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Implications of heterogeneous 
SIR models for analyses of 
COVID-191

Glenn Ellison2

Date submitted: 16 October 2020; Date accepted: 16 October 2020

This paper starts with a quick overview of results on the classic SIR 
model and variants allowing for heterogeneity in contact rates. It then 
notes several implications relevant to model calibrations and policy 
predictions. Calibrating the classic SIR model to data generated by a 
heterogeneous model can lead to forecasts that are biased in several ways 
and to understatement of the forecast uncertainty. Among the biases are 
that we may underestimate how quickly herd immunity might be reached, 
underestimate differences across regions, and have biased estimates of 
the impact of endogenous and policy-driven social distancing.

1	 I thank Daron Acemoglu, Chris Avery, Victor Chernozhukov, Adam Clark, Jonathan Dushoff, Sara Fisher 
Ellison, Jim Stock, and Ivan Werning for helpful conversations and comments and Chris Ackerman and 
Bryan Kim for research assistance.

2	 Gregory K. Palm Professor of Economics, Massachusetts Institute of Technology.
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1 Introduction

The economic literature on the COVID-19 epidemic has developed at a remarkable pace. A number

of recent economics papers build on the classic Susceptible-Infectious-Recovered (SIR) model to study

how the epidemic may progress and how it may be affected by various policies.1 In this note I review

some results from the epidemiological literature on an SIR extension that economists have mostly not

yet adopted, incorporating heterogeneity in the activity rates of different subpopulations, and note

ways in which analyses based on classic SIR models can potentially yield misleading views.

The classic SIR model of Kermack and McKendrick (1927) has been a foundational model in

epidemiology for nearly a century. It illustrates basic tradeoffs and provides a simple framework

that can be easily built on. Subsequent work in epidemiological theory has extended the model in

various ways, and modern epidemiological forecasts typically work with variants that are more flexible

in a number of dimensions.2 In this paper I focus on some theoretical extensions developed in the

1980’s and 1990’s that seem quite relevant to the COVID-19 epidemic. Specifically, I discuss two

classic models that focus on heterogeneity in the frequency with which different individuals engage in

interactions that risk spreading the disease. Given the current understanding about how COVID-19

seems to be transmitted, it is easy to think of a number of subpopulations who will have many more

risky interactions than average: those living in overcrowded urban apartments, frequenting bars and

nightclubs, using public transportation, attending crowded religious services, working in a nursing

home, etc. Others, e.g. farmers and those who are retired or work from home, should be relatively

safe.

Section 2 reviews of the classic SIR model and extensions. Each extension discussed is a mul-

tipopulation SIR model that supposes that the subpopulations differ in their “activity” levels. As

with the classic SIR model, the differential equations describing the rates at which members of each

subpopulation transition from the susceptible to the infectious state can be motivated by a process

in which agents are randomly matched in continuous time with each interaction between susceptible

and infectious agents potentially leading to a new infection. One version assumes “uniform” matching

in which the probability that any two agents are randomly matched is proportional to the product

of their activity levels. The other assumes “homophilic” matching in which agents are more likely

1See among others Acemoglu et al. (2020), Alvarez, Argente, and Lippi (2020), Baqaee et al. (2020), Eichenbaum,
Rebelo, and Trabandt (2020), Farboodi, Jarosch, and Shimer (2020), Fernández-Villaverde and Jones (2020), Jones,
Philippon, and Venkateswaran (2020), and Rowthorn and Toxvaerd (2012)

2See, for example, Champredon et al. (2018), Unwin et al. (2020), and Viboud et al. (2018).
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to interact with others in their own subpopulation.3 Each model behaves much like the classic SIR

model. Small infections initially grow at an exponential rate if a composite parameter analogous to R0

is greater than one and new infections slow (and eventually die out) once the fraction with acquired

immunity passes a “herd immunity” threshold. The composite R0 and the herd immunity thresholds

depend on the characteristics of the various subpopulations, and I review results from prior work to

illustrate important principles about how epidemics spread in heterogeneous populations.

Sections 3 and 4 then draw out implications of these models for our analyses of COVID-19. Section

3 emphasizes that thinking about heterogeneity in contact patterns suggests that making predictions

about the course of the COVID-19 epidemic and the impacts of reopening policies is inherently difficult.

Heterogeneous models have more parameters that need to be calibrated. Long run outcomes can be

sensitive to activity levels of the less active, and it is difficult to calibrate these parameters early

in an epidemic when there are few cases in less-active communities. This is particularly true when

one contemplates removing restrictions and thereby increasing activity among the currently inactive.

Predictions based on classic SIR models that do not allow for heterogeneity may be overconfident.

Section 4 then focuses on ways in which conclusions drawn from applying homogeneous SIR models

to a world that may be like a heterogeneous SIR model can be misleading. One observation, also found

in Gomes et al. (2020) and Britton, Ball, and Trapman (2020), is that homogeneous SIR models may

substantially overstate the fraction of the population that must be infected in order to achieve herd

immunity. Intuitively, if a small high-contact group plays a central role in spreading the disease, then

incidence will much higher in this group, and once many in this group have acquired immunity the

epidemic may die out. Less obvious but still relevant effects are present with less extreme heterogeneity.

A second related observation is that (targeted) lockdown polices can also be more cost effective in

heterogeneous populations. There can be substantial gains either from taking permanent measures to

reduce spread among the highly active or from temporarily locking down less active groups to minimize

overshooting of herd immunity thresholds. The differences in dynamics also imply that time-series

estimates of policy impacts may be biased. In each case, effects depend both on the magnitude of the

heterogeneity that it present and on the degree of homophily in matching. The discussions attempt

to bring out comparative statics and plausible magnitudes of effects.

The final section of the paper discusses some practical implications of the results. The message that

we may be missing information for assessing reopening plans is troublesome when reopening is already

3Jackson and Lopez-Pintado (2013) discusses impacts of homophily and heterogeneity in a class of models that
includes SIS models in which recovered agents are again susceptible.
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upon us. But the models suggest fairly easy ways in which economists could extend their models

and also point to data opportunities that might reduce the critical uncertainties. The messages that

controlling the epidemic may not be as hard as it appears in some models and that herd immunity

might not be as far off might be näıvely predicted said also give room for optimism.

This paper is related to a number of others in epidemiology and economics. The discussion of het-

eogeneous SIR models is a review of a literature in epidemiology that dates back to the late 1980s and

mid 1990s, with the particular formulations drawing heavily on Dushoff and Levin (1995). Empirical

epidemiologists have also for quite some time been interested in multipopulation SIR models both

examine to interactions between age groups (important for other reasons for childhood diseases) and

groups, e.g. health care workers in the Ebola epidemic, who play an important role in transmission.4

Two very recent working papers in epidemiology have made observations similar to the observation

in section 4.1 that herd immunity thresholds can be substantially lower in heterogeneous SIR models

than in homogeneous SIR models. Gomes et al. (2020) graphs the herd immunity threshold as a func-

tion of the coefficient of variatiion in contact rates in a heterogeneous SEIR model, noting estimates

of the coefficients of variation that have been previously reported for other diseases. Britton, Ball,

and Trapman (2020) give herd immunity thresholds for an 18-group model calibrated to estimated

interactions across 6 age groups with assumed low-activity and high-activity individuals assumed to

have activity levels that are half and twice the average activity levels and discuss partial lockdown

policies that hold the infection to this level. Recent papers in epidemiology are also broadly related

in that their observations motivate examining heterogeneous transmission. Worobey et al. (2020)

concludes that early imported cases formerly thought to have triggered epidemics in Washington and

Italy appear to not be related to the subsequent epidemics there, suggesting that the communities in

which they occurred had low enough R0 so that the epidemics they started died out. Miller et al.

(2020) examine transmission in Israel using full genome sequence and conclude that there are “high

levels of transmission heterogeneity . . . with between 1-10% of infected individuals resulting in 80% of

secondary infections.

