week or more but not 
every day 
100 - Every day 

0 – Every day 
25 – Once a week or more but not 
every day 
50 – Once a month or more but 
not every week 
75 – Once a year or more but not 
every month 
100 - Never 

How much does this job require 
wearing common protective or 
safety equipment such as safety 
shoes, glasses, gloves, hard hats or 
life jackets? 

0 - Never 
25 - Once a year or more but not 
every month 
50 - Once a month or more but not 
every week  
75 - Once a week or more but not 
every day 
100 - Every day 

0 – Every day 
25 – Once a week or more but not 
every day 
50 – Once a month or more but 
not every week 
75 – Once a year or more but not 
every month 
100 - Never 

How much does this job require 
wearing specialized protective or 
safety equipment such as 
breathing apparatus, safety 
harness, full protection suits, or 
radiation protection? 

0 - Never 
25 - Once a year or more but not 
every month 
50 - Once a month or more but not 
every week  
75 - Once a week or more but not 
every day 
100 - Every day 

0 – Every day 
25 – Once a week or more but not 
every day 
50 – Once a month or more but 
not every week 
75 – Once a year or more but not 
every month 
100 - Never 

How much does this job require 
walking and running? 

0 – Never 
25 - Less than half the time 
50 - About half the time  
75 - More than half the time 
100 - Continually or almost 
continually 

0 – Every day 
25 – Once a week or more but not 
every day 
50 – Once a month or more but 
not every week 
75 – Once a year or more but not 
every month 
100 - Never 

How often does this job require 
exposure to minor burns, cuts, 
bites, or stings? 

0 - Never 
25 - Once a year or more but not 
every month 

0 – Every day 
25 – Once a week or more but not 
every day 
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50 - Once a month or more but not 
every week  
75 - Once a week or more but not 
every day 
100 - Every day 

50 – Once a month or more but 
not every week 
75 – Once a year or more but not 
every month 
100 - Never 

How often does this job require 
exposure to disease/infections? 

0 - Never 
25 - Once a year or more but not 
every month 
50 - Once a month or more but not 
every week  
75 - Once a week or more but not 
every day 
100 - Every day 

0 – Every day 
25 – Once a week or more but not 
every day 
50 – Once a month or more but 
not every week 
75 – Once a year or more but not 
every month 
100 - Never 

Performing physical activities that 
require considerable use of your 
arms and legs and moving your 
whole body, such as climbing, 
lifting, balancing, walking, 
stooping, and handling of 
materials. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Using hands and arms in handling, 
installing, positioning, and 
moving materials, and 
manipulating things. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Using either control mechanisms 
or direct physical activity to 
operate machines or processes 
(not including computers or 
vehicles). 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Running, maneuvering, 
navigating, or driving vehicles or 
mechanized equipment, such as 
forklifts, passenger vehicles, 
aircraft, or water craft. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Performing for people or dealing 
directly with the public. This 
includes serving customers in 
restaurants and stores, and 
receiving clients or guests. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Servicing, repairing, adjusting, 
and testing machines, devices, 
moving parts, and equipment that 
operate primarily on the basis of 
mechanical (not electronic) 
principles. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Servicing, repairing, calibrating, 
regulating, fine-tuning, or testing 
machines, devices, and equipment 
that operate primarily on the basis 
of electrical or electronic (not 
mechanical) principles. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
 

Inspecting equipment, structures, 
or materials to identify the cause 
of errors or other problems or 
defects. 

0 – Not important 
100 – Important 
 

0 – Important 
100 – Not important 
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We apply the SIR-macro model proposed by Eichenbaum et al. 
(2020) in its complete version to comparatively study the interaction 
between economic decisions and COVID-19 epidemics in five different 
Brazilian states: São Paulo (SP), Amazonas (AM), Ceará (CE), Rio 
de Janeiro (RJ) and Pernambuco (PE). Our objective is to analyze 
qualitatively how the main intrinsic differences of each of these 
states can affect the epidemic dynamics and its consequences. For this 
purpose, we compute and compare the model for each of the states, 
both in competitive equilibrium and under optimal containment 
policy adoption, and analyze the implications of optimal policy 
adoption. We conclude that the intrinsic characteristics of the five 
different states imply relevant differences in the general dynamics of 
the epidemic, in the optimal containment policies, in the effect of the 
adoption of these policies and the severity of the economic recessions. 
Our study can serve as an alert for policymakers of countries of huge 
dimensions and interstate heterogeneity as Brazil for the necessity 
of discriminating policies by states or regions instead of adopting a 
single unified policy for the whole country.

1	 Research Assistant, Institute for Applied Economic Research (IPEA-RJ).
2	 Researcher, Institute for Applied Economic Research (IPEA-RJ).

83
C

ov
id

 E
co

no
m

ic
s 3

0,
 1

9 
Ju

ne
 2

02
0:

 8
3-

11
9



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

 

1 Introduction 
 

As COVID-19 spreads throughout Brazil, governors of the country are struggling with the 
challenge to understand and manage the epidemic that ravages the states they command. When 
compared to other smaller countries, this challenge seems to be even more complicated in Brazil, 
due to its continental geographic and demographic dimensions and to the huge heterogeneity of 
the characteristics of its states. A recent study by Hallal et al. (2020) illustrates how this 
heterogeneity can affect the epidemic dynamics around the country. The study reports the first 
wave of seroprevalence surveys relying upon on household probabilistic samples of 133 large 
sentinel cities in Brazil, including 25.025 participants from all 26 states and the Federal District 
and find that the seroprevalence of antibodies to SARS-CoV-2, assessed using a lateral flow rapid 
test, varied markedly across the cities and regions, from below 1% in most cities in the South and 
Center-West regions to up to 25% in the city of Breves in the Amazon (North) region.   

In this work, our objective is to investigate how and how much this interstate heterogeneity affects 
the dynamics of epidemics in Brazilian states. An answer to this question can provide insights on 
the consequences of conducting aggregated containment policies for countries as a whole or 
disaggregated policies by states or regions. 

To address this analysis, we use the simple framework of the SIR-macro model proposed by 
Eichenbaum et al. (2020). Differently of the epidemiology models that have been widely used to 
predict the course of epidemics (e.g., Ferguson et al. (2020)), the SIR-macro model extends the 
classical SIR model (an acronym for Susceptible, Infected and Recovered) originally proposed by 
Kermack and McKendrick (1927) incorporating an important factor that can potentially affect 
significantly the dynamics of the epidemics: the interaction between economic decisions and 
infection rates. In this new extended model, the people’s decision to cut back on consumption and 
work reduces the severity of the epidemic as measured by total deaths. The same decisions 
exacerbate the size of the recession caused by the epidemic. 

In this work, we compute the SIR-macro model for five Brazilian states. We consider, for each of 
these states, two scenarios: one under competitive equilibrium and the other under optimal policy 
adoption. The criteria for the selection of these five states was the severity of the epidemics at the 
moment of the research. Thus, we selected the five Brazilian states that presented the worst 
epidemic situation between all the 26 Brazilian states. The selected states were São Paulo (SP), 
Amazonas (AM), Ceará (CE), Rio de Janeiro (RJ) and Pernambuco (PE).  

The different intrinsic characteristics of these states are incorporated in the results through our 
calibration strategy for the parameter and variable values of the model. Our calibration allows the 
results to incorporate interstate differences relative to the following aspects: i) size of the 
population, ii) per capita income; iii) average time devoted to work; iv) average time spent in 
public transport; v) average time devoted to household chores; vi) the average number of people 
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per residence; vii) the number of workers; viii) number of students and ix) infection fatality rates 
estimated with the evolution of the epidemic until the moment of the research. 

We compare the differences in the epidemic dynamics and their consequences between the five 
states both for the competitive equilibrium scenario (without adopting containment policies) and 
for the scenario in which optimal containment policies are adopted. We also compare the 
differences in the optimal containment policies required for each state and evaluate the effects of 
adopting these policies on each of these states. 

As a result of these analyzes, we conclude that the intrinsic characteristics of the five different 
states imply relevant differences in their epidemic dynamics, in the optimal containment policies 
to be adopted, in the effect of adopting these policies and in the severity of the economic recessions 
resulting from the epidemic. This conclusion emphasizes the importance of the disaggregated 
analysis of countries with huge geographic and demographic dimensions like Brazil in the 
formulation of policies to combat COVID-19. We warn that the adoption of unique aggregate 
policies for huge and heterogeneous countries like Brazil can trigger a series of containment policy 
errors in the states and regions of the country, deepening both the economic recession and the 
number of deaths resulting from the epidemic. The propagation channel of these errors is the 
following: if there is large heterogeneity in the optimal level of containment policy required for 
each state, a single containment policy for the whole country would be unable to adequately deal 
with the needs of all states simultaneously. Inevitably, the containment rate adopted across the 
country would be lower than needed for some states, resulting in more deaths, and higher than 
needed for others, resulting in unnecessarily deeper economic recessions.  

Our paper is organized as follows. In Section 2, we describe the SIR-macro model of Eichenbaum 
et al. (2020) in its complete version. In Section 3, we discuss our calibration strategy for the 
parameter values used in the model for each state. In Section 4, we present and describe the results 
of the model for each of the five selected states in the competitive equilibrium scenario. In Section 
5, we solve the Ramsey policy problems and analyze the optimal containment rate results for each 
state. In Section 6, we analyze for each state the implications of adopting optimal containment 
rates when compared to the baseline scenario of competitive equilibrium. Finally, Section 7 
concludes.  
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2 The SIR-macro model 
 

In this section, we describe with some adaptations the full version of the SIR-macro model as 
developed by Eichenbaum et al. (2020). The adaptations were necessary because in Eichenbaum 
et al. (2020) the complete version of the model is constructed with the gradual inclusion of 
extensions to the basic SIR-macro model along the sections of the article. As in this work we are 
only interested in the full version of the model, we have adapted the exposition to present it in a 
single section. The full version of the model includes three main characteristics: the endogenous 
mortality rate as a function of the infected population, the possibility of discovering effective 
treatments that cure the infected population, and the possibility of discovering vaccines. 

2.1 The economic framework and the pre-infection economy 

 

The population of the economy is represented by a continuum of ex-ante identical agents with 
measure one. These agents maximize the objective function: 

 
𝑈 = ∑ 𝛽𝑡𝑢(𝑐𝑡, 𝑛𝑡)

∞

𝑡=0

. 
(1) 

 

Here  𝛽 ∈ (0,1) denotes the discount fator and 𝑐𝑡 and 𝑛𝑡 denote consumption and hours worked, 
respectively. For simplicity, we assume that momentary utility takes the form  

 
𝑢(𝑐𝑡, 𝑛𝑡) = 𝑙𝑛 𝑐𝑡  −

𝜃

2
𝑛𝑡

2. 
(2) 

 

The budget constraint of the representative agent is: 

 (1 + 𝜇𝑡)𝑐𝑡 = 𝑤𝑡𝑛𝑡 + 𝛤𝑡. (3) 

 

Here, 𝑤𝑡 denotes the real wage rate, 𝜇𝑡 is the tax rate on consumption and 𝛤𝑡 denotes lump-sum 
transfers from the government. As dicussed in Eichenbaum et al. (2020), 𝜇𝑡 is thought as a proxy 
for containment measures aimed at reducing social interactions. For this reason, this parameter is 
referred as the containment rate. 

 

The first-order condition for the representative-agent’s problem is: 

 (1 + 𝜇𝑡)𝜃𝑛𝑡 = 𝑐𝑡
−1𝑤𝑡. (4) 
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There is a continuum of competitive representative firms of unit measure that produce 
consumption goods (𝐶𝑡) using hours worked (𝑁𝑡) according to the technology: 

 𝐶𝑡 = 𝐴𝑁𝑡 . (5) 

 

The firm chooses hours worked to maximize its time-𝑡 profits 𝛱𝑡: 

 𝛱𝑡 = 𝐴𝑁𝑡 − 𝑤𝑡𝑁𝑡. (6) 

 

The government’s budget constraint is given by: 

 𝜇𝑡𝑐𝑡 = 𝛤𝑡. (7) 

 

In equilibrium, 𝑛𝑡 = 𝑁𝑡 and 𝑐𝑡 = 𝐶𝑡. 

2.2 The epidemiological framework and the outbreak of an epidemic  
 

The population is divided into four groups: susceptible, infected, recovered, and deceased.  People 
who have not yet been exposed to the disease are classified as susceptible. People who contracted 
the disease are classified as infected. People who survived the disease and acquired immunity are 
classified as recovered. Finally, people who died from the disease are classified as deceased. The 
fractions of people in these four group, at time-𝑡, are denoted by 𝑆𝑡, 𝐼𝑡, 𝑅𝑡e 𝐷𝑡, respectively. The 
number of newly infected at time-𝑡 is denoted by 𝑇𝑡. 

Susceptible people can become infected in three ways: i) meeting infected people while purchasing 
consumption goods; ii) meeting at work or iii) meeting in ways not directly related to consuming 
or working, for example in the public transport, meeting a neighbor, at home or touching a 
contaminated surface.  

The number of newly infected people that results from the consumption activities is given by 
𝜋1(𝑆𝑡𝐶𝑡

𝑠)(𝐼𝑡𝐶𝑡
𝑖). The terms 𝑆𝑡𝐶𝑡

𝑠 e 𝐼𝑡𝐶𝑡
𝑖 represent total consumption expenditures by susceptible 

and infected people, respectively. The parameter 𝜋1 reflects both the amount of time spent 
shopping and the probability of becoming infected as a result of that activity.  

The number of newly infected people that results from interactions at work is given by 
𝜋2(𝑆𝑡𝑁𝑡

𝑠)(𝐼𝑡𝑁𝑡
𝑖). The terms 𝑆𝑡𝑁𝑡

𝑠 and 𝐼𝑡𝑁𝑡
𝑖 represent total hours worked by susceptible and 

infected people, respectively. The parameter 𝜋2 reflects the probability of becoming infected as a 
result of work interactions.  

The number of newly infected people that results from the activities not directly related to 
consuming or working is given by 𝜋3𝑆𝑡𝐼𝑡. The term 𝑆𝑡𝐼𝑡 represent the number of random meetings 
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between infected and susceptible people. The parameter 𝜋3 reflects the probability of becoming 
infected as a result of these activities. 

The total number of newly infected people is given by: 

 𝑇𝑡 = 𝜋1(𝑆𝑡𝐶𝑡
𝑠)(𝐼𝑡𝐶𝑡

𝑖) + 𝜋2(𝑆𝑡𝑁𝑡
𝑠)(𝐼𝑡𝑁𝑡

𝑖) + 𝜋3𝑆𝑡𝐼𝑡. (8) 

 

Note that the Kermack & McKendrick’s (1927) canonical SIR model is a special case of the SIR-
macro model in which the propagation of the disease is unrelated to economic activity. This case 
is characterized by parametric values 𝜋1 = 𝜋2 = 0. 

The number of infected people at time 𝑡 + 1 is equal to the number of infected people at time 𝑡 
(𝐼𝑡) plus the number of newly infected (𝑇𝑡) minus the number of infected people that recovered 
(𝜋𝑟𝐼𝑡) and the number of infected people that died (𝜋𝑑𝐼𝑡): 

 𝐼𝑡+1 = 𝐼𝑡 + 𝑇𝑡 − (𝜋𝑟 + 𝜋𝑑)𝐼𝑡, (9) 

 

Here, 𝜋𝑟 is the rate at which infected people recover from the infection and 𝜋𝑑 is the mortality 
rate, that is the probability that an infected person dies. To incorporate the effect of the efficacy of 
the healthcare system in the model, this probability is modeled as a convex function of the fraction 
𝜅 of the population that becomes infected: 

 𝜋𝑑𝑡 = 𝜋𝑑 + 𝜅𝐼𝑡
2. (10) 

 

The timing convention in equation (9) is as follows. Social interactions happen in the beginning 
of the period, when infected and susceptible people meet. Then, changes in health status unrelated 
to social interactions (recovery and death) occur. Finally, at the end of the period the consequences 
of social interactions materialize: 𝑇𝑡 susceptible people become infected. 

The number of recovered people at time 𝑡 + 1 is the number of recovered people at time 𝑡 (𝑅𝑡) 
plus the number of infected people who just recovered (𝜋𝑟𝐼𝑡): 

 𝑅𝑡+1 = 𝑅𝑡 + 𝜋𝑟𝐼𝑡. (11) 

 

Finally, the number of deceased people at time 𝑡 + 1 is the number of deceased people at time 𝑡 
(𝐷𝑡) plus the number of new deaths (𝜋𝑑𝑡𝐼𝑡): 

 𝐷𝑡+1 = 𝐷𝑡 + 𝜋𝑑𝑡𝐼𝑡. (12) 

 

The total population evolves according to: 
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 𝑃𝑂𝑃𝑡+1 = 𝑃𝑂𝑃𝑡 − 𝜋𝑑𝑡𝐼𝑡, (13) 

 

with 𝑃𝑂𝑃0 = 1. 