As noted earlier, the primary motivation for the paper is the large recent literature in economics

that builds on SIR models. In this literature, Avery et al. (2020) informally discuss the potential

relevance of transmission heterogeneity. Most closely related are several very recent papers, including

Acemoglu et al. (2020), Baqaee et al. (2020), Favero, Ichino, and Rustichini (2020), and Rampini

4See, for example, Britton (1998), Champredon et al. (2018), Demiris and O’Neill (2005), and Lloyd-Smith et al.
(2005).
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(2020), that use calibrated multipopulation SIR models to examine the impact of COVID-19 mitigation

policies, and in the case of Acemoglu et al. (2020) to identify optimal policies from a broad class.

These papers use age-defined group structures to illustrate the substantial gains from age-targeted

policies due to how dramatically death rates vary with age. They do not focus on the impact of

contact heterogeneity, nor do most of the calibrations include within-age-group heterogeneity, which

is presumably much larger than cross-age group heterogeneity, but three of them do include some

heterogeneity in contact rates. Baqaee et al. (2020) calibrate a five by five matrix of age group to

age group contact rates using both general contact survey data and a workplace proximity survey

to reflect differences in occupational mixes across age groups. Acemoglu et al. (2020) use uniform

mixing in their main analyses, but also calibrate a three by three age group contact matrix to data

from another contact survey. The groups in Favero, Ichino, and Rustichini (2020) are age × activity

based with medium- and high-activity individuals assumed to be 12% and 18% more active than the

low-activity group.

2 Heterogeneous SIR Models

In this section I’ll quickly review the standard SIR model and then spend more time on two hetero-

geneous versions drawing on previous results.

2.1 The standard homogeneous SIR model

A number of recent economic analyses of the COVID-19 epidemic build on a standard homogeneous

SIR model.

Consider a population of unit mass. Assume that at each time t each member of the population

is in one of three states: Susceptible, Infectious, or Recovered. Write S(t), I(t), and R(t) for the

fractions in each state at time t. Assume that the dynamics of these fractions are:

İ(t) = S(t)I(t)R0γ − γI(t)

Ṙ(t) = γI(t)

Ṡ(t) = −S(t)I(t)R0γ

One way to motivate the model is to suppose that agents are being uniformly randomly matched in

continuous time. Each agent meets another with probability R0γdt in a dt time interval. A susceptible

agent matched with an infectious agent becomes infectious. Agents transition from the Infectious state
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to the Recovered state at Poisson rate γ. These transitions reflect both true recoveries and deaths

from the disease.

The parameter R0 can be thought of as the expected number of people that a newly infected

person will directly infect in a population where everyone is susceptible. It is the critical determinant

of the behavior of the model. Three important facts are:

1. If R0 > 1, then the equilibrium (S, I,R) = (1, 0, 0) is locally unstable. Adding a small number

of infected agents leads to contagious growth in I. Equilibria with I = 0 are locally stable if

R0 < 1. A small infection dies out.

2. The model has a “herd immunity” threshold of S ≡ 1/R0. Any state (S, 0, 0) with S < S is

a stable steady state, so a small infection introduced into such a population will not spread.

This does not, however, mean that epidemics will not infect more than a fraction 1 − S of the

population. When the herd immunity threshold is first reached we have İ(S, I,R) = 0. This

means that the infectious rate is (locally) constant with new infections occurring as fast as people

are recovering. If the herd immunity threshold is reached at a point when I is large (which it

typically is in models with R0 large), then there can be substantial “overshooting” and many

more than 1− S people can eventually be infected.

3. Define the growth rate of the infectious population by g(t) = d
dt log(I(t)). Then, g(t) =

γ(R0S(t)− 1).

In the initial phase of an epidemic when S(t) ≈ 1, the third fact says that the growth rate of the

infectious population is approximately γ(R0 − 1). One can think of this as a cumulative growth rate

of R0 − 1 over the 1/γ average duration of an infection.

Investigations of whether restrictions are “flattening the curve” often graph the log of cumulative

infections, i.e. log(1−S(t)), versus time. This curve will be approximately linear with slope γ(R0−1)

as long as the ever-infected fraction of the population remains small, e.g. when the US has had 10

million cases. Attempts to infer R0 from such curves are common given the desire to assess where the

herd immunity threshold might be.

Epidemiologists commonly work with extensions of the SIR model. Among the standard additions

are an additional state E of agents who are infected but not yet infectious, more flexible recovery

processes that allow non-exponential infectious durations, an explicit death state, and population
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inflows/outflows. Some economic models also incorporate some of these elements. To simplify the

discussion I will not incorporate any of these features here, but similar conclusions should apply.

2.2 A heterogeneous SIR model with uniform matching

In practice, some individuals are more interactive than others. For example, supermarket cashiers will

be in the vicinity of many more people in a typical day than will retirees. Epidemiologists have also

analyzed models that allow for such heterogeneity.5

A tractable version is motivated by uniform matching in a population consisting of N equally sized

subpopulations indexed by i = 1, 2, . . . , N . Suppose that members of group i are randomly matched

with probabilityR0iγdt in each dt time interval. Order the populations so thatR01 > R02 > . . . > R0N .

Assume that the matchings are uniform so that the probability that a matched agent from group i

meets a group j agent is R0j/
∑

k R0k. Suppose any matching between a susceptible and an infectious

agent results in the susceptible agent becoming infectious. Write Si(t), Ii(t), and Ri(t) for the fraction

of agents in group i who are susceptible, infectious, and recovered at time t, and S(t), I(t), and R(t)

for the vectors with these terms as components.

With the same recovery process as before, this matching process motivates analyzing a system of

differential equations:

İi(t) = Si(t)
∑
j

βijIj(t)− γIi(t)

Ṡi(t) = −Si(t)
∑
j

βijIj(t)

Ṙi(t) = γIi(t)

with βij ≡ γR0i
R0j∑
k R0k

.

With the assumption that the population size remains constant, the state is fully described by S(t)

and I(t) and we will usually omit R(t) from the state vector. For any vector S0 giving the fraction

of susceptibles in each group, the disease free state (S, I) = (S0, 0) is a steady state. To analyze the

stability of such a steady state and the behavior of the system in a neighborhood thereof, we linearize

the system around the steady state. Note also that all derivatives ∂İi
∂Sj

are equal to zero when evaluated

at a state with I = 0. Hence, the behavior of I in a neighborhood of (S0, 0) in the full 2N-dimensional

5See Andreasen and Christiansen (1989), Diekmann, Heesterbeek, and Metz (1990), Dushoff and Levin (1995), Het-
hcote (2000), Jacquez, Simon, and Koopman (1995), May and Anderson (1989), and Van den Driessche and Watmough
(2002). The exposition below draws heavily on Dushoff and Levin (1995).
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system has the same first-order approximation as that of I in the N-dimensional system

İ = AS0
I,

where AS0
is the partial derivative matrix with ijth element

aij =
∂İi
∂Ij

∣∣∣∣∣
(S0,0)

=

{
S0
i βij − γ if j = i
S0
i βij if j 6= i.

In particular, the equilibrium is locally stable if all eigenvalues of this matrix have negative real parts,

and unstable if any eigenvalue has a positive real part.

The AS0
matrix has positive off-diagonal elements, so the eigenvalue with the largest real part is

real, and corresponds to a strictly positive eigenvector. This eigenvector gives the relative prevalence

of the infected across groups for which the total number infected grows most rapidly. The special

structure of this matrix allows one to easily find this eigenvector. It is v1 = (S0
1R01, . . . , S

0
NR0N ),

i.e. prevalence is proportional to the product of the susceptible fraction and the contact rate. The

eigenvalue corresponding to this eigenvector is

λ1 = γ

(∑
i S

0
iR

2
0i∑

iR0i
− 1

)
.

Two important implications of this are:

1. The equilibrium (S0, 0) is locally stable if
∑
i S

0
i R

2
0i∑

iR0i
< 1 and locally unstable if

∑
i S

0
i R

2
0i∑

iR0i
> 1.

2. For small δ, the growth rate of the log of the total infected population at the state (S0, δv1) is

approximately γ
(∑

i S
0
i R

2
0i∑

iR0i
− 1
)

.

Note that if we start from any state with a very small fraction δ infected, then the initial cases will

initially grow at different rates in the different groups in a way that makes the distribution of cases

across groups aligned with the principal eigenvector v1.
6 Hence, provided that this alignment has

already occurred by the time the epidemic starts to be measured, the early growth of a heterogeneous-

SIR epidemic with activity vector R0 will resemble the early growth of a homogeneous-SIR epidemic

with parameter R0 ≡
∑
iR

2
0i∑

iR0i
.

6Suppose the initial population infected is δv with v =
∑
aivi where the vi are the eigenvectors of A. In a neighborhood

of this point we will have I(t) ≈
∑
aie

λitvi, which becomes aligned with vi.
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Two ways of rewriting this expression are informative. First,

R0 =

∑
iR

2
0i∑

iR0i
=
∑
i

R0i∑
k R0k

R0i.

This formula makes clear that growth rates depend on a weighted average of group-level R0i’s, with

the weights being proportional to the activity level in each group. This weighted average can be

substantially higher than the unweighted mean. The relation to the unweighted average is made

clearer by a second rewriting:

R0 =

∑
iR

2
0i∑

iR0i
=
NE(R2

0i)

NE(R0i)
= E(R0i) +

Var(R0i)

E(R0i)
.

This equality indicates that growth rate is the sum of the unweighted average of the R0i and the

ratio of the variance of the R0i across groups to the mean. The latter can easily be quite important

quantitatively.

2.3 A heterogeneous SIR model with homophily

While supermarket cashiers may interact with a fairly representative sample of the population, some

other highly active groups disproportionately interact with others in their group. For example, those

who frequent nightclubs, take public transportation, attend crowded religious services, or live in a

working class neighborhood with overcrowded housing disproportionately interact with others who do

the same things. Those who live in rural areas will disproportionately interact with others who live

in the same rural area.

Heterogeneous SIR models with homophilic matching are more difficult to analyze, but epidemi-

ologists have also derived insightful characterizations of some such models, referred to sometimes as

models with “preferred mixing” or “like-with-like preference”. To motivate one such model, consider

an N group model as in the previous subsection, but suppose that when an agent from group i is

randomly matched the probability that the person with whom they are matched is in group j is

pij =

{
h+ (1− h)

R0j∑
k R0k

if j = i

(1− h)
R0j∑
k R0k

if j 6= i.

Such a matching process would lead to an SIR model nearly identical to that in the previous
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subsection with

İi(t) = Si(t)
∑
j

βhijIj(t)− γIi(t),

where

βhij =

{
γR0i(h+ (1− h)

R0j∑
k R0k

) if j = i

γR0i(1− h)
R0j∑
k R0k

if j 6= i.

Once again, any (S0, 0) is a steady state of the system and we can analyze the stability of this

steady state by looking at a linearized N -dimensional system:

İ = AS0hI,

where AS0h is the partial derivative matrix with ijth element

ahij =
∂İi
∂Ij

∣∣∣∣∣
(S0,0)

=

{
S0
i β

h
ij − γ if j = i

S0
i β

h
ij if j 6= i.

The off-diagonal elements of this matrix are again positive, so the eigenvector with the largest real

part is again unique and corresponds to a positive eigenvector. It is no longer easy to give an explicit

formula for the eigenvalue, but as noted by Diekmann, Heesterbeek, and Metz (1990) and Dushoff and

Levin (1995) we can give explicit necessary and sufficient conditions for the equilibrium to be stable.

1. If S0
i hR0i > 1 for any i, then (S0, 0) is unstable. This is obvious: the number of infected in

population i will increase solely from within-group contacts, and cross-group contacts only add

to the growth.

2. If S0
i hR0i < 1 for all i, then (S0, 0) is unstable if

∑
i

R0i∑
k R0k

1
1−hS0

i R0i
(S0

iR0i − 1) > 0 and stable

if
∑

i
R0i∑
k R0k

1
1−hS0

i R0i
(S0

iR0i − 1) < 0.

Note that when h = 0 the stability condition in the part 2. simplifies to a version of expression

we gave earlier for the uniform model:
∑

i
R0i∑
k R0k

(S0
iR0i− 1) < 0. For a disease-free equilibrium to be

stable in a model with h > 0 it must satisfy the additional constraints in 1. that S0
i hR0i < 1 for all i

as well as the modified inequality given in 2. Note that the summation in this inequality differs from

the summation for h = 0 in that we multiply the ith term by 1
1−hS0R0i

. These multiplicative factors

are positive for all terms, and they are larger for the terms with S0
iR0i larger. Hence, we can think

of the sum as proportional to a reweighting of the h = 0 sum that puts greater weight on the terms
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with S0
iR0i large and less weight on the terms with S0

iR0i small. As a result, if the model with h = 0

is unstable, then the model with h > 0 is unstable as well.7

The argument above extends easily to a full monotonicity theorem: if a disease-free equilibrium is

unstable for some value of h, then it is unstable for any value h′ > h. Hence, a clear intuition one can

take away from this model is that homophilic matching is an obstacle to the stability of disease free

states.

Note that homophily on its own does not affect the dynamics of an epidemic. If we consider a

model in which the R0i are identical across groups, then as long as h is not extremely close to one,

a small infection introduced into any one population will soon equalize across populations. With

equal fractions infected in each population, the dynamics of the homophilic multipopulation model

are identical to the h = 0 model. Hence, all of the effects of homophily discussed above should be

understood as the effects of the combination of homophily and contact heterogeneity.

3 Challenges Inherent in Analyzing Heterogeneous Population Epi-
demics

In this section and the one that follows I turn to the task of drawing out implications of the above

models for analyses of COVID-19. This section stresses a cautionary implication: it can be difficult to

provide policy advice in epidemics that are well described by heterogeneous population SIR models.

In particular, with currently available data it is challenging to estimate activity rates in less active

populations, and important outcomes can be sensitive to these hard-to-estimate parameters.

3.1 Difficulty in calibrating models

Early in the COVID-19 epidemic several authors noted that it is difficult to calibrate critical parameters

of homogeneous SIR model in the initial phase of an epidemic.8 In the initial phase we may not have

reliable data on anything but deaths. The fact that deaths in the model increase at an exponential

rate makes it fairly easy to estimate R0. But when many cases go unreported it is hard to calibrate

the death rate. Different death rates would lead to dramatically different future paths of the epidemic.

This weak identification problem goes away when we get some other piece of information that lets us

estimate the death rate. Some potential sources for this are random serology tests to estimate the

7Mathematically, this is a classic Chebyshev inequality argument: if ai and bi are monotone increasing, then
∑
i aibi >

1
N

∑
i ai

∑
i bi.

8See Atkeson (2020), Fernández-Villaverde and Jones (2020), Korolev (2020), and Stock (2020).
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fraction that have ever been infected, fatality data from locations, e.g. South Korea or the Diamond

Princess, where we think almost all cases have been identified, or seeing an epidemic peak, which is

informative about S.9

As more information has become available many economists have analyzed SIR models with cali-

brated R0 and death rate parameters. The state of the art, in fact, has already moved well beyond this

with a few recent working papers analyzing calibrated multipopulation SIR models that allow death

rates and contacts to vary by age group.10 The contact rate calibrations in these papers rely on three

survey datasets. POLYMOD (Mossong et al. (2020)) and the BBC Pandemic Project (Klepac et al.

(2020)) are survey datasets which asked respondents to list those with which they had contact in the

previous 24 hours. And employment website O*Net asked workers in a large number of occupations

to report how physically close to others they worked on a 5 point scale. One can also now capture

some changes in activity over time using movement data available from firms with phone-tracking

capabilities.

Heterogeneous SIR models that allow for idiosyncratic variation in contact rates by breaking a

population (or each age group or other cell) into subpopulations that differ in activity levels have

more parameters than do SIR models that do not consider such divisions. The fact that predictions

can be dramatically affected by heterogeneity in R0 suggests that it is important to try to capture

some of the heterogeneity that surely exist within the cells that economists have been using with these

extra parameters.