The model assumes that at time zero, a fraction 𝜀 of susceptible people is infected by a virus 
through zoonotic exposure, that is the virus is directly transmitted from animals to humans, 

 𝐼0 = 𝜀, (14) 

 

 𝑆0 = 1 − 𝜀. (15) 

 

Everybody is aware of the initial infection and understand the laws of motion governing population 
heath dynamics. Critically, they take as given aggregate variables like 𝐼𝑡𝐶𝑡

𝑖 and 𝐼𝑡𝑁𝑡
𝑖. 

 We now describe the optimization problem of different types of people in the economy, as 
formulated by Eichenbaum et al. (2020). The variable 𝑈𝑡

𝑗 denotes the time-𝑡 lifetime utility of a  
type-𝑗 agent (𝑗 = 𝑠, 𝑖, 𝑟). The budget constraint of a type-𝑗 person is 

 (1 + 𝜇𝑡)𝑐𝑡
𝑗

= 𝑤𝑡𝜙𝑗𝑛𝑡
𝑗

+ 𝛤𝑡, (16) 

 

where 𝑐𝑗 and 𝑛𝑡
𝑗 denote the consumption and hours worked of an agent of type 𝑗, respectively. The 

parameter governing labor productivity, 𝜙𝑗 , is equal to one for susceptible and recovered people 
(𝜙𝑠 = 𝜙𝑟 = 1) and less than one for infected people (𝜙𝑖 < 1). 

Susceptible people. The lifetime utility of a susceptible person, 𝑈𝑡
𝑠, is 

 𝑈𝑡
𝑠 = 𝑢(𝑐𝑡

𝑠, 𝑛𝑡
𝑠) + (1 − 𝛿𝑣)[(1 − 𝜏𝑡)𝛽𝑈𝑡+1

𝑠 + 𝜏𝑡𝛽𝑈𝑡+1
𝑖 ] + 𝛿𝑣𝛽𝑈𝑡+1

𝑟 . (17) 

 

Critically, susceptible people understand that consuming and working less reduces the probability 
of becoming infected. The variable 𝜏𝑡 represents the probability that a susceptible person becomes 
infected: 

 𝜏𝑡 = 𝜋1𝑐𝑡
𝑠(𝐼𝑡𝐶𝑡

𝐼) + 𝜋2𝑛𝑡
𝑠(𝐼𝑡𝑁𝑡

𝐼) + 𝜋3𝐼𝑡. (18) 

 

The parameter 𝛿𝑣 represents the probability that a vaccine is discovered. With probability 1 − 𝛿𝑣 
a person susceptible at time 𝑡 remains susceptible at time 𝑡 + 1. With probability 𝛿𝑣 this person is 
vaccinated and becomes immune to the disease. So, at time 𝑡 + 1, this person’s health situation is 
identical to that of a recovered person. The vaccine has no impact on people who were infected or 
have recovered. 
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The first-order conditions for consumption and hours worked are: 

 𝑢1(𝑐𝑡
𝑠, 𝑛𝑡

𝑠) − (1 + 𝜇𝑡)𝜆𝑏𝑡
𝑠 + 𝜆𝜏𝑡𝜋1(𝐼𝑡𝐶𝑡

𝐼) = 0, (19) 

 

 𝑢2(𝑐𝑡
𝑠, 𝑛𝑡

𝑠) + 𝑤𝑡𝜆𝑏𝑡
𝑠 + 𝜆𝜏𝑡𝜋2(𝐼𝑡𝑁𝑡

𝐼) = 0. (20) 

 

Here, 𝜆𝑏𝑡
𝑠  and 𝜆𝜏𝑡 are the Lagrange multipliers associated with constraints (16) and (18), 

respectively. 

The first-order condition for 𝜏𝑡 is: 

 𝛽(𝑈𝑡+1
𝑖 − 𝑈𝑡+1

𝑠 ) − 𝜆𝜏𝑡 = 0. (21) 

 

Infected people. The lifetime utility of an infected person, 𝑈𝑡
𝑖, is 

 𝑈𝑡
𝑖 = 𝑢(𝑐𝑡

𝑖, 𝑛𝑡
𝑖 ) + (1 − 𝛿𝑐)[(1 − 𝜋𝑟 − 𝜋𝑑)𝛽𝑈𝑡+1

𝑖 + 𝜋𝑟𝛽𝑈𝑡+1
𝑟 ] + 𝛽𝛿𝑐𝑈𝑡+1

𝑟 . (22) 

 

The expression for 𝑈𝑡
𝑖 embodies a common assumption in macro and health economics that the 

cost of death is the foregone utility of life.  

The parameter  𝛿𝑐 represents the probability that an effective treatment that cures infected people 
is discovered each period. Once discovered, treatment is provided to all infected people in the 
period of discovery and all subsequent periods transforming them into recovered people. As a 
result, the number of new deaths from the disease goes to zero. 

The first-order conditions for consumption and hours worked are given by: 

 𝑢1(𝑐𝑡
𝑖, 𝑛𝑡

𝑖 ) = 𝜆𝑏𝑡
𝑖 (1 + 𝜇𝑡), (23) 

 

 𝑢2(𝑐𝑡
𝑖, 𝑛𝑡

𝑖 ) = −𝜙𝑖𝑤𝑡𝜆𝑏𝑡
𝑖 , (24) 

 

where 𝜆𝑏𝑡
𝑖  is the Lagrange multiplier associated with constraint (16). 

Recovered people. The lifetime utility of a recovered person, 𝑈𝑡
𝑟, is 

 𝑈𝑡
𝑟 = 𝑢(𝑐𝑡

𝑟 , 𝑛𝑡
𝑟) + 𝛽𝑈𝑡+1

𝑟 . (25) 

 

The first-order conditions for consumption and hours worked are: 
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 𝑢1(𝑐𝑡
𝑟 , 𝑛𝑡

𝑟) = 𝜆𝑏𝑡
𝑟 (1 + 𝜇𝑡), (26) 

 

 𝑢2(𝑐𝑡
𝑟 , 𝑛𝑡

𝑟) = −𝑤𝑡𝜆𝑏𝑡
𝑟 , (27) 

 

where 𝜆𝑏𝑡
𝑟  is the Lagrange multiplier associated with constraint (16). 

Government budget constraint. The government budget constraint is  

 𝜇𝑡(𝑆𝑡𝑐𝑡
𝑠 + 𝐼𝑡𝑐𝑡

𝑖 + 𝑅𝑡𝑐𝑡
𝑟) = 𝛤𝑡(𝑆𝑡 + 𝐼𝑡 + 𝑅𝑡). (28) 

 

Equilibrium. In equilibrium, each person solves their maximization problem and the government 
budget constraint is satisfied. In addition, the goods and labor markets clear: 

 𝑆𝑡𝐶𝑡
𝑠 + 𝐼𝑡𝐶𝑡

𝑖 + 𝑅𝑡𝐶𝑡
𝑟 = 𝐴𝑁𝑡, (29) 

 

 𝑆𝑡𝑁𝑡
𝑠 + 𝐼𝑡𝑁𝑡

𝑖𝜙𝑖 + 𝑅𝑡𝑁𝑡
𝑟 = 𝑁𝑡. (30) 

 

3 Calibration 
 

In this section we present our calibration strategy used to determine the model parameters for each 
of the five chosen states, namely, São Paulo (SP), Amazonas (AM), Ceará (CE), Rio de Janeiro 
(RJ) and Pernambuco (PE).  

First of all, we need to state an important consideration concerning the time convention adopted 
in this paper for the model results. Since the main objective of the model is not to compute 
quantitative punctual predictions about questions such as the date of the peak of the infected 
population, we decided to give up the definition of a specific time periodicity for the time of the 
model. Instead, we chose to normalize the total duration of the time interval for which the exercises 
were computed to one. Thus, the time interpretation of the model becomes in relation to the 
progress (%) of the total duration of the epidemics. Since the total duration of the epidemics will 
be known only ex-post, we exempt this work from any predictive responsibilities that could be 
attributed to it and we emphasize the qualitative and comparative nature of its results. 

To calibrate the value of 𝜅 for each state we used infection fatality rate estimates from Mellan’s et 
al. (2020) Report 21 from Imperial College for a series of Brazilian states. We calibrate the values 
of 𝜅 for each of the five states so that the mortality rates in the competitive equilibrium peaks at 
the values of these estimated infection fatality rates. Although the mortality rates are endogenous 
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to the model, they need an initial value. Following Rabelo and Soares (2020) we use 0.3% as the 
initial mortality rate for all states. This value is obtained as a weighted average of the mortality 
rates verified in South Korea (the country that had the world’s highest per capita test rates for 
COVID-19) using weights equal to the percentage of the Brazilian population for different age 
groups. 

Proceeding with our calibration strategy for 𝜋1, 𝜋2, and 𝜋3 for each state, we start adopting the 
same premise of Eichenbaum et al. (2020) that, as is common in epidemiology, the relative 
importance of different modes of transmission is similar across viruses that cause respiratory 
diseases. Ferguson et al. (2006) argue that, in the case of influenza, 30% of transmissions occur in 
the household, 33% in the general community, and 37% occur in schools and workplaces. Based 
on this assumption adopted, we use these percentages as the basis for our calibration.   

As in Eichenbaum et al. (2020), we calibrate the values of 𝜋1, 𝜋2, and 𝜋3 to satisfy the system 

 𝜋1𝐶2

𝜋1𝐶2 + 𝜋2𝑁2 + 𝜋3
= 𝛼1  

𝜋2𝑁2

𝜋1𝐶2 + 𝜋2𝑁2 + 𝜋3
 = 𝛼2  

𝜋3

𝜋1𝐶2 + 𝜋2𝑁2 + 𝜋3
 = 𝛼3  

 

 

(31) 

where 𝐶 and 𝑁 are the consumption and hours worked in the pre-epidemic steady state. Note that  
𝛼1, 𝛼2, and 𝛼3 are the shares of transmissions that occur in consumption, at work and in other 
activities, respectively. Having these shares calibrated, it is possible to solve the system and 
therefore obtain the values of 𝜋1, 𝜋2, and 𝜋3. Thus, it is easy to see that the calibration problem of  
𝜋1, 𝜋2, and 𝜋3 is equivalent to the calibration problem of 𝛼1,𝛼2, and 𝛼3.  Also note that as 𝛼1 +

𝛼2 + 𝛼3 = 1, it is enough that two of the portions are calibrated for the latter to be obtained 
residually. 

Due to the lack of data available for Brazil, it became impractical to calibrate 𝛼1 directly. We then 
chose to calibrate 𝛼2 and 𝛼3 and obtain 𝛼1 residually. We calibrated the share of transmissions 
that occur at work, 𝛼2, using the same approach as Eichenbaum et al. (2020). We weight the 
number of students and workers in each state by 10 and 4, respectively. These weights refer to the 
average amount of physical contacts per day at school and at work, obtained from Lee et al. (2010). 
For the total number of workers, we used the number of persons aged 14 and over employed in the 
labor force obtained from IBGE’s SIDRA1. For the total number of students, we used the number 
of students aged 4 and over, also obtained from IBGE’s SIDRA2. 

We calibrated the share of infections that occur in other activities, 𝛼3, using some calibration 
hypothesis and data on i) the proportion of daily hours dedicated to household chores of persons 
aged 14 and over; ii) the average number of people per household and iii) the usual time of 
commuting of individuals to work. Having the values of 𝛼2 and 𝛼3 calibrated, we obtain the value 
                                                           
1 Sistema IBGE de Recuperação Automática (IBGE Automatic Recovery System), Table 4093. 
2 Ibid., Table 983. 
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of 𝛼1 residually and, with these three calibrated fractions, we finally obtain 𝜋1, 𝜋2, and 𝜋3 solving 
system (31). More technical details regarding the calibration of 𝛼1, 𝛼2, and 𝛼3 can be found in the 
Appendix at Section 9. 

The initial population is normalized to one. For each state, we calibrate the number of people that 
are initially infected to represent a number of 100 infected people at 𝑡 = 0. Thus, for each state 𝜀 
is calculated as: 

 
𝜀 =

100

𝑃𝑂𝑃
 

(32) 

 

where 𝑃𝑂𝑃 is the estimated resident population for 2019 for the state, obtained from IBGE’s 
SIDRA3. Calibrating in this way for each state, it was possible to capture and compare the effect 
of the different population sizes of each state on the local dynamics of the epidemic. 

As in Eichenbaum et al. (2020), we calibrate the values of A and 𝜃 so that in the pre-epidemic 
steady state the representative person of each state works the average hours worked by the 
population of his state and earns the per capita income of the population of his state. For this, we 
use the average hours usually worked per week in all jobs of people aged 14 and over and the 
average real monthly household income per capita, at average prices of the year, for each of the 
states. The first data set was obtained from IBGE’s SIDRA4 and the latter from IBGE’s 2019 
PNAD Contínua survey.  

To calibrate the discount factor, 𝛽, for all states we use the same value calculated by Rabelo and 
Soares (2020) for Brazil. This value is equivalent to a statistical value of life of R$ 2,9 million. As 
indicated by these authors, this value is based on recent estimates for Brazil by Ferrari et al. (2019) 
and Rocha et al. (2019). 

Again, as in Eichenbaum et al. (2020), we calibrate the parameter that controls the relative 
productivity of infected people, 𝜙𝑖, as 0,8. This value is consistent with the notion that 
symptomatic agents don’t work and the assumption that 80 percent of infected people are 
asymptomatic according to the China Center for Disease Control and Prevention.   

Regarding the probabilities of discovering effective treatments and vaccines, 𝛿𝑐 and 𝛿𝑣, 
respectively, following Eichenbaum et al. (2020) we calibrate them to reflect an average Discovery 
time of one year. 

  

                                                           
3 Ibid., Table 6579. 
4 Ibid., Table 6373. 
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Table 1: Main values used for the calibration of the parameters and variables of each state. 

Value SP AM CE RJ PE 

Imperial College’s Estimated IFR (%) 0,70 0,80 1,10 0,80 1,10 

Number of Workers 22.782.714 1.657.700 3.764.280 7.651.617 3.602.820 

Number of Students 10.306.000 1.284.000 2.376.000 3.853.000 2.475.000 

Average time devoted to household chores (daily hours) 2,06 1,44 1,87 2,04 2,02 

Average number of people per residence 2,80 3,60 3,10 2,70 2,90 

Average time spent in public transport (minutes) 37,15 33,95 26,60 43,07 30,52 

Pre-epidemic population 45.919.049 4.144.597 9.132.078 17.264.943 9.557.071 

Average time devoted to work (daily hours) 8,24 7,30 7,58 8,10 7,74 

Per capita income 1.889 838 939 1.809 954 

 

Table 2: Calibrated values for the main variables and parameters of each state. 

Parameter/Variable SP AM CE RJ PE 

𝜿 0,63 1,10 2,35 1,33 1,90 

𝜶𝟏 0,16 0,28 0,30 0,12 0,25 

𝜶𝟐 0,17 0,13 0,14 0,16 0,14 

𝜶𝟑 0,66 0,60 0,56 0,71 0,61 

𝝅𝟏 4,28 ⋅ 10−7 3,68 ⋅ 10−6 3,17 ⋅ 10−6 8,53 ⋅ 10−7 2,59 ⋅ 10−6 

𝝅𝟐 5,99 ⋅ 10−5 5,54 ⋅ 10−5 5,85 ⋅ 10−5 5,13 ⋅ 10−5 5,33 ⋅ 10−5 

𝝅𝟑 0,39 0,35 0,33 0,33 0,36 

𝜺 100

45.919.049
 

100

4.144.597
 

100

9.132.078
 

100

17.264.943
 

100

9.557.071
 

𝑨 11,46 5,74 6,19 11,17 6,16 

𝜽 5,89 ⋅ 10−4 7,51 ⋅ 10−4 6,96 ⋅ 10−4 6,10 ⋅ 10−4 6,68 ⋅ 10−4 

𝜷 0,966 0,966 0,966 0,966 0,966 

𝝓𝒊 0,80 0,80 0,80 0,80 0,80 
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4 Competitive Equilibrium 
 

In this first exercise, we present results for the competitive equilibrium of each state. In the 
competitive equilibrium, there are no attempts by the authorities to contain the evolution of the 
epidemic. The dynamics of the epidemic are affected only by the decisions made by economic 
agents, that are free to reduce their chances of being infected by reducing consumption and hours 
worked.  