One approach to calibrating the extra parameters might be to use data on the variance of reported

contacts in contact surveys. Although the surveys mentioned above have been used to estimate the

relative prevalence of different age-group to age-group contacts, they seem less compelling as a source

for estimating contact heterogeneity. For one thing, the way that contacts were defined, e.g. in the

BBC survey contacts were defined as those whom one had physically touched or had a face-to-face

conversation of at least three words with, leaves out many contacts that may be important in spreading

COVID-19: singing near someone in a choir practice, standing near someone in a crowded bar, riding

on the same subway train, being served by a cruise ship waiter, etc. The obvious heterogeneities in

the frequency of such unrecorded contacts may mostly cancel out when one computes means for a

large group, but we would definitely want to capture them to calibrate a model of contact hetero-

9Fernández-Villaverde and Jones (2020) note that more complex SIR models fit under a variety of assumptions about
accessory parameters make very similar predictions about the future course of epidemics in locations where epidemics
have peaked.

10See Acemoglu et al. (2020), Baqaee et al. (2020), and Favero, Ichino, and Rustichini (2020).
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geneity. Another limitation of the main contact surveys is that they record contacts on a single day.

Hence, recorded cross-subject variation confounds differences is cross-sectional means and time-series

variation.

Another approach might be to calibrate the model to the path of the epidemic to-date. The initial

growth rate of an epidemic should let us estimate the parameter composite R0 mentioned earlier.

However, in a heterogeneous population SIR model, there is a weak identification problem when one

tries to get more than this: it can be very difficult to obtain estimates of the activity rates in the

less-active populations even after there has been substantial spread of the infection. Intuitively, when

there is substantial heterogeneity in the R0i, there will be a substantial number of infections when the

epidemic surges in the highest R0i subpopulations. At that point, there may still be few infections in

many of the less-active groups, particularly if matching is homophilic. This can make it very difficult

to estimate activity parameters for the low infection groups from aggregate infection data.

While it is hard to have any confidence in a calibration, I know that many economist readers will

want to know if the differences between heterogeneous and homogeneous SIR models are salient for

plausible parameters. Accordingly, I will at times discuss a simple numeric example in which the mean

and variance of activity levels across groups has been chosen to be in the plausible range. Specifically,

I will sometimes discuss a population with five equally-sized subpopulations having activity rates 3.5,

1.5, 1, 0.5, 0.5. With uniform matching the model has R0 ≈ 2.3 which roughly matches the the growth

rates assumed by Ferguson et al. (2020) and Acemoglu et al. (2020).11 The coefficient of variation

of the cross-group differences, 0.8, roughly matches the variation in reported contacts in the BBC

Pandemic Project data.

3.2 Difficulty in predicting future epidemic paths

The fact that some parameters of the heterogeneous SIR model are difficult to calibrate would not be

troubling if the hard-to-estimate parameters of the model did not affect model predictions that we care

about. Unfortunately, this is not true for the heterogeneous SIR model. One reason is that activity

levels in the relatively low activity groups can have a substantial impact on the long run course of the

epidemic. As an illustration, Figure 1 graphs new daily cases for two heterogeneous SIR models.12

11This is also consistent with some of the more sophisticated recent estimates growth rates such as that of Miller et al.
(2020).

12Both models have ten equally-sized subpopulations with h = 0.7. The population with the long-lasting epi-
demic has R0 = (5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1, 1, 1). The population with the shorter-lived epidemic has R0 =
(5.4, 2.6, 0.6, 0.4, . . . , 0.4) and a lower fraction initially infected.
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The parameters of the two models were chosen so that new cases take off at about the same time,

rise to a peak at about the same rate, and peak at about the same level. Despite the nearly identical

behavior up to the point when the epidemics peak, however, the epidemics proceed very differently on

the way back down. In the end, one epidemic eventually infects more than twice as many people as

the other, 58% vs. 28% of the population. The fraction who will eventually be infected under a given

constant policy is obviously highly policy-relevant, and this example indicates that it will sometimes

be very difficult to predict even when an epidemic is sufficiently far along as to have already reached

its peak.

Intuitively, the way in which the example was constructed is that the two models each have fairly

homophilic matching (h = 0.7) and feature a highly-active subpopulation in which the epidemic peaks

before many in the less active subpopulations have been extensively infected. The models differ in the

activity levels of the less-active. In one population, corresponding the dashed red line, seven of the ten

subpopulations have R0i = 0.4. The epidemic never really takes off in these groups and this results

in the fairly rapid decline in infection rates once the epidemic has burned through the highly active

groups. In the other population, corresponding to the solid blue simulation, nine of the ten groups

have R0i equal to 1.5 or 1.0. The infections coming out of the most active group set off a spread in

these groups that goes on for quite some time. This produces an asymmetric peak with a decline that

is much more gradual than the run up. Most of the total infections occur post-peak.

Analyses that do not consider the possibility that there may be heterogeneity in contact rates can

report confidence intervals that are too narrow for this reason. For example, while the US remains

quite far from the no-social-distancing herd immunity threshold, many states (and countries) are well

beyond their peaks, which means that SIR-based models will make highly confident predictions about

the future course of the epidemic presuming that individual behaviors and government policies remain

fixed. For example, the April 29th update of the widely discussed IHME model gave its confidence

interval for August 1st Massachusetts COVID-19 deaths as just 0 to 2.

3.3 Difficulty in predicting policy impacts

As reopening has become salient, a number of economic analyses have modeled the effects that relax-

ations of restrictions may have.13 Thinking about heterogeneous models, however, suggests that it will

be challenging to confidently make such predictions. Uncertainty about activity levels in low-activity

13See, for example, Baqaee et al. (2020).
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Figure 1: Example illustrating the difficulty in predicting the long-run course of a heterogeneous-
population epidemic given the path of infection rates up to the point when the infection peaks. New
daily cases are graphed for two ten population heterogeneous SIR models with h = 0.7. Model 1 has
R0 = (5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1, 1, 1). Model 2 has R0 = (5.4, 2.6, 0.6, 0.4, . . . , 0.4)

populations can become even more important when considering policies relax social distancing. Intu-

itively, if we are far from the herd-immunity region (given the new policy), then the relaxation will

set off a substantial second wave. If we are already close to or in the herd-immunity region, then the

second wave will be smaller or nonexistent. Where we are relative to the herd immunity threshold

depends on the full set of R0i, including the hard-to-estimate activity levels in populations that have

seen few infections while activity is tightly restricted.

Figure 2 provides a numerical illustration. It shows the time paths that an epidemic would follow

under the same nonconstant policy path in two heterogeneous SIR populations. The policy involves

a severe lockdown, reducing activity levels by 65%, imposed gradually over a two-week period just as

the epidemic is taking off, and a partial relaxation about a month later that allows activity levels to

return to 70% of their pre-lockdown values. The left panel plots new daily cases. The right panel plots

cumulative cases to date. The vertical lines mark the dates when the initial lockdown starts its phase

in and the date on which it is relaxed. The epidemics rise at very similar rates in the two populations

prior to the lockdown. They have similar declines once the initial severe lockdown is imposed. Indeed,

in the right panel it is very hard to see any difference in the courses of the two epidemics up through
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the date at which the relaxation occurs.

Despite this similarity in the initial run up and through the lockdown, the two epidemics follow very

different paths following the relaxation. As in the previous example, this reflects that the parameters

were chosen so that activity levels in the less active subpopulations differ. In one population, whose

outcomes correspond to the solid blue line, the relatively low activity populations have R0i = 1.5.

When we relax distancing rules, a large second wave takes off in these groups, infecting nearly three

times as many people as had the first wave. In the other population, corresponding to the dotted

red line, the low-activity populations have R0i = 0.7 and this makes the second wave much smaller.

Difficulty in distinguishing the blue from the red population at the point when the relaxation is

occurring will make it difficult to predict which future course we should anticipate.
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Figure 2: Example of epidemics that diverge after a policy relaxation. The figure graphs new daily
cases and cumulative cases for heterogeneous SIR models with h = 0.7 under a policy intervention
involving a severe lockdown and a partial relaxation. Model 3 has R0 = (3.63, 3.63, 1.5, . . . , 1.5). Model
4 has R0 = (3.55, 3.55, 0.7, . . . , 0.7).