In this and the next sections, we illustrate the differences between states by describing the main 
results for each variable. To keep text clarity, we describe the results only for the states that 
presented the highest and lowest values for each variable. These values will be sufficient to assess 
the size of the heterogeneity of results between states. Nevertheless, the other results can be 
analyzed in greater detail in the figures and tables that will be presented by the end of the article. 
All numerical results will be summarized in Table 3, in Section 6. Regarding this section, Figure 
1 shows, in level, the dynamics of the evolution of the epidemic for each of the five states, as well 
as its effects on the aggregates of consumption and hours worked in each of them, for the 
competitive equilibrium. Figure 2 shows the same results but in proportion (%) to the initial 
population of each state.  

Proceeding to the results, first, we can observe that the state that reaches the highest peak of the 
infected share of the pre-epidemic population is the state of São Paulo (SP), at 4.95%. At the other 
extreme, the state that reaches the lowest peak is the state of Ceará (CE), with 3.83% of the pre-
epidemic population infected. In relation to the temporal dimension, the peak of infected people 
occurs first in Amazonas (AM), with 39.33% of the progress of the total time of the epidemic 
occurred and, only lastly, in São Paulo (SP), with 47.33% of the time progress of the epidemic 
occurred. 

Concerning the macroeconomic consequences of the epidemic, among the five states analyzed, the 
most severe macroeconomic shock occurs in Ceará (CE), where the aggregates of consumption 
and hours worked offered suffer a fall of approximately 18.11% in comparison to the pre-epidemic 
steady state. On the other hand, the least severe occurs in São Paulo (SP), where the falls in 
aggregate consumption and the aggregate hours of work reached a valley of –13.55%. Regarding 
time, the recession valley occurs first in Amazonas (AM), when the progress of the total duration 
of the epidemic reaches 38.67% and, lastly, in São Paulo (SP), when the progress of the total 
duration of the epidemic reaches 46.00%, 8.67 percentage points of the progress of the epidemic 
after Amazonas (AM). 

The epidemic ends with 52.93% of the population of São Paulo (SP) infected, the largest share of 
the population infected among the five states analyzed in the competitive equilibrium. On the other 
hand, Ceará (CE) has the lowest share among the five states, with 47.12% of the population 
infected at the end of the epidemic. As a consequence of the infections, the state with the largest 
share of the initial population affected by death is the state of Pernambuco (PE), with 0.36%, while 
those with the smallest shares are the states of Rio de Janeiro (RJ) and São Paulo (SP), both with 
0.27%. 
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These sample results illustrate evidence of relevant differences in the epidemic dynamics of each 
state in the competitive equilibrium due to its intrinsic differences. It is possible to note that the 
size of the infected peak and the time required to reach it are significantly different in each state. 
The depth and duration of recessions, the share of the total population infected and the share of the 
population affected by death at the end of the epidemic in each state also differ between them. 

In the next section, we will analyze optimal containment policies that can be adopted by states to 
improve the results obtained in competitive equilibrium. Our main interest will be to analyze how 
these containment policies differ between these states. In Section 6 we analyze the results under 
the scenario of adopting these policies and compare them with the results presented in this section 
to assess the effects of adopting these measures. 
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Figure 1: SIR-macro model - Results for competitive equilibrium, in level. 
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Figure 2: SIR-macro model – Results for competitive equilibrium, in percentage of the initial population. 
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5 Optimal containment policy 
In this section, inspired by Eichenbaum et al. (2020), we consider a simple Ramsey problem to 
deal with a classic externality associated with the behavior of infected agents in the competitive 
equilibrium. Because agents are atomistic, they don’t take into account the impact of their actions 
on the infection and death rates of other agents. For this reason, the competitive equilibrium is not 
socially optimal.  

Eichenbaum et al. (2020), analogous to Farhi and Werning’s (2012) treatment of capital controls, 
model the containment measures as a tax on consumption, the proceeds of which are rebated lump 
sum to all agents. This tax on consumption is referred as the containment rate. We proceed, as well 
as Eichenbaum et al. (2020), modelling in this way.  

In this section we compute, for each state, the optimal sequence of 250 containment rates {𝜇𝑡}𝑡=0
249  

that maximize social welfare, 𝑈0, defined as a weighted average of the lifetime utility of the 
different agents. Since at time zero 𝑡 = 0, 𝑅0 = 𝐷0 = 0, the value of 𝑈0 is 

 

 𝑈0 = 𝑆0𝑈0
𝑠 + 𝐼0𝑈0

𝑖 . (33) 

Given the sequence of containment rates, we solve for the competitive equilibrium and evaluate 
the social welfare function. We iterate on this sequence until we find the optimum. 

Figure 3 shows the results, in level, for which all states adopt optimal containment policies. Figure 

4 shows the same results, but as percentage of the initial population.  

First, we can see that in the period 𝑡 = 0, where the infected population in each state reaches the 
level of 100 individuals, the containment rates are already high for all five states. The highest 
initial containment rate occurs in Ceará (CE), at 16.12%, while the lowest in São Paulo (SP), at 
14.05%. 

As the containment rates evolve, the state that reaches the highest peak of the containment rate 
among the five states is the state of Pernambuco (PE), with a containment rate of 53.40%. On the 
other hand, São Paulo (SP) is the state with the lowest peak containment rate, at 38.76%. These 
numbers illustrate the alarming size of heterogeneity between states in terms of the level to which 
containment should be taken. The state of Pernambuco (PE) requires that the containment rate be 
raised 14.64 percentage points more than in São Paulo (SP). 

Regarding time, the peak of the containment rate occurs first in the state of Amazonas (AM), in 
40.67% of the progress of the total time of the epidemic, this being, therefore, the first state to 
begin to relax the containment measures. On the other hand, the peak occurs lastly in Rio de Janeiro 
(RJ), with 48.67% of the progress of the epidemic occurred. Rio de Janeiro (RJ) is, therefore, the 
last state to start the process of gradual relaxation of containment measures. These results illustrate 
how the optimal duration and speed of containment policies can vary across states. 
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In summary, these results illustrate that the intrinsic differences of each state not only affect the 
initial severity of the containment measures adopted by each of them but also the dynamics of the 
evolution of these containment rates over time, implying differences in i) the ideal moment when 
the measures containment will need to be raised, ii) how far they will need to be raised and iii) 
when they can finally be relaxed. Notwithstanding these interstate differences in the optimal 
conduct of containment policies, all results indicate that the adoption of relatively severe 
containment measures was an optimal decision for each of the five states. 

In this section, we studied the optimal containment policies to be adopted by each of the five states 
analyzed. However, the implications of adopting these optimal policies have not been analyzed. In 
the next section, these implications (in comparison to the competitive equilibrium set out in the 
previous section) will be analyzed under various dimensions. 
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Figure 3: SIR-macro model - Results under the adoption of optimal containment policies, in level. 
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Figure 4: SIR-macro model – Results under the adoption of optimal containment policies, in percentage of the initial population. 
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6 The implications of optimal containment policies 
 

All the results that will be described in this section are summarized in Table 3. Table 4 
summarizes the effects of the adoption of optimal containment policies by the states in 
comparison to the competitive equilibrium scenario. Table 5 shows, for each scenario, the 
moments of the progress of the epidemic when the main peaks and valleys in the results of each 
state occur. 

In the scenario under the adoption of optimal containment policies, the state with the largest 
share of the population infected at the peak is São Paulo (SP), at 3.50%. On the other hand, the 
lowest is the state of Ceará (CE), at 2.09%. In comparison to the competitive equilibrium, with 
the adoption of optimal policies, the greatest reduction in the infected peak occurs for the states 
of Amazonas (AM) and Pernambuco (PE), both with the peak of infected individuals reduced 
by 1.61 percentage points of the pre-epidemic population. At the other extreme, the smallest 
reduction occurs in São Paulo (SP), of only 1.44 percentage points. 

With regard to time, the peak of infected people occurs first in Amazonas (AM), with 48.67% 
of the progress of the total time of the epidemic occurred, and lastly in Rio de Janeiro (RJ), 
with 58.67%. In comparison to the competitive equilibrium, the state that suffers the longest 
extension of time until the peak of infected due to the adoption of optimal containment policies, 
is the state of Ceará (CE), which has its peak of infected delayed by 13.33 percentage points of 
the epidemic's progress. At the other extreme, the one that suffers the least prolongation is the 
state of São Paulo (SP), with a delay of only 8 percentage points in the progress of the epidemic. 

Proceeding for macroeconomic shocks, with the adoption of optimal containment policies there 
is a worsening recession for all states. The biggest recession happens in the state of Pernambuco 
(PE), with a drop in aggregate consumption and the aggregate of hours worked of 22.58%. The 
smallest recession occurs in São Paulo (SP), with a fall of 19.28% of the aggregate consumption 
and aggregate hours worked. In comparison to the results of competitive equilibrium, the state 
that suffers the least impact on the recession is Ceará (CE), as a deepening of only 3 percentage 
points of the aggregates valley. On the other hand, the one that suffers the greatest deepening 
is the state of Amazonas (AM), of 6.06 percentage points of the pre-epidemic steady state, 
more than double the deepening suffered by Ceará (CE). 

Observing the temporal dynamics, we can notice that the first state to reach the valley is 
Amazonas (AM), in 42.00% of the progress of the total time of the epidemic, while the one 
that finally reaches it is Rio de Janeiro (RJ), in 50.67% of the progress of the total time of the 
epidemic. In comparison to the competitive equilibrium, the states that suffer the greatest 
increases in the duration of the recession are the states of Ceará (CE) and Rio de Janeiro (RJ), 
both with an extension of 5.33 percentage points of the time progress of the epidemic in that 
the valley of recession occurs. On the other hand, the states that experienced the smallest 
increases in duration were the states of Amazonas (AM) and São Paulo (SP), both with an 
extension of only 3.33 percentage points. 

At the end of the epidemic, the state with the largest share of the population infected becomes 
the state of São Paulo (SP), with 49.74%. The state with the smallest becomes the state of Ceará 
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(CE), with 43.11%. In comparison to the competitive equilibrium, the state that suffers the 
greatest reduction in this share due to the adoption of optimal containment policies is the state 
of Amazonas (AM), with a reduction of 4.24 percentage points of the share of the total 
population that is infected. The state that suffers the smallest reduction is the state of São Paulo 
(SP), with a reduction of 3.19 percentage points of the share of the total population that is 
infected. 

As a result of infections, the largest share of the initial population that dies occurs in 
Pernambuco (PE), where it reaches 0.21%. The lowest occurs in the state of Rio de Janeiro 
(RJ), where it reaches 0.18% of the population. In comparison to the competitive equilibrium, 
the largest reduction in the portion of the population that dies occurs in the state of Pernambuco 
(PE), of approximately 0.16 percentage points of the pre-epidemic population, while the 
smallest reduction occurs in São Paulo (SP), of only 0.07 percentage points of the pre-epidemic 
population, a reduction of less than half that observed in Pernambuco (PE). 

These results show evidence that the intrinsic differences between the states significantly 
influence the effect of adopting optimal containment policies, heterogeneously affecting the 
peak of the infected curve and its time dynamics, the severity of economic recessions, the share 
of the total population that is infected at the end of the epidemic and the percentage of the pre-
epidemic population that dies. 

Figure 5 shows the comparison of results between the competitive equilibrium and the optimal 
policy scenario for all states together, in level. Figure 6 shows the same results but as a 
percentage of the initial population. Figure 7, Figure 8, Figure 9, Figure 10 and Figure 11 show 
the comparisons of results between the competitive equilibrium and the optimal policy scenario 
for each of the states separately, in level.
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Figure 5: SIR-macro model – Comparison of results between the scenarios of optimal containment policy (solid line) and competitive equilibrium 
(dotted lines), in level. 
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Figure 6: SIR-macro model – Comparison of results between the scenarios of optimal containment policy (solid line) and competitive equilibrium 
(dotted lines), in percentage of the initial population. 

 

 

 

106
C

ov
id

 E
co

no
m

ic
s 3

0,
 1

9 
Ju

ne
 2

02
0:

 8
3-

11
9



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

 

Table 3: Results for the main variables of the model for the competitive equilibrium and optimal policy scenarios. 

Variable Scenario São Paulo (SP) Amazonas (AM) Ceará (CE) Rio de Janeiro (RJ) Pernambuco (PE) 

Total uninfected by the end of the epidemic, S Competitive Eq.   21,614,655.03  (47.07%)   2,086,398.55  (50.34%)   4,828,940.12  (52.88%)   8,999,825.11  (52.13%)   4,858,460.45  (50.84%) 

(Number of people. In parentheses: percentage of initial population) Optimal Policy   23,073,448.23  (50.25%)   2,261,651.74  (54.57%)   5,189,707.29  (56.83%)   9,607,865.98  (55.65%)   5,242,447.63  (54.85%) 

            

Peak infected population, I  Competitive Eq.    2,271,910.63  (4.95%)     174,441.47  (4.21%)     331,309.55  (3.63%)     660,399.78  (3.83%)     387,726.67  (4.06%) 

(Number of people. In parentheses: percentage of initial population) Optimal Policy    1,608,921.78  (3.50%)     107,708.85  (2.60%)     190,939.73  (2.09%)     410,857.91  (2.38%)     234,004.12  (2.45%) 

            

Total recovered by the end of the epidemic, R Competitive Eq,   24,180,003.96  (52.66%)   2,046,520.78  (49.38%)   4,271,783.72  (46.78%)   8,217,878.32  (47.60%)   4,664,293.18  (48.80%) 

 (Number of people. In parentheses: percentage of initial population) Optimal Policy   22,747,425.46  (49.54%)   1,874,748.12  (45.23%)   3,918,618.10  (42.91%)   7,615,853.03  (44.11%)   4,291,798.23  (44.91%) 

            

Total deaths by the end of the epidemic, D Competitive Eq.       124,101.88  (0.27%)       11,660.84  (0.28%)       31,144.56  (0.34%)       46,800.59  (0.27%)       34,221.33  (0.36%) 

 (Number of people. In parentheses: percentage of initial population) Optimal Policy         93,693.42  (0.20%)         7,676.48  (0.19%)       17,884.19  (0.20%)       31,433.62  (0.18%)       20,163.66  (0.21%) 

            

Total infected by the end of the epidemic, R+D Competitive Eq.   24,304,105.84  (52.93%)   2,058,181.61  (49.66%)   4,302,928.28  (47.12%)   8,264,678.91  (47.87%)   4,698,514.51  (49.16%) 

 (Number of people. In parentheses: percentage of initial population) Optimal Policy   22,841,118.88  (49.74%)   1,882,424.60  (45.42%)   3,936,502.30  (43.11%)   7,647,286.65  (44.29%)   4,311,961.89  (45.12%) 

            

Peak mortality rate   Competitive Eq. 0.70% 0.80% 1.10% 0.80% 1.10% 

(%) Optimal Policy 0.50% 0.49% 0.56% 0.49% 0.59% 

       

Aggregate consumption in the valley Competitive Eq. -13.55% -13.67% -18.11% -15.80% -17.66% 

(% Dev. from Initial Steady State) Optimal Policy -19.28% -19.72% -21.10% -18.98% -22.58% 

       

Aggregate of hours worked in the valley Competitive Eq. -13.55% -13.67% -18.11% -15.80% -17.66% 

 (% Dev. from Initial Steady State) Optimal Policy -19.28% -19.72% -21.10% -18.98% -22.58% 
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Table 4: Effects of the adoption of optimal containment policies by the states in relation to the competitive equilibrium scenario. 

Value SP AM CE  RJ PE 

Peak containment rate 
38.76% 43.68% 48.35% 39.54% 53.40% 

(%) 

Infected people avoided at peak 
    662,989  (1.44%)    66,733  (1.61%)  140,370  (1.54%)  249,542  (1.45%)  153,723  (1.61%) 

(Number of people. In parentheses: percentage of initial population)  

           

Total infections avoided 
 1,462,987  (3.19%)  175,757  (4.24%)  366,426  (4.01%)  617,392  (3.58%)  386,553  (4.04%) 

(Number of people. In parentheses: percentage of initial population)  

           

Peak mortality rate reduction 
-0.20% -0.31% -0.53% -0.31% -0.51% 

(%) 

      

Saved lives 
      30,408  (0.07%)      3,984  (0.10%)    13,260  (0.15%)    15,367  (0.09%)    14,058  (0.15%) 

(Number of people. In parentheses: percentage of initial population)  

           

Effect on aggregate consumption in the valley 
-5.73% -6.06% -2.99% -3.18% -4.92% 

(% Dev. From Initial Steady State) 

      

Effect on aggregate hours worked in the valley  
-5.73% -6.06% -2.99% -3.18% -4.92% 

(% Dev. From Initial Steady State) 
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Table 5: Moments of progress of the epidemic in which the peaks and valley of the main variables of the model occur in each scenario, for each state. 

 

Value Scenario SP  AM  CE  RJ PE 
       

Moment of progress of the epidemic in which the peak of infected people occurs, I 
(% progress of the total time of the epidemic) 

Competitive Eq. 47.33% 39.33% 42.67% 46.00% 42.00% 
Optimal Policy 55.33% 48.67% 56.00% 58.67% 52.67% 

       

Moment of progress of the epidemic when peak containment rate occurs, 𝝁𝒕 
(% progress of the total time of the epidemic) Optimal Policy 47.33% 40.67% 46.00% 48.67% 44.00% 

       

Moment of progress of the epidemic when the peak mortality rate occurs, 𝝅𝒅 
(% progress of the total time of the epidemic) 

Competitive Eq. 47.33% 39.33% 42.67% 46.00% 42.00% 
Optimal Policy 55.33% 48.67% 56.00% 58.67% 52.67% 

       

Moment of progress of the epidemic when the valley of recession occurs  
(% progress of the total time of the epidemic) 

Competitive Eq. 46.00% 38.67% 42.00% 45.33% 41.33% 
Optimal Policy 49.33% 42.00% 47.33% 50.67% 45.33% 

       

109
C

ov
id

 E
co

no
m

ic
s 3

0,
 1

9 
Ju

ne
 2

02
0:

 8
3-

11
9



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

 

 

Figure 7: SIR-macro model – Comparison of results between the scenarios of optimal containment policy (solid line) and competitive equilibrium 
(dotted lines): São Paulo (SP), in level. 
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Figure 8: SIR-macro model – Comparison of results between the scenarios of optimal containment policy (solid line) and competitive equilibrium 
(dotted lines): Amazonas (AM), in level. 
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Figure 9: SIR-macro model – Comparison of results between the scenarios of optimal containment policy (solid line) and competitive equilibrium 
(dotted lines): Ceará (CE), in level. 
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Figure 10: SIR-macro model – Comparison of results between the scenarios of optimal containment policy (solid line) and competitive equilibrium 
(dotted lines): Rio de Janeiro (RJ), in level. 
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Figure 11: SIR-macro model – Comparison of results between the scenarios of optimal containment policy (solid line) and competitive equilibrium 
(dotted lines): Pernambuco (PE), in level. 
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7 Conclusion 
 

Our interest was to analyze qualitatively how the main intrinsic differences of each state can 
affect its epidemic dynamics and results. In particular, our exercises, carried out for five states 
selected by the severity of the epidemic they presented at the time of the research, pointed to 
substantial differences in the evolution and outcome of the epidemic in each state, both in the 
competitive equilibrium scenario and in the scenario in which optimal containment policies are 
adopted. In both scenarios, we found evidence of differences in i) the size of the infected 
population peak, ii) the time required to reach the infected population peak, iii) the depth of the 
recessions, iv) the duration of the recessions, v) the share of the initial population that has been 
infected by the end of the epidemic and vi) the share of the initial population that died by the 
end of the epidemic in each state. 

Our results present evidence that the intrinsic differences of each state also imply different 
optimal trajectories of containment policies for each one of them. These intrinsic differences 
affect i) the initial severity of the containment measures that ideally should be adopted by each 
state and the dynamics of the evolution of these containment rates over time, implying ii) 
differences in the ideal moment that the containment measures will need to be elevated, iii) 
how far they will need to be elevated and iv) when they can finally be relaxed. 

Using the simple framework of the SIR-macro model proposed by Eichenbaum et al. (2020) 
and analyzing the results obtained for each state we conclude that the main implicit 
characteristics of the five different states imply relevant differences in 

i) The epidemic dynamics and its general epidemiological consequences;  
ii) The optimal containment policies to be adopted by each state;  
iii) The effect of adopting optimal containment policies; 
iv) The severity of the economic recessions from the epidemic.  

This conclusion emphasizes the importance of the disaggregated analysis of countries with 
huge geographic and demographic dimensions like Brazil in the formulation of policies to 
combat COVID-19. We warn that the adoption of unique aggregate policies for huge and 
heterogeneous countries like Brazil can trigger a series of containment policy errors in the 
states and regions of the country, deepening both the economic recession and the number of 
deaths resulting from the epidemic. The propagation channel of these errors is the following: 
if there is large heterogeneity in the optimal level of containment policy required for each state, 
a single containment policy for the whole country would be unable to adequately deal with the 
needs of all states simultaneously. Inevitably, the containment rate adopted across the country 
would be lower than needed for some states, resulting in more deaths, and higher than needed 
for others, resulting in unnecessarily in deeper economic recessions.  
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9 Appendix: Calibration of 𝜶𝟏, 𝜶𝟐 e 𝜶𝟑 
 

We calibrate the shares of the transmissions that occur in consumption, at work and in other 
activities as proportional to the time that individuals spend performing these activities. To 
calibrate 𝛼1, Eichenbaum et al. (2020) uses data from time use surveys produced by the United 
States Bureau of Labor Statistics. Given the lack of equivalent surveys for Brazil, directly 
calibrating the share of transmissions that occur in consumption has become a very complicated 
task for Brazilian states. We then decided to calibrate the values of 𝛼2 and 𝛼3 and obtain the 
values of 𝛼1 residually. We calibrated the share of transmissions that occur at work, 𝛼2, using 
the same approach as Eichenbaum et al. (2020). We weight the number of students and workers 
in each state at 10 and 4, respectively. These weights refer to the average amount of physical 
contacts per day at school and at work, obtained at work by Lee et al. (2010). We disaggregate 
the fraction of transmissions that occur in schools and work environments to obtain the fraction 
that occurs only in work environments considering, for this, a proportionality involving the 
average number of contacts, the population of workers and the student population of each state. 
We calculated the proportion of infections that occurs only at work and, finally, we obtain the 
value of 𝛼2 by multiplying it by the share of infections that occurs in schools and work 
environments (37%). Thus, for each state the value of 𝛼2 will be calculated as: 

 
𝛼2 =

4 ⋅ (𝑊𝑜𝑟𝑘𝑒𝑟𝑠)

4 ⋅ (𝑊𝑜𝑟𝑘𝑒𝑟𝑠) + 10 ⋅ (𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)
⋅ 37%, 

(34) 

 

where 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 is the total number of workers in the state and 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠 is the total number 
of students in the state. For the total number of workers we used the number of people aged 14 
and over employed in the labor force obtained from IBGE’s SIDRA5. For the total number of 
students, we used the number of students aged 4 years and over, also obtained from IBGE’s 
SIDRA6.  

Now we proceed to calibrate the share of infections that occurs in other activities, 𝛼3.  This 
share is by definition the portion of infections that occurs in all activities except those related 
to consumption and work. Obviously, there are many of these activities, so that the need for 
simplifying hypotheses for its calculation becomes inevitable.  

We approach this problem as follows: we assume as a calibration hypothesis that the vast 
majority of infections that occur outside of consumption and work occur mainly at home, at 
school or in public transport. This hypothesis is defined according to our intuition regarding 
the nature of the virus transmission inserted in the Brazilian reality and the availability of data 
for the states. We know that this hypothesis leaves out a number of other circumstances and 
environments in which the transmission of the disease could occur, perhaps the most significant 
of them being the hospitals themselves. However, the absence of specific state data related to 
these conditions and environments does not allow us to accurately measure these shares.  

                                                           
5 Ibid., Table 4093. 
6 Ibid., Table 983. 
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We deal with this problem as follows: if we calibrate 𝛼3 based only on the time people spend 
at home, in public transport and at school, the resulting value is very low and, as a consequence, 
calculating the 𝛼1 portion related to infections that occur in consumption, we observe that this 
portion is, on the other hand, unrealistically high. This is due to two main factors. Firstly, due 
to the previously mentioned issue (our calibration hypothesis for 𝛼3 leaves out many 
environments with a high degree of infection, such as hospitals, causing the resulting value for 
this portion to be underestimated) and, secondly, because the share of infections should not be 
explained only by the time spent in each environment, but by that time driven by a multiplying 
factor related to the characteristics of the environment in question. All of these findings indicate 
that the value of 𝛼3, if calculated in this way, is underestimated, which gives us room to add it 
by alternative means to incorporate the effect of these omitted factor.  

We have chosen to incorporate the contribution of the omitted environments to infections in 
the transport multiplier factor. But how big should this multiplier factor be? We calibrated it in 
order to obtain values for the 𝛼3 shares of the states that revolve around 1/2 to 2/3, magnitudes 
consistent with the value obtained by Eichenbaum et al. (2020) for the United States, where the 
availability of data enabled the residual calculation of 𝛼3, thus contributing to the greater 
reliability of the estimate of the magnitude of this share. As this multiplier factor will be 
common for all states, we argue that there is no qualitative loss for the model, since the relative 
differences in calibration between states will not be changed. 

To calibrate 𝛼3 we then proceed as follows: we calculate the share of infections that occurs at 
home, 𝛼3

𝐻𝑂𝑀𝐸, in schools, 𝛼3
𝑆𝐶𝐻𝑂𝑂𝐿𝑆, and in transport, 𝛼3

𝑇𝑅𝐴𝑁𝑆𝑃, and add them up, so that 
𝛼3 = 𝛼3

𝐻𝑂𝑀𝐸 + 𝛼3
𝑆𝐶𝐻𝑂𝑂𝐿𝑆 + 𝛼3

𝑇𝑅𝐴𝑁𝑆𝑃. Now, note that with the calculation of the share of 
infections that occurs in the workplace, 𝛼2, it is consequently also obtained the share of 
infections that occurs in schools:  

 
𝛼3

𝑆𝐶𝐻𝑂𝑂𝐿𝑆 = 37% ⋅
10 ⋅ (𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)

4 ⋅ (𝑊𝑜𝑟𝑘𝑒𝑟𝑠) + 10 ⋅ (𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑠)
. 

(35) 

 

The 𝛼3 calibration problem is therefore reduced to calibrating the fractions of infections that 
occur at home, 𝛼3

𝐶𝐴𝑆𝐴, and in transport, 𝛼3
𝑇𝑅𝐴𝑁𝑆𝑃.  

To calibrate the share of infections that occurs at home, we use data on the proportion of daily 
hours dedicated to the care of people or household chores of people aged 14 and over (%), 
obtained from IBGE’s SIDRA7, to calculate the average proportion of daily time that 
individuals in each state spend at home in situations susceptible to infection. As sleep time 
cannot be considered time susceptible to infection, we consider an average sleep time of 8 
hours a day and calculate the proportion as the daily hours dedicated to the care of people or 
household chores in each state divided by 16 (24-8). Remember, the work of Ferguson et al. 
(2006), that 30% of infections occur at home.  We then multiplied this proportion by 30% and 
further, under the hypothesis that the more people per household, the greater the share of 
infections within the home, by a multiplying factor characterized by the average number of 

                                                           
7 Ibid., Table 6730. 
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people per household in 2019, obtained from IBGE’s SIDRA8 for each state. The resulting 
value of 𝛼3

𝐶𝐴𝑆𝐴 for each state is therefore described by the equation 

 
𝛼3

𝐻𝑂𝑀𝐸 = 30% ⋅
(𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑐ℎ𝑜𝑟𝑒𝑠)

16
⋅ (𝑃𝑒𝑜𝑝𝑙𝑒 𝑝𝑒𝑟 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑) 

(36) 

 

where 𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑐ℎ𝑜𝑟𝑒𝑠 is the average daily time that individuals spend on household chores 
in the state and 𝑃𝑒𝑜𝑝𝑙𝑒 𝑝𝑒𝑟 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 is the average number of people living per household 
in the state.  

To calibrate the fraction that occurs in transport, 𝛼3
𝑇𝑅𝐴𝑁𝑆𝑃, we proceeded using the usual 

commuting time to work of individuals, obtained from IBGE’s SIDRA9 for each state, to 
calculate the fraction of the time spent on general activities devoted to the use of transport. We 
consider the time for general activities to be 24 hours a day minus the time spent on household 
chores, sleep, work and school. Having obtained the fraction of time devoted to general 
activities that is intended for the use of transport, we multiply it by the share of infections that 
occur in general activities (33%) to obtain the share of infections that occur in transport. 
Finally, we calibrate the transport multiplying factor so that the values of 𝛼3 revolves around 
1/2 to 2/3 for all states, a range of values consistent with the values of 𝛼3 calibrated in 
Eichenbaum et al. (2020) for the United States, where the availability of data for calibration is 
broader. The multiplier fator is therefore defined as 10. The value of  𝛼3

𝑇𝑅𝐴𝑁𝑆𝑃 is then obtained 
for each state by calculating 

 
𝛼3

𝑇𝑅𝐴𝑁𝑆𝑃 =  33% ⋅
(𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡)

16 − (𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 𝑐ℎ𝑜𝑟𝑒𝑠) − (𝑊𝑜𝑟𝑘 𝑜𝑟 𝑠𝑐ℎ𝑜𝑜𝑙)
⋅ 10 (37) 

 

With that, finally the value of 𝛼3 is obtained as being 

 𝛼3 = 𝛼3
𝐻𝑂𝑀𝐸 + 𝛼3

𝑆𝐶𝐻𝑂𝑂𝐿 + 𝛼3
𝑇𝑅𝐴𝑁𝑆𝑃. (38) 

 

Having obtained the shares 𝛼1, 𝛼2 e 𝛼3, it will be enough to solve the system (31) to obtain the 
values of 𝜋1, 𝜋2 and 𝜋3. 

 

                                                           
8 Ibid., Table 6578. 
9 Ibid., Table 3422. 

119
C

ov
id

 E
co

no
m

ic
s 3

0,
 1

9 
Ju

ne
 2

02
0:

 8
3-

11
9



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Covid Economics	 Issue 30, 19 June 2020

Copyright: Philipp Pfeiffer, Werner Roeger and Jan in ’t Veld

The COVID-19 pandemic in the 
EU: Macroeconomic transmission 
and economic policy response1

Philipp Pfeiffer,2 Werner Roeger3 and Jan in ’t Veld4

Date submitted: 17 June 2020; Date accepted: 18 June 2020

This paper uses a macroeconomic model to analyse the transmission 
of the COVID19-pandemic and its associated lockdown and quantify 
the stabilising effects of the economic policy response. Our simulations 
identify firm liquidity problems as crucial for shock propagation 
and amplification. We then quantify the effects of short-term work 
allowances and liquidity guarantees - central policy strategies in the 
European Union. The measures reduce the output loss of COVID19 
and its associated lockdown by about one fourth. However, they 
cannot prevent a sharp but temporary decline in production.

1	 The views expressed in this paper are those of the authors and should not be attributed to the European 
Commission. We would like to thank Declan Costello, Björn Döhring, Robert Kuenzel, João Leal, José 
Leandro, Hauke Vierke, Lukas Vogel, Milan Vyskrabka and many colleagues involved in Directorate-General 
for Economic and Financial Affairs’ forecast for useful comments and suggestions.

2	 Economic Analyst at the European Commission, Directorate-General for Economic and Financial Affairs.
3	 Head of the Unit "Models and databases" at the European Commission, Directorate-General for Economic and 

Financial Affairs.
4	 Head of the Sector “Model-based economic analysis” at the European Commission, Directorate-General for 

Economic and Financial Affairs.

120
C

ov
id

 E
co

no
m

ic
s 3

0,
 1

9 
Ju

ne
 2

02
0:

 1
20

-1
45



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

 

1. INTRODUCTION  

 

COVID19 is a rare disaster requiring urgent and targeted policy action. The economic fallout of the 
pandemic has triggered an intense debate on effective policies. Governments have announced and 
implemented exceptional stabilisation efforts. Our paper contributes to this debate using a dynamic 
general equilibrium model and an up-to-date collection of fiscal policy measures in the EU. We assess 
the economic transmission of COVID-19 and quantify gains from stabilisation policies in the 
European Union (EU). Our model is two-region TANK model (two-agent New Keynesian) consisting 
of the EU-27 and the rest-of-the world (RoW) based on the European Commission’s QUEST III 
model (Ratto et al., 2009). We extend the baseline model with a parsimonious model of heterogeneous 
firms and liquidity constraints. 