4 Potential Biases From Ignoring Heterogeneity

Many economic analyses of the COVID-19 epidemic build on the simpler homogeneous SIR model,

even though heterogeneous models seem more natural. This section notes several ways in which

ignoring or understating heterogeneity in contact rates may bias the conclusions these analyses reach.
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4.1 Overstatement of the damage incurred in reaching herd immunity

COVID-19 may remain widespread until after we pass a herd immunity threshold. Understanding how

many cases must occur before herd immunity is reached is critical to assessing policies that lead to herd

immunity.14 An influential paper by Ferguson et al. (2020) suggested that deaths with uncontained

spread could be very high and Greenstone and Nigam (2020) note that they correspond to extremely

high economic costs under standard value-of-life assumptions. Two critiques of these calculations are

that deaths may not be as high as the models suggest even without a government response due to

endogenous social distancing, and that fatality rates could be lower due to asymptomatic cases. We

note here another reason: models with heterogeneous activity suggest that herd immunity thresholds

may be lower than näıve calculations based on homogeneous SIR models suggest.

In the homogeneous SIR model herd immunity is reached when S = 1/R0, implying that the

fraction of the population infected on the path to herd immunity must be at least 1 − 1/R0. If the

system is instead described by the heterogeneous SIR model with uniform matching, then the näıve

estimation of an R0 parameter may lead us to misestimate the herd immunity threshold as

Ŝ =
1

R0

=

∑
iR0i∑
iR

2
0i

.

This is indeed the threshold at which herd immunity is reached if the susceptible fraction is equal

in all groups, but we can reach herd immunity with fewer infected by concentrating infections in the

more active populations, and infections will naturally concentrate in the more active populations.

If R0i > 1 for all i, then one state that obviously achieves herd immunity is to set Si = 1/R0i for

all i. The fraction susceptible is 1
N

∑
i 1/R0i. That this is always greater than Ŝ can be seen via an

elegant two-step argument comparing both expressions to the reciprocal of the arithmetic mean of the

R0i,
1

N

∑
i

1/R0i =
1

1/
(

1
N

∑
i

1
R0i

) ≥ 1
1
N

∑
iR0i

≥
1
N

∑
iR0i

1
N

∑
iR

2
0i

= Ŝ,

with the two inequalities coming from the two parts of the root mean square-arithmetic-harmonic

mean inequality. More important than the elegance is that the difference can be quite large in practical

terms. For example, in our loosely calibrated five-population example with R0 = (3.5, 1.5, 1, 0.5, 0.5),

the näıve homogeneous SIR calculation gives Ŝ = 7/16 ≈ 0.44, suggesting that 56% of the population

14Also critical to such calculations are an assessment of the extent to which we will overshoot herd immunity and the
excess deaths that may occur due to exceeding hospital capacity.
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must be infected before herd immunity is reached. However, the Si = 1/R0i state is in the herd

immunity region and has just 21% of the population infected.

More generally, the maximum fraction that can remain uninfected at the herd immunity point is

calculated by solving

max
S1,...,SN

∑
i

Si

s.t. ∑
i

R0i∑
k R0k

SiR0i ≤ 1.

The linearity of the objective function and constraint make clear that the optimal solution involves

concentrating the infections in the highest activity groups, i.e. Si equal to zero in the highest-activity

groups, Si equal to one in the lowest activity groups, with Si perhaps at an intermediate level in some

marginal group to make the constraint hold with equality.15 This will require even fewer infections than

the Si = 1/R0i state. In the five-population example above, we can achieve herd immunity with just

14% of the population infected by fully concentrating infections in the highest-activity subpopulation.

While the example is clearly very loosely calibrated, the fact that the true level of infection needed to

reach herd immunity is just one-fourth of what a näıve homogeneous-SIR based calculation indicates

that contact heterogeneity is potentially a very important consideration.

For another example that may provide additional intuition, consider the spread of an epidemic in a

less-developed country that lacks adequate personal protective equipment for its health care workers.

In such an environment, transmissions from COVID-infected patients to health care workers to patients

who are in hospitals for other reasons could play a major role in disease transmission. Suppose that

this transmission resembled that in a ten-group uniform matching model with R0 = (6, 1, . . . , 1). The

most-active group in this model could represent the health care workers. In the early stages of the

epidemic any non-health care worker who is infected will infect on average one other, 0.4 health care

workers and 0.6 non-health care workers. An infected health care worker will in turn infect six others,

again with 40%-60% split between health care workers and others. If a homogeneous SIR model is fit to

early growth of such an epidemic one would estimate R̂0 = R0 = (62 +12 + . . .+12)/(6+1+ . . .+1) =

45/15 = 3 and infer that herd immunity will not be reached until two-thirds of the population is

infected. In fact, herd immunity can be reached much more easily. The key is to stop the within-

hospital transmission. If five-sixths of the health care workers are immune, then each new infection

15Acemoglu et al. (2020) also include a discussion of targeting which point in the herd immunity region the system
reaches.
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will lead to just one other. The health care workers are just one-tenth of the population, so we can

reach herd immunity with just 8.3% of the population having been infected.

In the model with homophilic matching we achieve herd immunity by choosing S1, . . . , SN such

that hSiR0i < 1 for all i and so that∑
i

R0i∑
k R0k

SiR0i − 1

1− hSiR0i
≤ 0.

Here, the herd-immunity point with the lowest total number infected again involves having a lower

fraction susceptible in the more active groups, but the solution will typically not be to fully concentrate

the infected. Although the initial change in the constraint from reducing Si away from one is largest in

the most active group, the marginal benefit of reducing the fraction susceptible decreases as the fraction

susceptible in a group is reduced, which may make the solution interior in multiple populations.

Achieving herd immunity with homophilic matching is more difficult than achieving herd immunity

with uniform matching. This follows directly from the contrapositive of the result noted at the end

of section 2.3: if a disease free state is stable for any h′, then it must also be stable for all h < h′.

This implies that the herd immunity region for a model with homophily parameter h′, i.e. the set of

S0 for which (S0, 0) is stable, is a subset of the herd immunity region for a model with parameter h.

The minimum fraction of the population that must have been infected to achieve herd immunity is

therefore monotonically increasing in h. Finding the minimum threshold is very easy in the h = 1 case:

the model is essentially a set of separate homogeneous SIR models so the solution is simply to set Si =

Min(1, 1/R0i) in each subpopulation. In our five-population example with R0 = (3.5, 1.5, 1, 0.5, 0.5)

this involves infecting 2/7 of those in subpopulation 1, 1/3 of those in subpopulation 2, and no others,

which is the 21% of the total population mentioned earlier. For intermediate h one needs to solve the

maximization problem described above, but we know the threshold increases continuously from 14%

to 21% as h goes from 0 to 1. For h = 0.5 it is 15.5%.

An important factor to keep in mind when thinking about implications of results on herd immunity

is that heterogeneous SIR models, like homogeneous SIR models, always “overshoot” their herd im-

munity thresholds in an uncontrolled epidemic. In the homogeneous SIR model, overshooting occurs

because many are infected when herd immunity is reached and the infection is then reproducing at an

approximately contant rate. For example, a homogenous SIR model with R0 = 16/7 ≈ 2.3 reaches its

herd immunity threshold when just 1− 7/16 ≈ 56% of the population has been infected but the infec-

tion will eventually hit about 87% of the population in an uncontrolled epidemic. In heterogeneous
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SIR models, uncontrolled spread infects more people than are infected in the minimal herd immunity

state for two reasons: the same overshooting effect as before, and because the path of the infection

does not concentrate infections in the high-activity population to as great a degree as does a path

that enters the herd immunity region at the minimal-infection point. This additional source of excess

infections can be extremely potent. For example, whereas the five-population uniform-matching SIR

model with R0 = (3.5, 1.5, 1, 0.5, 0.5) (which has R0 = 16/7) can be in the herd-immunity region

with as little as 14% of the population infected, an infection starting from a small evenly distributed

mass of infected will not reach the herd immunity region until 33% of the population is infected, and

overshooting will result in 54% eventually being infected.

While I noted above that the minimal-infection herd immunity point entails more infections when

matching is more homophilic, overshooting can be less extreme in homophilic models and when epi-

demics spread in an uncontrolled manner this can more than offset the difference in the herd immunity

thresholds. For example, with the same R0 vector as above, the fraction eventually infected is 46%

with h = 0.5, 42% with h = 0.75, and just 31% with h = 1.