Our analysis proceeds in two steps. First, a set of scenarios analyses the essential economic 
characteristics of the pandemic.1 Stylised shocks capture the dynamic adjustment of the economy to (i) 
supply shocks through precautionary measures and (ii) shortfalls in consumer demand. Precautionary 
supply-side measures constrain labour input in production. The demand lockdown prevents consumers 
from undertaking certain consumption activities by either legal restrictions or voluntary protection. 
We quantify the impact of these shocks on the depth and duration of the recession. In addition, a 
simple financial accelerator mechanism via firm liquidity constraints amplifies the shocks. Without 
policy support, the simulations show an output contraction by more than 20% in the second quarter of 
2020 compared to a no-pandemic baseline. Firm liquidity constraints almost double the depth of the 
recession and substantially prolong the slump. This amplification leads to a more U-shaped recovery. 
Output in 2021 remains markedly below a no-pandemic baseline (almost 40% of the 2020 impact 
remains in 2021). By contrast, a standard model without borrowing constraints does not generate a 
(large) fall investment based on the temporary lockdown shocks to demand and supply alone. As a 
result, the simulations without firm liquidity constraints (and in the absence of other shocks), show a 
V-shaped recovery. 

In a second step, we turn to an early assessment of economic policy. The predicted collapse is 
unprecedented in post-war history. It warrants systematic comparison and quantification of the main 
policy strategies based on the identified transmission channels. Concretely, we focus on stabilisation 
gains from short-term work (STW) allowances and government guarantees. Besides automatic 
stabilisers, STW allowances and government guarantees are the dominant forms of fiscal response in 
the EU. Exploiting an up-to-date dataset of planned fiscal measures in the EU-27, we then show that 
together economic policies likely eliminate about one-fourth of the macroeconomic fallout of the 
pandemic.  

At the heart of our policy analysis are two interacting adjustment inefficiencies, namely employment 
adjustment costs and liquidity constraints for firms. Measures targeted at reducing these distortions, 
such as STW allowances and loan guarantees, prevent a considerable revision of investment plans. 
Alleviating liquidity constraints supports spending in wages, intermediates, investment, and servicing 
of loans. STW allowances are particularly effective. Since workers stay in the firm, firms avoid 
matching frictions and hiring or firing costs. This cost-saving channel, in turn, improves the corporate 
liquidity position by stabilising the gross operating surplus. As a result, fewer firms become 
constrained, limiting the amplification arising from the occasionally binding constraint. Apart from 
short-run expansionary effects, these measures may avoid that temporary liquidity problems morph 
into insolvency issues. Together STW and guarantees reduce the output loss of COVID19 and its 
                                                           
1 As discussed in Section 1.1, the scenarios are based on stylised versions of the simulations done in the context 
of the European Commission’s Spring Forecast published on May 7, 2020: https://ec.europa.eu/info/business-
economy-euro/economic-performance-and-forecasts/economic-forecasts/spring-2020-economic-forecast-deep-
and-uneven-recession-uncertain-recovery_en  
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associated lockdown by around four percentage points: one fourth of the negative economic impact of 
the pandemic.  

The policies, however, cannot prevent a temporary decline in production because of sickness, 
restrictions on the mobility of workers or supply chain interruptions. Moreover, additional 
consumption from transfers can only (fully) materialise after the lockdown period. It cannot prevent a 
sharp drop in consumer spending during the pandemic. 

We analyse our results for a given short-lived pandemic. This optimistic simplification is designed to 
transparently distil essential model features, in particular the internal propagation mechanism in 
response to the exogenous pandemic shocks. An additional longer pandemic scenario relaxes this 
assumption to show the sensitivity in a stylised way.  

 

1.1. RELATED LITERATURE 

There have been widespread calls for policies to mitigate the impact of the COVID-19 shock (e.g., 
Brunnermeier et al., 2020; Gopinath, 2020; and papers in Baldwin and Weder di Mauro, 2020). While 
monetary policy plays a crucial role in safeguarding liquidity conditions in the banking system and 
protecting the continued flow of credit to the real economy, the space of central banks is largely 
constrained. It is generally recognised that the ECB should not be expected to do all the heavy lifting. 
Economists have therefore emphasised that governments must step in with generous loans and other 
support programs to prevent mass bankruptcies, and direct fiscal measures to support demand when 
the lockdowns are lifted (e.g. Bénassy-Quéré et al. (2020), Lane (2020), Claes and Wolff (2020), and 
others). 

In an assessment of the efficacy of fiscal policies in the financial crisis, Coenen et al. (2012) compare 
transfer multipliers in seven large-scale DSGE models. In these models, spending multipliers are 
typically largest, often exceeding unity when the zero lower bound (ZLB) constrains monetary policy. 
By contrast, tax multipliers remain lower. Typically, transfer multipliers are also lower than 
government consumption and investment shocks. However, targeted transfers to constrained 
households entail multipliers closer to those of spending shocks. Guerrieri et al. (2020) emphasise that 
when some sectors are shut down, a traditional fiscal stimulus is less effective, as any money spent 
cannot go to “closed” sectors, whose workers have the greater marginal propensity to consume. As 
long as there are sectors shut down, there is a unit government spending multiplier and a transfer 
multiplier equal to the average marginal propensity to consume. Faria e Castro (2020) analyses 
different types of fiscal policies and finds that unemployment insurance benefits are the most effective 
tool to stabilise income for borrowers, who are the hardest hit, while savers may favour unconditional 
transfers. Liquidity assistance programs are effective if the policy objective is to stabilise employment 
in the affected sector. Bayer et al. (2020) also emphasise the importance of conditional transfers. 
Fornaro and Wolf (2020) emphasise the role expectations and the risks of demand-induced growth 
slowdowns. 

Our paper considers firm and household heterogeneity. Yet, the model remains parsimonious. 
Important related work complements our analysis by considering a more granular economic structure. 
Hagedorn and Mitman (2020) apply a HANK model to study the interaction of fiscal and monetary 
policy. Guerrieri et al. (2020) as well as Baqaee and Farhi (2020) use multi-sector models to show 
amplification effects through complementarities and incomplete markets. Bigio et al. (2020) compare 
transfers to credit policy and highlight the role of debt.  

The economic literature on COVID19 is growing rapidly. Important contributions also link economic 
models with epidemiological frameworks (e.g., Acemoglu et al., 2020; Eichenbaum et al., 2020; 
Glover et al., 2020; and Jones et al., 2020; and references therein).   
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We contribute to this literature by implementing a lockdown shock in a standard macro model and 
highlighting the role of liquidity constraints. Exploiting information about size and composition of EU 
fiscal measures, our paper then shows the depth of the recession and the shape of the recovery with 
and without fiscal measures.  

The paper is closely related to the scenario analysis published in the Spring Forecast of the European 
Commission (2020). Compared to the present paper, the simulations reported in the forecast document 
consider a richer modelling environmental with deeper regional and sectoral disaggregation and more 
transmissions channels (e.g. uncertainty shocks) and time patterns of the pandemic. By contrast, here 
we stress the role of inefficiencies arising from employment adjustment and liquidity constraints in a 
more stylised way.  

 

1.2. ROAD MAP 

The next two sections present the model, its calibration, and the underlying assumptions of the 
pandemic shock. Section 4 shows simulations results absent policy intervention, while Section 5 
summarises announced policy measures and the mapping into the model. Section 6 conducts 
robustness analysis and Section 7 concludes.  

 

2. MODEL  

We conduct our analysis in a two-region TANK model (two-agent New Keynesian) consisting of the 
EU-27 and the RoW. The framework is based on the European Commission’s QUEST III model suite 
(see, e.g., Ratto et al., 2009). Our discussion, therefore, focusses on the main model elements and 
refers for standard features to Ratto et al. (2009). We extend the baseline model with a parsimonious 
model of firm liquidity constraints. 

The model structure of all regions is symmetric. It includes nominal price and wage rigidities as well 
as adjustment costs associated with employment and investment. Households provide labour services 
to domestic firms. A share of households is liquidity constrained. Monopolistic trade unions set sticky 
wage rates. Governments purchase the local final good; make transfers to households; levy labour, 
profit, and consumption taxes; and issue debt. We integrate automatic fiscal stabilisation via tax 
revenues, constant spending in real terms and unemployment insurance. Trade and financial markets 
link the EU (based on EU-27 shares) and the rest-of-world. A limited interest rate response captures 
restricted monetary policy. We next present the core of the EU model block. The RoW block has the 
same structure except for the zero lower bound (ZLB) constraint on monetary policy (but features a 
block-specific calibration). ∗-superscript denotes RoW variables.2 To ease notation, the presentation 
abstracts from linear taxation of consumption, labour, and profits. 

 

2.1. HOUSEHOLDS 

The household sector consists of two representative households ℎ ∈ {𝑅, 𝐶}, of total mass one. The 
Ricardian household, indexed 𝑅, enjoys full access to financial markets. The other household is 
liquidity-constrained and indexed by C. This household does not trade on asset markets. Instead, she 
                                                           
2 Parameters such as the degree of openness differ across the EU and RoW. See the discussion below. 
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consumes her entire disposable wage and transfer income in each period. Both households have this 
utility function over consumption 𝐶𝑡

ℎ,𝑈 and leisure (1 − 𝑁𝑡
𝑖)3:  

𝐸0 ∑ 𝛽𝑡 [(
1

1 + 𝜓𝑡
) log(𝐶𝑡

ℎ,𝑈) − 𝜒
(𝑁𝑡

𝑖)𝜅+1

𝜅 + 1
]

∞

𝑡=0

(1) 

where 𝛽 is the subjective discount factor and 𝜅 > 0.  (
1

1+𝜓𝑡
) < 1 captures a self-imposed demand 

constraint in 𝑡 as in Eichenbaum et al. (2020). Moreover, 𝐶𝑡
ℎ,𝑈 ≤ 𝐶̅ℎ,𝑈 represents a regulatory 

constraint on consumption (binding in 𝑡, see below). We denote the multiplier attached to the 
regulatory constraint by 𝜙𝑡. 

The aggregate value of any household-specific variable 𝑋𝑡, in per-capita terms, is given by 𝑋𝑡 = (1 −
𝑠𝑙𝑐)𝑋𝑡

𝑟 + 𝑠𝑙𝑐𝑋𝑡
𝑙, where 𝑠𝑙𝑐 denotes the relative size of the liquidity constrained household.  

 

2.1.1. The Ricardian household 

The Ricardian household maximises utility subject to a sequence of budget constraints 

∆𝐿𝑡 + ∆𝐵𝑡 + ∆𝑉𝑡 = 𝑟𝑡−1𝐵𝑡−1 + 𝑟𝑡−1
𝐿 𝐿𝑡−1 + 𝐷𝑡 − 𝐶𝑡

𝑅,𝑈 + 𝑊𝑡
𝑟𝑁𝑡

𝑅 + 𝑇𝑅𝑡
𝑅 + 𝑏𝑒𝑛𝑡

𝑅 − 𝑇𝑡 , (2) 

where 𝑊𝑡
𝑟, 𝑁𝑡, 𝑇𝑡 , and 𝑇𝑅𝑡

𝑅 denote the real wage rate (same for both households), labour supply, direct 
taxes paid by households, household-specific transfers, respectively. Assets of the household are made 
up of loans to firms 𝐿𝑡 (the return 𝑟𝑡

𝐿 includes a loan default risk premium), bonds 𝐵𝑡 (an 
internationally traded bonds4 and government bonds) with net return 𝑟𝑡−1, and firm shares 𝑉𝑡, yielding 
dividends 𝐷𝑡. 𝑏𝑒𝑛𝑡

𝑅 summarises STW allowances, 𝑠𝑡𝑤𝑡, and unemployment benefits, 𝑢𝑏𝑒𝑛𝑡:5 

𝑏𝑒𝑛𝑡
𝑅 = (𝑢𝑏𝑒𝑛𝑡)(1 − 𝑛𝑝𝑎𝑟𝑡 − 𝑁𝑡

𝑅) + 𝑠𝑡𝑤𝑡(𝑁𝑡
𝑅 − 𝑁0

𝑅 ), (3) 

where (1 − 𝑛𝑝𝑎𝑟𝑡) and 𝑁0 denote the labour force participation rate and baseline labour demand, 
respectively. 

In equilibrium, intertemporal consumption-saving choice satisfies: 

𝐶𝑡+1
𝑅

𝐶𝑡
𝑅 = 𝛽(1 + 𝑟𝑡

𝑓
)(1 + 𝜓𝑡

𝑅)(1 + 𝜙𝑡
𝑅), (4) 

where 𝑟𝑡
𝑓denotes the risk-free rate. Both constraints imply a negative shock to consumption in 𝑡. The 

consumption constraint 𝐶𝑡
𝑅,𝑈 ≤ 𝐶̅𝑅,𝑈 becomes binding in period 𝑡 and 𝜙𝑡

𝑅 > 0 if 𝐶𝑡
𝑅 = 𝐶𝑅̅̅̅̅ . Note that 

both consumption constraints, self-imposed (𝜓𝑅
𝑡) and regulatory (𝜙𝑡

𝑅), have the same effect on the 

                                                           
3 Households supply differentiated types of labour services 𝑖, which we assume to be distributed equally over 
both household types. Unions bundle the differentiated labour services provided by the two types of households 
and maximise a joint utility function for each type of labour 𝑖. See below. 
4 The international bond features a country risk premium which depends on the net foreign asset position to 
ensure long-run stability of the model (Schmitt-Grohé and Uribe, 2003). 
5 The unemployed (1 − 𝑛𝑝𝑎𝑟𝑡 − 𝑁𝑡) receive benefits 𝑢𝑏𝑒𝑛𝑡 = 𝑏𝑒𝑛𝑟𝑟 𝑊𝑡

𝑟, where 𝑏𝑒𝑛𝑟𝑟 is the exogenous benefit 
replacement rate. 
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Euler equation.6 In the following, we assume 𝜙𝑡 > 0  and 𝜓𝑡 = 0, corresponding to a shock to current 
consumption in the Euler equation. 

2.1.2. The liquidity-constrained household 

Voluntary social distancing and regulatory constraints on consumption also apply to the constrained 
household; namely a self-imposed consumption constraint 

𝑊𝑡
𝑟𝑁𝑡

𝐿 − 𝑇𝑡 + 𝑇𝑅𝑡
𝐶 + 𝑏𝑒𝑛𝑡

𝐶 > 𝐶𝑡
𝐶 (5) 

and a regulatory constraint  

𝑊𝑡
𝑟𝑁𝑡

𝐿 + 𝑇𝑅𝑡
𝐶 + 𝑏𝑒𝑛𝑡

𝐶 > 𝐶̅𝐶 . (6) 

As a result, the constrained household features forced savings: 

∆𝐵𝑡
𝐶 = 𝑊𝑡

𝑟𝑁𝑡
𝐶 + 𝑇𝑅𝑡

𝐶 + 𝑏𝑒𝑛𝑡
𝐶 − 𝑇𝑡 − 𝐶𝑡

𝐶 (7) 

and dissaving in periods following the lockdown 𝐶𝑡+𝜏
𝐶 = 𝑊𝑡+𝜏

𝑟 𝑁𝑡+𝜏
𝐶 + 𝑇𝑅𝑡+𝜏

𝐶 + 𝑏𝑒𝑛𝑡+𝜏
𝐶 − 𝑇𝑡+𝜏 +

𝑠𝐵𝑡+𝜏−1
𝐶 , where 𝜏 denotes the post-lockdown period. 