4.2 Overestimation of the difficulty of controlling an epidemic

While heterogeneous population models suggest that reaching herd immunity need not involve nearly

as many infections as homogeneous SIR models suggest, they also suggest that avoiding herd immunity

via selective lockdown policies may not be as difficult as homogeneous SIR models suggest.

Several recent papers have discussed optimal policies using frameworks in which transmission rates

constant at time t can be reduced to R0(1− xt) by “locking down” a fraction xt of the population.16

This can reduce the fraction infected before a vaccine is developed, and reduce excess deaths from

exceeding hospital capacity. In a homogeneous SIR model, lockdown policies that keep the population

from reaching herd immunity incur large economic costs because the fraction infected will grow unless

we keep the initial x0 large enough so that 1− x0 is below the herd immunity threshold. As a result,

some optimal-policy simulations suggest that we may mostly want to use lockdowns just to temporarily

slow the epidemic when hospitals would otherwise be overwhelmed.

The lower herd immunity thresholds of homogeneous models imply that targeted permanent lock-

downs could keep the fraction infected from ever expanding by locking down a smaller fraction of the

population. For example, in the R0 = (3, 1.5, 1.0, 0.5, 0.5) example discussed in the herd immunity

16See Acemoglu et al. (2020), Alvarez, Argente, and Lippi (2020), and Rowthorn and Toxvaerd (2012).
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section, the problem of determining the minimum fraction the population that must be permanently

locked down to keep the epidemic from ever expanding is mathematically equivalent to earlier calcu-

lation of the minimal herd-immunity threshold. Hence, the epidemic can be stopped by permanently

locking down 14% of the population in the uniform matching case or at most 21% of the population

in the homophilic model.

Temporary lockdowns can also be appealing in heterogeneous population models because they can

serve as a means to guide the system toward a more desirable part of the herd-immunity region and/or

reduce overshooting For example, to prevent the dramatic overshooting noted in the previous section,

one could lock down all members of the lowest-activity populations once prevalence there reached

a fraction of a percent, keep them locked down as the infection spreads through the most active

populations, and then release them from lockdown once the population is close to herd immunity.

Figure 3 provides a numerical illustration. The solid blue series is the time path of new daily cases

in a homogeneous population with R0 = 16/7 ≈ 2.3. The dashed red line is the time path of new daily

cases in a heterogeneous uniform matching population with R0 = (3.5, 1.5, 1.0, 0.5, 0.5). Recall that

the heterogeneous population has R̂0 = 16/7 and indeed the two series initially look identical. The

infection in the heterogeneous population reaches herd immunity sooner and many fewer people are

eventually infected than in the homogeneous population. But the lower damage absent a lockdown

does not mean that the incremental benefit from a temporary lockdown is lower. The gray dashed

line shows the path of the infection under a temporary targeted lockdown: we reduce activity by 20%

in the highest activity populations and by 60% in the lower activity populations for a 60 day period.

This reduces overshooting in the highest-activity population and reduces the number of low-activity

people who are infected by members of the high-activity population as it is going through its peak.

In the numeric example, it reduces the fraction who are ever infected from 54% to 38%.17

4.3 Overestimation of the impact of social distancing policies and endogenous
behavioral responses

Cumulative US COVID-19 deaths grew roughly exponentially throughout March, passing 5000 on

April 1st. Growth subsequently slowed dramatically. Many have noted that both government-

mandated policies and endogenous individual reactions would be expected to contribute to the

17In the homogeneous model, implementing the same policy would make cases decline during the lockdown period,
but there would be a massive second wave after the policy is lifted and the eventual total infected would only be reduced
by about ten percentage points.
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Figure 3: Effect of a temporary targeted shutdown in a heterogeneous population. The figure graphs
new daily cases in three models. The dashed red line is a heterogeneous SIR model uniform matching
and R0 = (3.5, 1.5, 1.0, 0.5, 0.5). The dashed gray line graphs cases for the same population assuming
a temporary 60-day lockdown is imposed during the peak. The solid blue line is a homogenous SIR
model with R0 = 16/7 with no lockdown.
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change.18 Understanding the causal impact of each factor is critical to forecasting the impact of reopen-

ings. A third effect also contributes to slowing growth in SIR models—the growth rate γ(R0S(t)− 1)

decreases as S(t) declines—but this effect will be small in homogeneous SIR models calibrated to cur-

rent conditions because S(t) remains close to one.19 In heterogeneous SIR models, however, this third

effect can be nontrivial even in the early stages of an epidemic, particularly if matching is homophilic.

The effect is easiest to quantify in the uniform matching model. If the susceptible fraction has

been reduced to S and the infection is still small, the growth of the infection will resemble that of a

homogeneous SIR model with parameter R0(S) =
∑

i
R0i∑
k R0k

SiR0i. Writing S for the average fraction

susceptible, the dominant eigenvector implies that the relative frequencies in the early infected popu-

lation will be roughly proportional to their activity levels so Si ≈ 1−N R0i∑
k R0k

(1−S). Differentiating

with respect to S we find dR0(S)

dS
= N

∑
iw

2
iR0i, where we have written wi ≡ R0i∑

k R0k
for the fraction

of early infections which are in population i. Focusing just on the effect due to reductions in the most

active group we have

d logR0(S)

dS
=
N
∑

iw
2
iR0i∑

iwiR0i
≥ Nw2

1R01∑
iwiR0i

= w1 ·
w1R01/

∑
iwiR0i

1/N
.

Note that the first term in the product is population 1’s share of early infections and the second

is the ratio of population 1’s contribution to R0 to its share of the total population. In extreme

examples where almost all early infections are in one small subpopulation, this effect can be very

large. For example, w1 ≈ 1 in a model in which population 1 is just 1/N of the total population we

have d logR0(S)

dS
≈ N , i.e. the apparent R will have been reduced by about N% by the time 1% of the

population has been infected. (In a homogeneous SIR model, the reduction in the apparent R0 would

be 1%.) The effect is smaller in uniform-matching models with less extreme heterogeneity in R0i. For

example, in the R0 = (3.5, 1.5, 1.0, 0.5, 0.5) example I have used frequently, w1 = 1
2 , w1R01∑

i wiR0i
≈ 3

4 , and

1/N = 0.2, so d logR0(S)

dS
≈ 2. This suggests that the apparent R0 will have been reduced by about 10%

when cumulative infections have reached 5%. This is larger than the 5% prediction of a homogenous

SIR model, but is not a dramatic difference.

The reduction in the apparent R0 can be much larger in models with homophilic matching because

18See Baqaee et al. (2020), Farboodi, Jarosch, and Shimer (2020), Fernández-Villaverde and Jones (2020), Jones,
Philippon, and Venkateswaran (2020), and Kudlyak, Smith, and Wilson (2020). Epidemiological estimates of changes in
growth rates include Miller et al. (2020) and Unwin et al. (2020).

19A recent study in Sweden indicated that despite their embrace of herd immunity the fraction with antibodies is just
7% in Stockholm.
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infections and loss of susceptibility are both more concentrated in the highest activity groups. For a

simple illustration, think of a model with h ≈ 1. Here, the power of exponential growth means that

if we start from a tiny fraction infected in each group we will soon have almost all of the infected

in the highest-activity group. As a result, we can perceive the growth process early in the epidemic

to be close to R01 growth. If the infection peaks and declines in population 1 before it reaches a

substantial size in population 2, the apparent growth rate can temporarily fall to well below one even

though the epidemic is still in its early stages. Growth will then rise back to look like R02 growth

in a second wave, and so on. Such nonmonotonic growth rates only occur when h is very close to

one, but the fairly rapid early decline in the apparent growth rate as the epidemic burns itself out in

the highest-activity population is a feature that persists well away from the h = 1 limit. If we take

h = 0.7 in the R0 = (3.5, 1.5, 1.0, 0.5, 0.5) example, growth that looks like R0 ≈ 3 growth early in the

epidemic will slow to what looks like R0 ≈ 2.5 growth by the time 5% of the population has been

infected. Almost 20% of the highest-activity population is no longer susceptible at this point, and this

substantially reduces the epidemic growth rate.

The slowdown of an epidemic continues as it approaches and passes the herd immunity threshold.