2.2. INTERMEDIATE GOODS FIRMS 

There is a continuum of intermediate goods indexed by 𝑗 ∈ [0,1]. A single firm produces each good. 
Firms face symmetric decision problems and make identical choices. Firm 𝑗 has technology 𝑌𝑡

𝑗
=

𝐴(𝑁𝑡
𝑗
)

𝛼
(𝑢𝑡

𝑗
𝐾𝑡

𝑗
)1−𝛼 where 𝑌𝑡

𝑗
, 𝑁𝑡

𝐽
, 𝑢𝑡

𝑗 and 𝐾𝑡
𝑗 are the firm’s output, labour input, capacity utilisation 

and capital stock, respectively. 𝐴 is a constant common productivity level. The law of motion of firm 
𝑗’s capital stock is 𝐾𝑡

𝑗
= (1 − 𝛿)𝐾𝑡−1

𝑗
+ 𝐼𝑡

𝑗
, with depreciation rate 𝛿 and gross investment 𝐼𝑡

𝑗. The 
period 𝑡 dividend of intermediate good firm 𝑗 is: 

𝐷𝑡
𝑗

= 𝑝𝑡
𝑗
𝑌𝑡

𝑗
− 𝑊𝑡𝑁𝑡

𝑗
− 𝑝𝑡

𝐾𝐼𝑡
𝑗

− 𝑟𝑡−1𝐿𝑡−1
𝑗

+ 𝐿𝑡
𝑗 + Γt

𝑗
, (8) 

where 𝑝𝑡
𝑗
 and 𝑝𝑡

𝐾 denote the price charged by the firm and the price of production capital, respectively. 
𝐿𝑡

𝑗  are one-period loans. Γt
𝑗summarises quadratic price and factor adjustment costs.7 Firm 𝑗 maximises 

the present value of dividends 𝑉𝑡
𝑗

= 𝐷𝑡
𝑗

+ Λ𝑡,𝑡+1𝑉𝑡+1
𝑗 , where Λ𝑡,𝑡+1 denotes the discount factor of 

Ricardian households. For later purpose, it useful to define the (real) gross operating surplus: 𝐺𝑂𝑆𝑡
𝑗

=

𝑌𝑡
𝑗

− 𝑊𝑡
𝑟𝑁𝑡

𝑗. We model labour and capital/investment adjustment costs as8: 

                                                           
6 However, consumption responds different to policies for the two shocks. With a self-imposed reduction of 
consumption, household consumption will respond to fiscal measures (e.g. a reduction of VAT), while the 
government imposed constraint on consumption is a quantity constraint which cannot be affected by fiscal 
measures.  
7 Quadratic price adjustment costs imply that the inflation rate of local intermediates obeys an expectational 
Phillips curve. See Annex B. 
8 Given substitutability between capital and labour allowed by the production technology, firms could increase 
the utilisation of capital to partly offset the labour input constraint. We find this an unrealistic option in the short 
run given the scale of the supply constraint. Therefore, we impose a partial short-run complementarity between 
labour and utilised capital 

∆𝑁𝑡

𝑁𝑡

≈
∆𝑈𝐶𝑡

𝑈𝐶𝑡

. 
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𝛤𝑡
𝑁,𝑗

(𝑁𝑡
𝑗
) ≡

𝛾𝑁

2
(

𝑁𝑡
𝑗

𝑁𝑡−1
𝑗

− 1)

2

(9) 

𝛤𝑡
𝐾,𝑗

≡
𝛾𝐾

2
(

𝐼𝑡
𝑗

𝐾𝑡−1
𝑗

− 𝛿)

2

𝑝𝑡
𝐼𝐾̅𝑡−1

𝐽 +
𝛾𝐼

2
𝑝𝑡

𝐼(𝛥𝐼𝑡
𝑗
)

2
(10) 

Next, we discuss the two transmission channels of the pandemic on the production side: Labour input 
restrictions and liquidity constraints. Lockdown measures imply a downward shift in labour demand. 
In addition, the reduction in output induced by the pandemic and its associated demand and supply 
lockdown measures leads to falling investment via liquidity problems for firms.  

 

2.2.1. Labour input constraints: Lockdown shocks 

To prevent infections at the workplace, governments impose restrictions on labour input. Firms can 
only use 𝑁̅𝑡 employees during the lockdown. Precautionary distancing measures at the workplace 
imply then 𝑁𝑡 ≤ 𝑁̅𝑡. A binding constraint shifts down the labour demand schedule: 

𝜕𝑌𝑡
𝑗

𝜕𝑁𝑡
𝑗

= 𝑊𝑡
𝑟 + 𝜃𝑡

𝑁, (11) 

where 𝜃𝑡
𝑁 ≥ 0 is the Lagrange multiplier of the labour input constraint.  

 

2.2.2. Investment liquidity constraints 

Below we consider an extended model in which a subset 0 ≤ 𝑠𝑡
𝑙𝑖 < 1 of intermediate goods firms 

faces temporary binding liquidity constraints of the form:9  

𝐿𝑡 ≤ 𝜇𝐾𝑡−1, (12) 

where 𝜇 is the loan-to-value ratio. For these firms, adverse demand and supply shocks increase 
liquidity needs and trigger a credit tightening. A binding collateral constraint binding imposes a 
reduction in investment. Therefore, the investment rate for constrained firms follows: 

(
𝐼𝑡

𝑗

𝐾𝑡−1
𝑗

− 𝛿) = ℋ (
𝐺𝑂𝑆𝑡

𝑗

𝐾𝑡−1
𝑗

) ≡  𝜁1 (
𝐺𝑂𝑆𝑡

𝑗

𝐾𝑡−1
𝑗

− 𝛿) −  𝜁2, (13) 

where parameters 𝜁1 and 𝜁2 govern the strength of the liquidity constraint. The share of constrained 
firms is endogenous and follows:  

𝑠𝑡
𝑙𝑖 = 𝑎0 − 𝑎1𝐺𝑂𝑆𝑡 . (14) 

As shown in Annex A, this reduced-form equation with parameters 𝑎0 and 𝑎1 is consistent with a 
micro-founded liquidity constraint.  

                                                           
9 By contrast, in the baseline model 𝑠𝑡

𝑙𝑖 = 0 ∀𝑡. 
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The remaining unconstrained firms decide investment according to a standard 𝑄-equation 𝑄𝑡
𝑗

 = 1 +

𝛤𝑡
𝑗,′

(
𝐼𝑡

𝑗

𝐾𝑡
𝑗), where 𝑄𝑡

𝑗
 represents the discounted value of physical capital. The net investment rate is a 

function of 𝑄𝑡
𝑗, i.e. ( 𝐼𝑡

𝑗

𝐾𝑡−1
𝑗 − 𝛿) =  ℱ(𝑄𝑡

𝑗
) for 𝑗 ∈ [𝑠𝑡

𝑙𝑖, 1]. Thus, the aggregate net investment follows: 

(
𝐼𝑡

𝐾𝑡−1
− 𝛿) = ∫ ℋ (

𝐺𝑂𝑆𝑡
𝑗

𝐾𝑡−1
𝑗

)  𝑑𝑗

𝑠𝑡
𝑙𝑖

0

+ ∫ ℱ(𝑄𝑡
𝑗
) 𝑑𝑗

1

𝑠𝑡
𝑙𝑖

. (15) 

2.3. FINAL GOOD FIRMS  

Final good producers have access to a CES production technology 𝑌𝑡 = [(𝑠𝑑)1/𝜈𝑂𝑡

𝜈

𝜈−1 + (1 −

𝑠𝑑)1/𝜈𝑀𝑡

𝜈

𝜈−1]

𝜈−1

𝜈

, with home bias 0.5 < 𝑠𝑑 < 1. 𝑂𝑡 = [∫ (𝑌𝑡
𝑗
)

𝜀−1

𝜀 𝑑𝑗
1

0
]

𝜀

𝜀−1

 is an aggregate of the local 

intermediates, where 𝜀 is the exogenous substitution elasticity between varieties. 𝑀𝑡 denotes 
intermediate imports from the RoW. The final good is used for domestic private and government 
consumption, and investment. 

 

2.4. WAGE SETTING  

A trade union ‘differentiates’ homogenous labour hours provided by the two domestic households into 
imperfectly substitutable labour services. Both households work the same hours and receive the same 
wage. The labour input 𝑁𝑡  in the production process of intermediate goods is a CES aggregate of these 
differentiated labour services. The union sets wage rates at a mark-up 𝜇𝑡

𝑊 over the marginal rate of 
substitution between leisure and consumption. 𝜇𝑡

𝑊 is inversely related to the degree of substitution 
between labour varieties. The mark-up is countercyclical because of nominal wage adjustment costs. 
Following Blanchard and Gali (2007), we allow for real wage inertia; the current period real wage rate 
is a weighted average of the desired net real wage and the past (net) real wage:   

(1 − 𝜏𝑡
𝑁)𝑊𝑡

𝑟 = [(1 + 𝜇𝑡
𝑊)𝑚𝑟𝑠𝑡]1−𝜉[𝑊𝑡

𝑟(1 − 𝜏𝑡−1
𝑁 )]𝜉 , (16) 

where 𝑚𝑟𝑠𝑡 is a weighted average of the two households’ marginal rates of substitution between 
consumption and leisure. The parameter 𝜉 is an index of real wage rigidity.  

 

2.5. PUBLIC POLICY 

2.5.1. Monetary policy 

EU monetary policy is subject to a ZLB constraint.10 The notional interest rate follows a smooth 
Taylor rule with respect to inflation and the output gap: 

                                                           
10 Monetary policy in the RoW does not hit the ZLB. 
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𝑖𝑡 = max {0, 𝜌𝑖𝑖𝑡−1 + (1 − 𝜌𝑖) (𝑟̅ + 𝜋𝑡𝑎𝑟 + 𝜏𝜋 (
𝜋𝑡,𝑦𝑜𝑦

𝐶

4
− 𝜋𝑡𝑎𝑟) + 𝜏𝑦𝑦𝑡

𝑔𝑎𝑝
)} . (17) 

The central bank has an inflation target 𝜋𝑡𝑎𝑟, adjusts its policy rate relative to the steady-state value 𝑟̅ 
when actual CPI inflation deviates from the target, where 𝜋𝑡,𝑦𝑜𝑦

𝐶 ≡ 𝑃𝑡
𝐶/𝑃𝑡−4

𝐶 − 1 is year-on-year CPI 
inflation, or in case of a non-zero output gap (𝑦𝑡

𝑔𝑎𝑝).11 

 

2.5.2. Fiscal policy 

We assume that the government keeps its expenditure (𝐺𝑡) constant in real terms. Real government 
debt evolves as:  

𝐵𝑡
𝐺 = (1 + 𝑟𝑡

𝐺)𝐵𝑡−1
𝐺 + 𝐺𝑡 + (𝑢𝑏𝑒𝑛𝑡)(1 − 𝑛𝑝𝑎𝑟𝑡 − 𝑁𝑡) + 𝑠𝑡𝑤𝑡(𝑁𝑡 − 𝑁0 ) + 𝑇𝑅𝑡

𝐿 + 𝑇𝑅𝑡
𝑅 − 𝑅𝑡

𝐺 , (18) 

where 𝑟𝑡
𝐺 denotes the government interest rate. 𝑅𝑡

𝐺, government revenues, are the sum of consumption, 
labour, and profit taxes. Time-varying labour taxation stabilises the debt-to-GDP ratio: 

𝜏𝑡
𝑁 = 𝜏𝑡−1

𝑁 + 𝒹𝑡
𝐺 (𝜏𝐵 (

𝐵𝑡
𝐺

4𝑌𝑡
− 𝑏𝑡𝑎𝑟̅̅ ̅̅ ̅̅ ) + 𝜏𝑑𝑒𝑓𝛥𝐵𝑡

𝐺) , (19) 

with 𝑏𝑡𝑎𝑟̅̅ ̅̅ ̅̅  being the target level of government debt-to-GDP. Parameters 𝜏𝑑𝑒𝑓 and 𝜏𝐵 control the 
feedback rule. 𝒹𝑡

𝐺 is a dummy that allows to turn off the debt rule temporarily. 

 

2.6. MODEL CALIBRATION AND SOLUTION 

In our model calibration, one period corresponds to one quarter. Tables 1 summarises the main 
parameter values. Table 2 features block-specific parameter values. Macroeconomic aggregates that 
characterise the steady state, like private and public consumption and investment, trade openness, and 
trade linkages match block-specific data from national accounts and the GTAP database (Narayanan 
and Walmsley, 2008). 

Behavioural parameters that govern the dynamic adjustment to shocks are based on earlier estimates of 
QUEST model versions. In particular, the model estimations have identified high labour adjustment 
costs for the EU (𝛾𝑁 = 25).12 Annex B shows additional details on the convex adjustment costs 
related to price setting and capacity utilisation. Concerning financial market frictions, we set the share 
of the Ricardian household to 60% - close to the estimates in Ratto et al. (2009), Dolls et al. (2012) 
and Kaplan et al. (2014). We microfound the firm liquidity needs based on collateral constraints in 
Annex A. In our simulation, the endogenous share of constrained firms reaches around 30 per cent in 
2020Q2 (including policy). This value is in line with recent estimates (OECD, 2020) and based on a 
collateral constraint parameter 𝜇 of 0.3.13 The labour supply elasticity is set at 0.2 slightly below the 
estimate in Kollmann et al. (2016). Concerning adjustment costs on labour, goods, and capital, we 
broadly follow earlier QUEST-based estimates. The tax rule parameters assure a smooth transition to 
the long-run debt-to-GDP ratio. The latter reflects average pre-pandemic EU data. Taylor rule 
parameters are standard values in the literature. 

                                                           
11 The output gap concepts comes from a production function framework. See Ratto et al. (2009).  
12 See, for example, in 't Veld et al. (2015) and Kollmann et al. (2016). 
13 EU corporate debt is around 30% of the private capital stock. 
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We solve the model nonlinearly under perfect foresight using a Newton-Raphson algorithm. 

Table 1. Selected parameter values 

Parameter Value Description 

𝛽 0.997 Discount factor  

1/𝜅 0.2 Labour supply elasticity 

𝛾𝑁  25 Head-count adjustment costs parameter 

𝛾𝑃  20 Price adjustment costs parameter 

𝛾𝑢𝑐𝑎𝑝,1 0.04 Linear capacity-utilisation adjustment cost 

𝛾𝑢𝑐𝑎𝑝,2 0.1 Quadratic capacity-utilisation adjustment cost 

𝛾𝐾  20 Capital adjustment cost 

𝛾𝐼  75 Investment adjustment cost 

𝜉 0.8 Real wage inertia 

𝜈 1.2 Elasticity of substitution in total trade 

1 − 1/𝜀 0.12 Price mark-up 

𝛼 0.65 Cobb-Douglas labour share parameter 

𝐺̅ 0.17 Government expenditure (share in GDP) 

𝜇𝑊 0.2 Steady-state wage mark-up  

𝛿 0.015 Depreciation rate (quarterly) 

𝜁1 1.1 Intensity of liquidity-constraints (firms) parameter 1 

𝜁2 0.1 Intensity of liquidity-constraints (firms) parameter 2 

𝑎1 42 Share of liquidity-constrained firms parameter  

𝜇 0.3 LTV in affected sectors 

𝑠̅𝑙𝑖 0 Steady-state share of liquidity-constrained firms 

𝜏𝑏 0.05 Tax rule parameter on debt 

𝜏𝑑𝑒𝑓 0.1 Tax rule parameter on deficit 

𝜌𝑖 0.8 Taylor rule persistence 

𝜏𝜋 2 Reaction to inflation in Taylor rule 

𝜏𝑦 0.1 Reaction to output gap in Taylor rule 
 

 
Source: Commission services. 

 

Table 2. Region-specific parameter values 

Parameter EA RoW Description 

𝑠𝑙𝑐 0.4 0.5 Share of liquidity-constrained households 

1 − 𝑛𝑝𝑎𝑟𝑡 0.71 0.76 Labour force to population 

𝑁 0.64 0.66 Steady-state employment to population 

𝑏𝑒𝑛𝑟𝑟 0.40 0.30 Benefit replacement rate 

𝑇𝑅̅̅ ̅̅  0.16 0.12 Transfer share (share in GDP) 

𝑠𝑑 0.22 0.06 Steady-state share of imports  

𝑏𝑡𝑎𝑟 0.8 0.4 Baseline government debt-to-GDP ratio 

 

Source: Commission services. 
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3. LOCKDOWN AND PANDEMIC IN A MACRO MODEL 

We now discuss our assumption on exogenous shocks. For clarity, we assume that containment 
measures are active in March until June with a peak early in Q2. The pandemic shocks thus last two 
quarters, with a stronger effect in the second quarter. The shocks end in the third quarter. As discussed 
above, the pandemic shocks are the two shocks associated with supply and demand disruptions, i.e. 
restrictions on labour input and consumption (see Jonung and Roeger, 2006). In reality, the separation 
of demand and supply is difficult. For example, supply constraints are only one factor behind the 
closure of shops and factories. Moreover, we do not necessarily see a trade-off between economic 
costs and lockdown. Timely containment measures may also prevent disruptions by avoiding larger-
scale outbreak at a later stage. Moreover, in multi-sector models with incomplete markets, supply 
shocks can have “Keynesian” features (Guerrieri et al., 2020).  
 
All shocks are global, i.e. they are symmetric in both regions of the model. We calibrate the shock size 
as roughly consistent with the Spring Forecast of the European Commission (2020). The forecast 
employed detailed sectoral assumptions, e.g. particularly strong declines in air transport, 
accommodations, restaurants, tourism etc.  
 
Two remarks are in order. First, we do not believe that the pandemic will end in 2020Q3. Yet, this 
assumption allows us to distinguish the direct pandemic shocks from their endogenous transmission in 
a transparent way.  Second, we do not consider the exogenous shocks included in the simulations to be 
the only economic disruptions caused by the pandemic. Other channels, such as heightened uncertainty 
(e.g. Baker et al., 2020), financial risks such as cascading bankrupticies, or permanent changes in 
consumption patterns, complement the analysis presented in this paper.14  
 
Regarding public policy, the simulations assume an inactive debt rule for 40 periods, i.e. 𝒹𝑡

𝐺 = 0 for 
𝑡 = 2020𝑄1: 2030𝑄1 and 1 otherwise. This setting allows a clearer assessment of the budgetary 
effects of the pandemic and the economic policy response. In our simulations, the ZLB binds for two 
years. The simulations without discretionary policy intervention assume that governments only rely on 
automatic stabilisers (in particular unemployment benefits). All scenarios assume that government 
consumption and other transfers are constant in real terms (unless explicitly specified). 
 