Hence, viewing an epidemic in light of a homogeneous SIR model can both lead one to to mistakenly

conclude that initial behavior changes were more effective than they were at slowing the epidemic and

that later reopenings caused less acceleration than they did.

4.4 Underestimation of heterogeneity in R0 across regions

The SIR parameter R0 reflects both the contagiousness of a disease and the frequency and closeness of

interactions in a population. It seems natural that R0 should be larger in some countries or states than

in others. For example, we might expect it to be larger in more densely populated and highly urbanized

Belgium than in Sweden. But few economic analyses incorporate heterogeneity in R0 across regions.

This presumably reflects at least in part that the early epidemiological literature did not provide clear

evidence of cross-country or cross-region differences. For example, Flaxman et al. (2020) provided

estimates for 11 European countries from the period before lockdowns went into effect, and the 50%

credible interval for Sweden (roughly 3.7–4.3) overlaps with the 50% credible intervals for 9 of the

other 10 countries including Belgium.20

20Unwin et al. (2020) estimates a more flexible model with more recent data and reports much more substantial
heterogeneity across US states, as do Fernández-Villaverde and Jones (2020). There is also a substantial range in early
estimates of the rate at which COVID-19 spread in China.
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The limited heterogeneity in reported R0 parameters could reflect what is estimated when one

applies a homogeneous SIR model to a heterogeneous world with homphilic matching. As an illustra-

tion, suppose that the differences between two countries lie not in differences between activity vectors

(R01, R02, . . . , R0N ), but in the fact that country a has a higher fraction of its population in the high

activity groups than does country b. For example, it may be that both countries have working class

subpopulations living in crowded urban housing and riding public transportation to jobs where they

work in close proximity to others and rural populations with much lower contact rates, with the pri-

mary cross-country difference being in the relative fractions in each group. In an extreme homophilic

model with h ≈ 1, an estimation of R0 would yield identical estimates of R̂0 = R01 in both countries,

regardless of whether important differences in the population compositions were present.

Again, these differences persist well away from the h = 1 limit. For example, with h = 0.5 a

model with five equal sized populations with R0 = (3.5, 1.5, 1.0, 0.5, 0.5) will resemble R0 ≈ 2.75

growth early in the epidemic, whereas a model with he same R0 vector, but in which the three most

active populations are each 10% of the population rather than 20% will resemble R̂0 = 2.5 growth.

Homogeneous SIR epidemics with R0 = 2.75 and R0 = 2.5 follow similar paths – herd immunity is

reached when 64% are infected in one model vs. 60% in the other and with overshooting the epidemics

eventually infect 93% and 90%. It would be natural to not bother to incorporate such differences in an

economic analysis of homogeneous SIR-based models. But the two heterogeneous models follow quite

different paths with one eventually infecting 49% of the population and the other eventually infecting

29%. Accounting for the potential impacts of such differences seems much more important.

4.5 Misestimation of when epidemics start

A number of early papers fitting SIR models produced estimates of when epidemics started. In addition

to satisfying intellectual curiosity, one motivation for such an exercise is that it may provide evidence

on the size of the asympotomatic population. Features of the heterogeneous SIR model suggest that it

will be very difficult to produce reliable estimates via such a method. Specifically, while I emphasized

earlier that a heterogeneous SIR model will appear to grow at a rapid pace R0 from quite early on,

this is not true at the very, very beginning. The infection only starts to grow at a rate related to the

largest eigenvalue once the pattern of the distribution of infections across the populations is aligned

with the principal eigenvector. Before this occurs, the growth rate can be very different depending on

whether the initial infections are in a low- or high-activity population. This makes early growth rates

unpredictable, and makes inferences about when an epidemic started very imprecise.
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One of the most influential and inaccurate early papers on the COVID-19 epidemic may have

misled in part this reason. Lourenço et al. (2020) calibrated an SIR model to estimate the fraction

of the UK and Italy populations who were already infected as of March 19. In the three primary

scenarios included in Figure 1, they estimate that the start of the UK epidemic occurred about 30

days before the first reported death, and then project forward to estimate that between 36% and 67%

of the UK population was already infected as of March 19. One reason for the inaccuracy is that the

analysis assumed that the death rate was much lower than now appears to be the case. Another source

of the inaccuracy, however, may be another pair of assumptions—that deaths do not occur until well

after infection and that the time series of infections followed an SIR path with R0 equal to 2.25 or

2.75 from the very beginning.

In addition to being imprecise, homogeneous SIR-based inferences about epidemic origins may be

biased. Growth rates were probably lower in the very early days than they were by the time the

epidemic grew to the size where estimates of R0 were first made. This difference may help reconcile

why the fraction that antibody tests indicate have ever been infected is not larger, despite revelations

that there was a case in France in late December and a death in California on February 6.21 It may

also help account for why some models, e.g. that shown in Figure 3 of Baqaee et al. (2020), find it

difficult to match data on deaths from very early in the epidemic.22

5 Implications and Conclusions

The most basic message of this paper is that thinking about an epidemic in terms of homogeneous

SIR models can lead to mistaken conclusions if the interactions are better described by a model with

heterogeneous contact rates. Incorporating at least some heterogeneity need not be so difficult—in

many cases what is being done with a single population model could be done quite similarly in a

multipopulation model. But the remarkable pace at which the economics literature on COVID-19 has

been progressing makes keeping up with the state of the art sufficiently difficult that my primary hope

is that others will take the “heterogeneity matters” message to heart and incorporate it in their work.

Early in any epidemic, there is a great deal of scientific uncertainty about the disease transmission

process. This paper’s most important message about the COVID-19 epidemic itself is that to the

21Worobey et al. (2020) provide genome-based evidence that later early cases were not part of the main epidemics in
Washington and Italy.

22Data inaccuracies may, of course, also be relevant here, so it is possible that the model predictions are closer to the
truth than are the data.
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extent that the epidemiological literature is suggesting that heterogeneity in transmission may be

important, economists should be cognizant that we may still not understand its dynamics very well.

Estimates of R0 derived from observations in the early days of the epidemic may not reflect how the

epidemic would spread now absent restrictive policies, and it is particularly difficult to estimate the

parameters describing how the virus is spreading in less active communities. These parameters are

critical to understanding how the epidemic may progress as restrictions are loosened. As questions

about the impact of reopening policies become most salient, recognizing our limitations and doing

our best to estimate the hard-to-estimate parameters is important. The greater speed with which

the apparent R0 can decline in heterogeneous models, particularly when matching is homophilic, also

suggests that there may be more uncertainty than has been assumed in estimates of the impact both

of distancing policies and of reopenings. The natural directions of bias are that we may overstate

the impact that initial shutdown policies had in slowing the spread of COVID-19 and underestimate

the extent to which the partial relaxations have accelerated the spread. It is particularly important

to keep these biases in mind when estimates obtained in some region are used to provide advice to

others.

A more optimistic implication of heterogeneous SIR models is that the COVID-19 epidemic may

not be as bad as some models suggest. Models using growth rates estimated in the early days of the

epidemic may overstate how rapidly the epidemic would have spread absent government intervention

even if people had not taken it upon themselves to socially distance. And it is possible that epidemic

growth can be slowed by herd immunity effects at prevalence levels substantially lower than näıve

models suggest. If so, the option of reaching herd immunity, becomes less unattractive, particularly

if the herd immunity level being contemplated is that which applies when cost-effective mitigation

measures, such as universal mask wearing, are maintained, and if extensive efforts are made to keep

infections out of vulnerable populations along the path. The possibility that the impact of restrictive

policies may have been overestimated also suggests that some partial reopenings may be less damaging

than anticipated.

Another important conclusion, however, is that the optimistic message that reaching herd immunity

may not be as damaging as feared should not be taken to imply that trying to reach herd immunity is

more advisable than earlier analyses suggest. Models with heterogeneity also suggest that controlling

the spread of COVID-19 may be easier than thought. For one thing, benefits similar to those which

herd immunity provides can be obtained by implementing targeted measures to prevent high-contact

people, e.g. health care and nursing home workers, those riding public transportation, etc., from ever
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being infected. This makes measures such as ensuring nursing home workers have adequate personal

protective equipment even more powerful and cost-effective. And heterogeneous models also suggest

that both permanent and temporary targeted lockdowns may be more effective as a means to limit the

spread of the epidemic than homogeneous SIR models suggest. The good news on both sides of the

equation makes it possible that correctly accounting for heterogeneity in the epidemic process could

bolster the case for keeping in place policies that shut down high spread activities. Obviously, it would

be valuable to know more about the nature of contact heterogeneity (and about the long-run health

consequences of COVID-19 for survivors) to make this assessment.