 

4. MACROECONOMIC TRANSMISSON OF THE 

PANDEMIC  

This section looks at the transmission channels of the pandemic shock and quantifies its impact. The 
next section then adds the economic policy response to the analysis. 
 

4.1. THE COVID-19 SHOCK ABSENT LIQUIDITY CONSTRAINTS 

The COVID-19 crisis has a very large detrimental economic impact on the EU and the world economy 
as shown in Figure 1. In the basic model version without firm liquidity constraints, the economic 
impact closely follows the pandemic and required containment measures (shown with red dashed 

                                                           
14 As mentioned above, our related work in the European Commission’s (2020) spring forecast addresses these 
two points. It considers additional channels, relaxes the assumption on duration, and considers other pandemic 
patterns such as second waves.   
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lines).15 The result for this model is essentially a V-shaped recession in Q1 and Q2. There is a massive 
decline in consumption, where reduced labour income adds to the adverse impact of the demand 
shock. Some persistence in adjustment frictions in employment prevent an immediate adjustment. 
Higher capacity utilisation partly offsets a delayed response of the labour inputs, which, however, 
remains limited as we assume a partial short-run complementarity between capital and labour. The 
crisis also has a distributional dimension. Consumption of the constrained households depends more 
on labour income and falls more strongly than the consumption of the Ricardian household.  

The baseline model version only generates a small decrease in investment. Investors foresee the 
temporary nature of the shock (as we abstract from uncertainty effects). Supply and demand shocks 
alone cannot generate a fall of investment. Yet, we find a strong decline in the gross operating surplus 
since labour costs remain high. This result indicates the relevance of liquidity constraints, as we 
discuss next. 

Figure 1: Simulations absent policy response 

 

Note: This figure expresses the wage share, quarterly inflation, and the government balance in 

percentage point deviation from steady state. All other variables are expressed in percent deviation 

from steady state. The pandemic shock is an illustrative index of the exogenous shock process. 

Source: Commission services. 

                                                           
15 We always maintain the assumptions that a share of households is liquidity constrained. 
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4.2. THE IMPACT OF LIQUIDITY CONSTRAINTS 

We now show that the firm liquidity constraints lead to a deeper and more U-shaped recession. In 
contrast to the baseline setup, the firm liquidity channel in this model version amplifies supply and 
demand shocks and generates a sizable decline in investment as shown in Figure 1 (blue solid lines). 
The endogenous fall in the GOS increases the share of liquidity-constrained firms and generates a 
sizable contraction in private investment. Investment adjustment costs, a plausible empirical feature, 
generate additional persistence. The magnitude of the investment decline is roughly in line with the 
Commission’s investment forecast (European Commission, 2020). In the baseline model supply 
constraints dominate and generate (quarterly) inflationary pressure. By contrast, the impact from 
liquidity constraints amplifies the deflationary demand effects leading to a more balanced picture. 
Once the lockdown can be lifted, higher capacity utilisation and recovering consumption lead to an 
increase prices.  

The amplification from the occasionally binding liquidity constraints also renders the reduction in 
labour input more persistent even though the constraint binds only in the first and second quarter. This 
effect strongly reduces output growth in 2020 and 2021 as shown in Table 4. GDP growth falls by 13 
per cent below the no-shock path, compared to -8 per cent in the absence of the liquidity constraints. 
In sum, the amplification leads to a more U-shaped pattern of output and motivates the focus on 
liquidity constraints when analysing the EU policy response in the next section. 

5. ECONOMIC POLICY RESPONSE 

This section analyses the economic policy response in the EU with a focus on (i) short-time work 
allowances and (ii) loan guarantees. Both measures target the distortion arising from firms’ liquidity 
constraints. As shown above, given the sharp fall in the gross operating surplus, liquidity constraints 
substantially prolong the recession, if not addressed appropriately by economic policy. These 
measures, however, cannot prevent a temporary decline in production because of sickness, restrictions 
on the mobility of workers or supply chain interruptions. 

 

5.1. OVERVIEW STABILISATION MEASURES 

The fiscal measures announced in the Member States consist of stimulus measures with a direct 
impact on the budget, as well as liquidity measures without direct budgetary impact. Table 3 provides 
information about fiscal measures and their composition for the EU-27. Total liquidity support by EU 
Member States amounts to approximately 22% of GDP, mostly in form guarantees and tax delays. In 
addition, the stimulus measures amount to around 2.8% of GDP, mainly as STW allowances and 
transfers. We leave the analysis of the sizable supranational EU support for future work.  

Table 3. Overview of announced measures by EU-27 Member States 

  bln EUR % of GDP 
1. Measures with a direct budgetary impact  368  2.8 

2. Liquidity measures without budgetary impact  

a. Tax delays 248 1.9 
b. Public guarantees 2301 17.6 
c. Others 334 2.6 

Total liquidity support 2882 22.1 

 
Source: Commission services. Cut-off date 29/04/2020. 
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5.2. SHORT-TERM WORK ALLOWANCES 

Our modelling focuses on two differences of STW allowances compared to unemployment benefits: 
First, STW reduces employment adjustment costs. Unemployment benefits are paid to workers who 
have lost their job. By contrast, STW allowances are paid for workers staying in the firm. Since 
workers stay in the firm, firms avoid matching frictions and hiring or firing costs. We capture this 
improved allocative efficiency under STW by setting 𝛾𝑁 = 0 – a parsimonious way to capture the 
absence of matching frictions. Second, STW allowances are more generous than unemployment 
benefits. We capture this effect by including additional transfers to liquidity-constrained households, 
𝑇𝑅2020𝑄3:2020𝑄4

𝐶 , which can be spent only after the pandemic.16 For analytical purposes, we separate 
the two channels via two simulations. 

5.2.1. Stabilisation gains under identical ex-ante costs 

We first compare stabilisation gains of STW under identical ex-ante fiscal cost, i.e. the STW rate 
equals the benefit replacement rate. Assuming the same generosity of STW allowance and 
unemployment benefits, allows us to highlight the difference in allocative efficiency. Temporary 
unemployment entails layoff and search costs, which STW schemes avoid. To keep capture the 
absence of matching friction and employment adjustment costs, we eliminate labour adjustment costs 
from the model. Figure 2 then compares the dynamics under STW (red dotted lines) to those of the 
baseline model discussed in Section 4.2, where only unemployment benefits active (solid blue line). 

The absence of employment adjustment frictions under STW allows firms to adjust their labour input 
more strongly during the peak of the shock (2020Q2). However, by the same logic, STW schemes 
support the exit from the pandemic shock by avoiding a costly and time-consuming hiring process and 
allowing firms to increase labour input more rapidly.  

The interaction of STW with liquidity constraints. STW addresses two interacting frictions in the 
model: Employment and liquidity frictions. The cost-saving effect of STW improves the corporate 
liquidity position. By allowing for a stronger reduction of labour input, STW schemes help lower the 
wage bill without incurring firing costs. Importantly, the stabilisation of the gross operating surplus 
reduces the impact of firm liquidity constraints, as fewer firms become constrained. The smaller 
distortion from liquidity constraints implies that investment declines less, and labour input recovers 
faster and more strongly – especially after the pandemic. This, in turn, makes the recession less 
persistent. This result highlights the gains from allocative efficiency even under identical ex-ante 
fiscal costs.  

STW implies a larger government deficit in 2020. The expenditure on STW allowances is higher than 
under unemployment benefits scheme since firms reduce labour input more strongly (even under same 
generosity). However, once the government can lift the lockdown restrictions, STW policy achieves 
higher revenues from labour, consumption, and profit taxation. In annual terms, the (total) government 
balance to GDP ratio falls by around 9 percentage points in 2020 and remains at -3 pps in 2021.  

The fact that STW is a desirable policy depends on the significant labour adjustment costs in 
European countries. The relative gains compared to unemployment benefits could be smaller for 
economies (or sectors) with a higher degree of labour market churning.17 

5.2.2. The generosity of STW allowances 

We now turn to the more realistic case, where the generosity under STW is higher than under 
unemployment benefits. Unlike in the previous simulation, STW allowances entail higher ex-ante 
                                                           
16 The Annex shows results for transfers to both households (non-targeted).  
17 See, e.g., Davis et al. (2012) for a discussion on labour market flows in the US. 
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budgetary costs than unemployment benefits. A second simulation captures this aspect by adding 
transfers to constrained households of 2.8% of EU-27 GDP. This value corresponds to the policy 
measures credibly announced as of now (see Table 3). Since the containment measures partially curtail 
spending opportunities, households can spend transfers only in Q3 and Q4. Moreover, we assume that 
transfers target liquidity-constrained households. The Annex relaxes this assumption. 

Figure 2:  Short-term work allowances 

Note: This figure expresses the wage share, quarterly inflation, and the government balance in 

percentage point deviation from steady state. All other variables are expressed in percent deviation 

from steady state. The pandemic shock is an illustrative index of the exogenous shock process.  

The higher generosity implies sizable output gains. Constrained households have a high marginal 
propensity to consume, implying a higher multiplier than non-targeted transfers. Since the 
containment measures partially curtail spending opportunities, we assume that transfers are paid and 
spent in Q3 and Q4. A sizable rebound of consumption materialises in these periods. The simulation 
shows that the support for household consumption facilitates exit. In 2020, the level of consumption is 
2.7% higher than without discretionary policy intervention. Higher transfers provide a strong boost to 
employment, which under STW can expand more rapidly. STW thereby also improves risk-sharing 
among households, with a more balanced distribution of consumption across households. In sum, 
STW and associated higher transfer allowances cushion the fall in real GDP by around 2.2 pps. in 
2020. 
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The higher generosity of STW also implies ex-ante a stronger deterioration of the government 
balance.18 However, the faster recovery implies increased tax revenues (from relative increases in 
consumption, labour, and profits) as well as lower unemployment benefits. In sum, STW allowances 
increase the deterioration in the deficit-to-GDP ratio by less than 1 pps. (on average in 2020 and 2021) 
compared to the baseline simulations with only unemployment benefits active.  

Interestingly, the two aspects of STW analysed here, namely avoiding job match destruction and 
higher generosity, interact. The improved allocative efficiency under STW leads to stronger effects of 
transfers. Figure 2 shows the results by adding a simulation with “only transfers” where employment 
adjustment costs remain at the baseline values. In this case, additional transfers provide smaller 
stabilisation gains, because employment adjustment costs slow down the response of hours worked 
and wages, translating into a smaller increase in household income. 

Finally, note that the effectiveness of transfers depends on the marginal propensity to consume of the 
receiving households. The Annex shows that targeted transfers are significantly more efficient by 
supporting households with a higher marginal propensity to consume in line with the findings 
provided by Bayer et al. (2020).  

 

5.3. LIQUIDITY SUPPORT 

Liquidity support in the form of lending guarantees amounts to a maximum of 22% of GDP. One 
important goal of these programs is to stabilise investment of liquidity-constrained firms.  

It is challenging to operationalise the liquidity guarantees in a macro model. Since there is some 
heterogeneity of initial conditions and on how severely individual firms are affected by the shock, a 
fraction of firms will defer investment even with guarantees. There are also specific eligibility criteria, 
which exclude certain types of firms from the schemes or restrict the schemes to certain sectors. Also 
generally, an upper bound on the guarantee per firm is imposed. Modelling the take up rate would 
require more information about the distribution of the shock across firms and the constraints imposed 
by governments.  

In the absence of detailed up-to-date information, we will assume that 50% of the liquidity-constrained 
firms are not revising their investment plans or are excluded from funding. This allows us to say 
something about the ’guarantee multiplier’. Under the assumption that firms keep dividend payouts 
stable and that investment does not affect gross operating surplus of the firm in the current period, the 
investment multiplier to a loan increase for liquidity-constrained firms is one.  

To see this, consider a liquidity-constrained firm (superscript 𝐶). The budget constraint restricts 
restricts investment of this firm to the loan supply of the bank and current gross operating surplus 
minus debt service and dividend payments  

𝐼𝑡
𝐶 = ∆𝐿𝑡

𝐶 + 𝐺𝑂𝑆𝑡
𝐶 − 𝑟𝐿𝑡−1 − 𝐷𝑡

𝐶 (20) 

Keeping current period dividends and GOS constant, the increase in investment due to a (guarantee-
secured) extension of the loan is given by 

𝐼𝑡
𝐺 − 𝐼𝑡

𝐶 = ∆𝐿𝑡
𝐺 − ∆𝐿𝑡

𝐶 , (21) 

where ∆𝐿𝑡
𝐺 − ∆𝐿𝑡

𝐶 is the loan expansion fully guaranteed by the government and supescript 𝐺 denotes 
variables following the provision of guarantees. This is likely to be an upper bound since some of the 
additional funds may be diverted to increase dividends. However, apart from firm specific preferences, 
diversion of funds is limited because guarantee schemes by EU governments generally impose 
temporary restrictions on dividend payments for firms, which receive funding under public loan 

                                                           
18 We assume that the government covers the additional generosity. There are no additional costs for the firms. 
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guarantee schemes. Based on information about non-performing loans19, we can assume that about ten 
per cent of these loans will default. This value gives a guarantee-multiplier of 

𝑚𝐺 =
𝑌𝑡

𝐺 − 𝑌𝑡
𝐶

(∆𝐿𝑡
𝐺 − ∆𝐿𝑡

𝐶)
= 𝑚I ∗ 𝑙𝑜𝑠𝑠 (22) 

Thus, essential for the fiscal multiplier is the investment multiplier (𝑚I) and the loss rate of the 
guaranteed loan.20 This multiplier is an upper bound since it ignores possible windfall gains to the 
banking sector. The banking sector might use the loan guarantees also for loans to unconstrained 
firms, thereby covering losses, which would otherwise be borne by the banking sector. 

 
Figure 3 : Lending guarantees 

  

Note: This figure expresses the wage share, quarterly inflation, and the government balance in 

percentage point deviation from steady state. All other variables are expressed in percent deviation 

from steady state. The pandemic shock is an illustrative index of the exogenous shock process 

                                                           
19 Consolidated banking data from the ECB shows a ratio of lower non-performing loans to total loans. However, 
during peak crisis times around 2013, the share reach around eight percent. See also:   
https://www.ecb.europa.eu/press/pr/date/2019/html/ecb.pr191106_1~a993d312e7.en.html  
20 The loss rate is defined by how much of the value of the investment project associated with defaulting loans 
must be written off. 
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6. ROBUSTNESS  

For analytical clarity, we have considered a very short pandemic. Yet, it is increasingly clear that the 
pandemic and the associated lockdown will continue for a longer time. Therefore, Figure 4 considers 
also a longer pandemic, extending partially also into 2021 (see bottom right figure). Dashed red lines 
show the simulations of the longer pandemic, while blue solid lines correspond to the main simultions 
(with firm liquidity constraints) as shown in Figure 1. 

Figure 4 shows that the duration of the pandemic is crucial for the length of the economic downturn: 
the adverse impact on investment and output increases and becomes more persistent into the second 
year (see final columns in Table 4 below). Note that the longer pandemic scenario includes automatic 
stabilisers, but no STW and guarantees. The Commission’s forecast (European Commission, 2020) 
has also considered other pandemic scenarios such as a second wave. 

Figure 4: Longer pandemic 

 

Note: This figure expresses the wage share, quarterly inflation, and the government balance in 

percentage point deviation from steady state. All other variables are expressed in percent deviation 

from steady state. The pandemic shock is an illustrative index of the exogenous shock process. 
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7. DISCUSSION 

 

COVID-19 is a rare disaster with enormous economic costs. This paper has analysed the transmission 
channels of the pandemic using a TANK model. In the baseline model, demand and supply shocks 
lead to a V-shaped recession. However, an augmented model with firm liquidity constraints provides a 
different picture. In this framework, the strong decline in the gross operating surplus following the 
pandemic and its associated lockdown induces a strong reduction in investment due to a tightening of 
liquidity constraints. This effect amplifies the economic fallout and generates persistence. It also 
provides an important entry point for economic policy. 

Table 4. Overview of results 

 

Source: Commission services. 

 
Our analysis then quantifies two central policy responses in the EU-27: Short-term work (STW) 
allowances and liquidity support. Both policies support the recovery after the pandemic shocks. Given 
that the demand effects of lockdowns cannot be stabilised at the time of implementation, policies 
should target a rapid exit, once the pandemic ceases and governments can lift the associated lockdown. 
Our paper shows that STW is a desirable policy, given the significant labour adjustment costs in 
European countries. Apart from reducing stress for employees associated job loss, STW allows more 
labour input flexibility and softens liquidity constraints of firms. In addition, liquidity guarantees target 
investment and employment and address the externalities arising from constrained firms. Together 
both policies reduce the output loss of COVID19 and its associated lockdown by about one fourth (see 
Table 4): Instead of dropping by 13.0 per cent in 2020, the simulated fall in real GDP reaches 8.7%. 
However, the policy measures cannot prevent a sharp temporary decline in production during the 
lockdown phase. 
 
The focus of the paper has been on time-limited short-term support schemes. In particular, we have 
abstracted from the negative impact that these support policies may have on medium-run allocative 
efficiency through reducing exit-entry rates and labour market churning. We leave this important topic 
for future research. 
 

  

  

 

 

Variable/Scenario

2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021 2020 2021

GDP -7.9 -0.9 -13.0 -4.8 -12.1 -3.7 -10.8 -4.2 -10.7 -3.1 -8.7 -2.5 -19.8 -7.9

Consumption -12.9 -1.2 -14.1 -3.0 -15.0 -2.9 -11.4 -3.2 -13.4 -2.1 -10.8 -2.3 -23.3 -5.6

Investment -0.5 -0.6 -20.2 -13.6 -14.3 -10.0 -16.9 -11.8 -10.7 -7.4 -8.6 -6.3 -27.0 -19.6

Labor input -4.8 -0.9 -7.8 -4.1 -8.6 -3.7 -6.6 -3.7 -6.6 -2.6 -5.3 -2.3 -12.2 -6.4

GOS -4.4 3.8 -10.1 -2.2 -6.8 -0.7 -3.9 -1.6 -8.1 0.6 -1.9 0.7 -15.9 -2.1

Wage share 0.4 0.4 2.6 2.6 0.7 -1.1 0.8 -0.8 1.4 -1.1 0.0 -1.0 4.4 -1.5

Gov. balance/GDP -5.3 -0.8 -7.7 -3.2 -8.0 -2.9 -9.2 -3.2 -7.0 -2.1 -8.4 -2.1 -12.5 -5.2

STW 

+ Guarantees

No liq. constr. Liq. constraints GuaranteesSTW Longer pandemic 

(absent policy)

STW (without add. 

transfers)
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Annex A DETAILS ON FIRM LIQUIDITY CONSTRAINTS 

The main text has used the following equations describing the investment behaviour of constrained 
firms: 

ℋ (
𝐺𝑂𝑆𝑡

𝑗

𝐾𝑡−1
𝑗

) ≡  𝜁1 (
𝐺𝑂𝑆𝑡

𝑗

𝐾𝑡−1
𝑗

− 𝛿) −  𝜁2, 

𝑠𝑡
𝑙𝑖 = 𝑎0 − 𝑎1𝐺𝑂𝑆𝑡 

Liquidity-constrained investment 

In this appendix, we show how a share of firms can become liquidity constrained if a shock hits in 
period t, which reduces the gross operating surplus of the firm. First, we look at an individual firm 
with budget constraint (dropping 𝑖 indices to ease notation) 

𝐿𝑡 = (1 + 𝑟𝑡−1)𝐿𝑡−1 + 𝐷𝑡 + 𝐼𝑡 − 𝐺𝑂𝑆𝑡  (A.1) 

To facilitate our discussion, we make three assumptions: (i) the economy is initially on a balanced 
growth path, (ii) all firms are financially unconstrained before the shock occurs, and (iii) 𝐷𝑡 does not 
change much across constrained and unconstrained regimes (see Jermann and Quadrini (2012) for a 
discussion). The firm faces an upper limit on loans which is determined by its capital stock 

𝐿𝑡 ≤ 𝜇𝐾𝑡    (A.2) 

Prior to the unanticipated adverse shock, the firm is not constrained,  

𝐿𝑡−1 < 𝜇𝐾𝑡−1    (A.3) 

and becomes constrained after receiving a temporary negative GOS shock in period 𝑡, which increases 
borrowing to the collateral limit. 

𝐿𝑡
𝐶 = 𝜇𝐾𝑡

𝐶 .    (A.4) 

Since the firm is unconstrained in 𝑡 − 1 

𝐾𝑡−1 = (
1

𝜇
+ 𝑥) 𝐿𝑡−1 >

1

𝜇1
𝐿𝑡−1   (A.5) 

Since collateral constraint is binding in period 𝑡,  

∆𝐾𝑡
𝐶 = (𝐾𝑡

𝐶 − 𝐾𝑡−1) =
1

𝜇
∆𝐿𝑡

𝐶 − 𝑥𝐿𝑡−1 <
1

𝜇
∆𝐿𝑡

𝐶 ,  (A.6) 

where the inequality indicates that capital stock falls more than the loan since the firm is now facing a 
financial constraint. How much does investment decline relative to a situation where the firm is not hit 
by a negative GOS shock and a standard (unconstrained) 𝑄-equation determines investment. Without 
adverse shock in 𝑡, balanced growth implies that the change in the capital stock (denoted by 
superscript 𝐵) would have exceeded ∆𝐾𝑡

𝐶: 

∆𝐾𝑡
𝐵 = (

1

𝜇
+ 𝑥) ∆𝐿𝑡

𝐵 > ∆𝐾𝑡
𝐶 .   (A.7) 

The difference between the change of capital with and without constraint ∆𝐾𝑡
𝐶 − ∆𝐾𝑡

𝐵 =
1

𝜇
∆𝐿𝑡

𝐶 −

𝑥𝐿𝑡−1 − (
1

𝜇
+ 𝑥) ∆𝐿𝑡

𝐵. Thus, 

1

𝜇+𝑧
(∆𝐿𝑡

𝐶 − ∆𝐿𝑡
𝐵) = ∆𝐾𝑡

𝐶 − ∆𝐾𝑡
𝐵 <

1

𝜇
(∆𝐿𝑡

𝐶 − ∆𝐿𝑡
𝐵) (A.8) 

Since 

∆𝐾𝑡
𝐶 − ∆𝐾𝑡

𝐵 = 𝐼𝑡
𝐶 − 𝐼𝑡

𝐵    (A.9) 
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We get 

(𝜇 + 𝑧)(𝐼𝑡
𝐶 − 𝐼𝑡

𝐵) = (∆𝐿𝑡
𝐶 − ∆𝐿𝑡

𝐵)   (A.10) 

From the budget constraint of the firm (and neglecting differences in dividend payouts in both 
regimes) we obtain the following relationship between investment and GOS in the constrained and 
unconstrained regime  

                       (∆𝐿𝑡
𝐶 − ∆𝐿𝑡

𝐵) = (𝜇 + 𝑧)(𝐼𝑡
𝐶 − 𝐼𝑡

𝐵) = (𝐼𝑡
𝐶 − 𝐼𝑡

𝐵) − (𝐺𝑂𝑆𝑡
𝐶 − 𝐺𝑂𝑆𝑡

𝐵)       (A.11) 

 

(𝐼𝑡
𝐶 − 𝐼𝑡

𝐵) =
1

1−(𝜇+𝑧)
(𝐺𝑂𝑆𝑡

𝐶 − 𝐺𝑂𝑆𝑡
𝐵)   (A.12) 

This result holds for the individual firm or for the case with all firms becoming liquidity constrained. 
The next section discusses the case when only a fraction of firms becomes constrained.  

Aggregate relationship between GOS and Investment  

In this section, we show how movement of (average) GOS affect the share of constrained firms by 
introducing a minimum amount of heterogeneity across firms.  We first introduce some notation. There 
are 𝑖 firms with 𝑖 ∈ [0,1]. GOS has an aggregate and an idiosyncratic component governed by 𝜎.   

𝐺𝑂𝑆𝑖𝑡 = 𝐺𝑂𝑆𝑡 + 𝜎(𝑖 − 0.5)   (A.13) 

 Firm i will respond to a temporary decline of gross operating surplus by increasing borrowing because 
of a smoothness restriction on dividend payouts, and convex investment adjustment costs, which 
makes investment a function of the present discount value of profits. Investment of the unconstrained 
firm deviates marginally from the investment the firm would have undertaken in 𝑡 without the COVID 
shock (see scenario 1). We denote this difference 𝑒𝑡 . 

𝐼𝑡
𝑈 = 𝐼𝑡

𝐵 − 𝑒𝑡      (A.14) 

𝐿𝑖𝑡
𝐶 = (1 + 𝑟𝑡−1)𝐿𝑡−1

𝐵 + 𝐷𝑡
𝐵 + 𝐼𝑡

𝐵 − 𝑒𝑡 − 𝐺𝑂𝑆𝑖𝑡 = 𝜇𝐾𝑡
𝐵  (A.15) 

We denote the marginal firm, which stays unconstrained with 𝑖 ̅
𝜎

𝜇𝐾𝑡
𝐵 ( 𝑖̅ − 0.5) =

(1+𝑟𝑡−1)(𝜇+𝑥)𝐾𝑡
𝐵+𝐷𝑡

𝐵+𝐼𝑡
𝐵−𝑒𝑡−𝐺𝑂𝑆𝑡

𝜇𝐾𝑡
𝐵    (A.16) 

If 𝐺𝑂𝑆𝑡 declines 𝑖 ̅increases, i.e. the profitability threshold increases for firms to remain unconstrained. 
Since 𝑖 ̅ranges between zero and one, it can also be interpreted as the share of constrained firms and the 
relationship between 𝑖 ̅and 𝐺𝑂𝑆𝐶 can be approximated linearly (where we ignore the term 𝑒𝑡) 

𝑠𝑡
𝑙𝑖 = 𝑖̅ = 𝑎0 − 𝑎1

𝐺𝑂𝑆𝑡

𝐾𝑡
𝐵     (A.17) 

Equation (A.17) corresponds to the firm share equation presented in the main text. The parameter 
values can be determined using information about the share of liquidity constrained firms in the 
constrained and unconstrained regime. For the unconstrained regime, we assume a share equal to zero. 
By contrast, in the constrained regime, we use information about the share of output produced by firms 
directly affected from lockdown measures to set a lower bound of investment undertaken by 
constrained firms in the COVID regime. This share is set to 0.3. Therefore, we have two equations to 
determine the two parameter 

0.3 = 𝑎0 − 𝑎1
𝐺𝑂𝑆𝑡

𝐾𝑡
𝐵     (A.18) 

and 

0.0 = 𝑎0 − 𝑎1
𝐺𝑂𝑆𝑡

𝐵

𝐾𝑡
𝐵     (A.19) 

Given the investment rule of constrained firm 𝑖 𝜖(0, 𝑖)̅ 

(𝐼𝑖𝑡
𝐶 − 𝐼𝑡

𝐵) =
1

1−(𝜇+𝑧)
(𝐺𝑂𝑆𝑖𝑡

𝐶 − 𝐺𝑂𝑆𝑡
𝐵)  (A.20) 
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We obtain total investment of constrained firm by 

𝐼𝑡
𝐶 = ∫ 𝐼𝑖𝑡

𝐶𝑖̅

0
𝑑𝑖 = ∫ 𝐼𝑡

𝐵𝑖̅

0
𝑑𝑖 +

1

1−(𝜇+𝑧)
∫ (𝐺𝑂𝑆𝑖𝑡

𝐶 − 𝐺𝑂𝑆𝑡
𝐵)

𝑖̅

0
𝑑𝑖      (A.21) 

𝐼𝑡
𝐶 = 𝑖𝐼̅𝑡

𝐵 + 𝑖̅
1

1 − (𝜇 + 𝑧)
((𝐺𝑂𝑆𝑡 − 𝐺𝑂𝑆𝑡

𝐵) + 𝜎0.5(𝑖̅2 − 𝑖)̅) 

𝐼𝑡
𝐶 = 𝑖(̅𝐼𝑡

𝐵 +
1

1−(𝜇+𝑧)
((𝐺𝑂𝑆𝑡 − 𝐺𝑂𝑆𝑡

𝐵) + 𝜎0.5(𝑖̅ − 1)))  (A.22) 

With 𝜎0.5(𝑖̅ − 1) < 0 

Firm i which is not constrained invests according to the Q equation 

 𝐼𝑖𝑡
𝑈 = 𝜙(𝑄𝑖𝑡 − 1)𝐾𝑖𝑡−1 + 𝛿𝐾𝑖𝑡−1 = 𝜙(𝑄𝑡 + 𝜑(𝑖 − 0.5) − 1)𝐾𝑡−1 + 𝛿𝐾𝑡−1 (A.23) 

𝐾𝑖𝑡−1 = 𝐾𝑡−1 because firms are identical in t-1 

𝐼𝑡
𝑈 = ∫ 𝐼𝑖𝑡

𝑈
1

𝑖̅

𝑑𝑖 = ∫ (𝜙(𝑄𝑡 + 𝜑(𝑖 − 0.5) − 1)𝐾𝑡−1 + 𝛿𝐾𝑡−1)
1

𝑖̅

𝑑𝑖 

𝐼𝑡
𝑈 = (1 − 𝑖)̅(𝜙(𝑄𝑡 − 1)𝐾𝑡−1 + 𝛿𝐾𝑡−1) + 𝜑0.5((1 − 𝑖̅2) − (1 − 𝑖)̅)𝐾𝑡−1 

𝐼𝑡
𝑈 = (1 − 𝑖)̅(𝜙(𝑄𝑡 − 1)𝐾𝑡−1 + 𝛿𝐾𝑡−1) + 𝜑0.5(𝑖̅ − 𝑖̅2)𝐾𝑡−1  (A.24) 

Total investment 

𝐼𝑡

𝐾𝑡−1
=

𝐼𝑡
𝑈

𝐾𝑡−1
+

𝐼𝑡
𝐶

𝐾𝑡−1

= (1 − 𝑖)̅(𝜙(𝑄𝑡 − 1) + 𝛿) + 𝜑0.5(𝑖̅ − 𝑖̅2)

+ 𝑖̅ (
𝐼𝑡

𝐵

𝐾𝑡−1
+

1

1 − (𝜇 + 𝑧)
((

𝐺𝑂𝑆𝑡

𝐾𝑡−1
−

𝐺𝑂𝑆𝑡
𝐵

𝐾𝑡−1
) +

𝜎0.5

𝐾𝑡−1

(𝑖̅ − 1)))  

𝐼𝑡

𝐾𝑡−1
− 𝛿 =

𝐼𝑡
𝑈

𝐾𝑡−1
− (1 − 𝑖)̅𝛿 +

𝐼𝑡
𝐶

𝐾𝑡−1
− 𝑖𝛿̅ = 

(1 − 𝑖)̅(𝜙(𝑄𝑡 − 1)) + 𝜑0.5(𝑖̅ − 𝑖̅2) + 𝑖̅ (
𝐼𝑡

𝐵

𝐾𝑡−1
− 𝛿 +

1

1−(𝜇+𝑧)
((

𝐺𝑂𝑆𝑡

𝐾𝑡−1
−

𝐺𝑂𝑆𝑡
𝐵

𝐾𝑡−1
) +

𝜎0.5

𝐾𝑡−1
(𝑖̅ − 1)))  

            
           (A.25) 

 

We assume that 𝜑0.5(𝑖̅ − 𝑖̅2) is small since 𝑄𝑖𝑡 does not respond a lot to temporary shocks. 
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Annex B FUNCTIONAL FORMS 

Price and capacity utilisation costs follow convex functions: 

Γ𝑡
𝑃,𝑗

≡ 0.5𝛾𝑃(𝜋𝑡
𝑗
)2𝑃𝑡−1

𝑗
𝑌𝑡

𝑗 with 𝜋𝑡
𝑗

≡ 𝑃𝑡
𝑗
/𝑃𝑡−1

𝑗
− 1# 

Γ𝑡
𝑢𝑐𝑎𝑝,𝑗

≡ (𝛾𝑢𝑐𝑎𝑝,1 (𝑢𝑡
𝑗

− 1) +
𝛾𝑢𝑐𝑎𝑝,2

2
(𝑢𝑡

𝑗
− 1)2)

𝑝𝑡
𝐼

𝑝𝑡
𝑗

𝐾𝑡
𝑗 
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Annex C ADDITIONAL RESULTS 

Figure 5: Non-targeted transfers  

 
 

Note: This figure expresses the wage share, quarterly inflation, and the government balance in 

percentage point deviation from steady state. All other variables are expressed in percent deviation 

from steady state. The pandemic shock is an illustrative index of the exogenous shock process. 
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