I also noted that estimating SIR models on data early in an epidemic may lead one to underestimate

the extent to which critical parameters of the epidemic process differ across regions. The changes in

the course of epidemics in the aftermath of severe lockdown policies indicate that in aggregate policies

and behavioral changes had a very large impact on R0.
23 The resurgences we have seen as restrictions

have been loosened and individuals become less vigilant make clear that we are still quite far from herd

immunity and we will need to retain some restrictions for quite some time, perhaps well beyond when

vaccines become available. The limits to what is safe, however, could be very different in different

locations and at different times. It would be valuable to have tailored guidance so that we do not

simply have to rely on trying to infer the effect of each set of incremental changes.

The recent economics literature includes several papers examining multipopulation SIR models in-

cluding Acemoglu et al. (2020), Baqaee et al. (2020), and Favero, Ichino, and Rustichini (2020). While

the analyses in these papers have not been calibrated to fully capture within age-group heterogeneity

in contact rates, they certainly could move in this direction. Baqaee et al. (2020), for example, could

in theory have “simply” used age × occupation groups instead of age groups as the basis of their

model, replacing 5 × 5 matrices with 330 × 330 matrices, to capture contact heterogeneity across

those working in each of the sectors they consider. This still, however, would not have captured

within-occupation heterogeneity.

In addition to the computational challenges, a factor that will limit our ability to calibrate more

complex models is the limited data that is available on heterogeneity in contact rates. Just as serology

data has helped compensate for the weak identification of asymptomatic cases in regular SIR models,

more data may also provide the solution to the weak identification problem noted here. Although

several firms have already made location tracking data available to researchers, privacy concerns have

23See Chernozhukov, Kasaha, and Schrimpf (2020) and Goolsbee and Syverson (2020) for estimates of the importance
of policies and self-motivated behavioral changes.
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limited public releases to means within various cells. One simple step that could potentially greatly

enhance the value of this data is to also release within-cell variances and within-individual time series

correlations. While those developing apps that use Bluetooth interactions to track phone-to-phone

proximity are rightly being careful with privacy, they could potentially provide an even more valuable

source of information on contact distributions. Epidemiologists are also able to exploit variation in

virus genomes to provide more micro-based estimates of disease-transmission.24 While economists are

unlikely to have the expertise to take advantage of genomic data, keeping current on insights coming

out of these analyses will be important.

24See, for example, Miller et al. (2020) and Worobey et al. (2020).
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[18] Jesús Fernández-Villaverde and Charles I Jones. “Estimating and Simulating a SIRD Model of
COVID-19 for Many Countries, States, and Cities”. NBER Working Paper No. 27128. 2020.

[19] Seth Flaxman, Swapnil Mishra, Axel Gandy, H Unwin, Helen Coupland, T Mellan, Harisson
Zhu, T Berah, J Eaton, P Perez Guzman, et al. “Report 13: Estimating the number of infections
and the impact of non-pharmaceutical interventions on COVID-19 in 11 European countries”
(2020).

[20] M Gabriela M Gomes, Ricardo Aguas, Rodrigo M Corder, Jessica G King, Kate E Langwig, Cae-
tano Souto-Maior, Jorge Carneiro, Marcelo U Ferreira, and Carlos Penha-Goncalves. “Individual
variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold”.
medRxiv (2020).

[21] Austan Goolsbee and Chad Syverson. “Fear, Lockdown, and Diversion: Comparing Drivers of
Pandemic Economic Decline 2020”. Becker-Friedman Working Paper 2020-80 (2020).

[22] Michael Greenstone and Vishan Nigam. “Does social distancing matter?” Covid Economics 7
(2020), pp. 1–22.

[23] Herbert W Hethcote. “The mathematics of infectious diseases”. SIAM Review 42.4 (2000),
pp. 599–653.

[24] Matthew O. Jackson and Dunia Lopez-Pintado. “Diffusion and contagion in networks with
heterogeneous agents and homophily”. Network Science 1.1 (2013), pp. 49–67.

[25] John A Jacquez, Carl P Simon, and James S Koopman. “Core Groups and the R0s for Subgroups
in Heterogeneous SIS and SI Models”. Epidemic Models: Their Structure and Relation to Data
5 (1995), p. 279.

[26] Callum J Jones, Thomas Philippon, and Venky Venkateswaran. “Optimal mitigation policies in
a pandemic: Social distancing and working from home”. NBER Working Paper No. 26984. 2020.

[27] William Ogilvy Kermack and Anderson G McKendrick. “A contribution to the mathematical
theory of epidemics”. Proceedings of the Royal Society of London. Series A 115.772 (1927),
pp. 700–721.

[28] Petra Klepac, Adam J Kucharski, Andrew JK Conlan, Stephen Kissler, Maria L Tang, Hannah
Fry, and Julia R Gog. “Contacts in context: large-scale setting-specific social mixing matrices
from the BBC Pandemic project” (2020).

[29] Ivan Korolev. “Identification and Estimation of the SEIRD Epidemic Model for COVID-19”.
Binghamton University Working Paper No. 3569367. 2020.

[30] Mariana Kudlyak, Lones Smith, and Andrea Wilson. “For whom the bell tolls: avoidance be-
havior at breakout in an SI3R model of covid”. Virtual Macro Seminar. 2020.

31
C

ov
id

 E
co

no
m

ic
s 5

3,
 2

3 
O

ct
ob

er
 2

02
0:

 1
-3

2



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

[31] J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp, and W. M. Getz. “Superspreading and the effect
of individual variation on disease emergence”. Nature 438 (2005), pp. 355–359.
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This paper examines deforestation's effect on the COVID-19 transmission 
to indigenous peoples and its transmission mechanisms. To that end, 
I analyze the Brazilian case and use new datasets that cover all the 
country's municipalities daily. Relying on a fixed-effects model, I find 
that deforestation is a powerful and consistent variable to explain the 
transmission of COVID-19 to indigenous populations. The estimates 
show that one unit increase in deforestation per 100 km2 is associated, on 
average, with the confirmation of 2.4 to 5.5 new daily cases of COVID-19 
in indigenous people 14 days after the deforestation warnings. One km2 
deforested today results in 9.5% more new COVID-19 cases in two weeks. 
In accumulated terms, deforestation explains at least 22% of all COVID-19 
cases confirmed in indigenous people until 31 August 2020. The evidence 
suggests that the main mechanisms through which deforestation 
intensifies human contact between indigenous and infected people are 
illegal mining and conflicts.
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1 Introduction

The COVID-19 pandemic has grown exponentially in the Developing World. Until

the end of August 2020, Brazil ranked second in the number of COVID-19 cases and

the death toll, lagging behind the United States. Brazil turned in 2020 not only

a worldwide epicenter of COVID-19 but also of deforestation. While the negative

externalities of deforestation are well documented in the literature, less is known about

how deforestation can affect the transmission of COVID-19 to vulnerable ethnic groups,

such as the indigenous peoples1, enlarging existing income and racial inequality gaps.

Brazil had more than 3.8 million confirmed COVID-19 cases and 120 thousand

deaths by the end of August 20202. It represents 15.1% of the confirmed cases and

14.3% of the total deaths reported globally3. At the same time, deforestation has in-

creased by 25% from January-June 2020 (3.070 km2) in comparison to the same period

in 20194. 55% of the deforested lands this year have been also burned (Moutinho et

al. (2020)). On top of it, deforestation had dramatically expanded in indigenous lands,

the de facto forest’s main guardian (Laudares (2016), Baragwanath and Bayi (2020)),

while coronavirus infected more than 20 thousand and victimized more than 800 in-

digenous people.

This paper asks whether deforestation has been a key driver in the COVID-19

transmission to indigenous peoples. It also focuses on exploring the channels through

which deforestation may affect the spread of the disease to this ethnic group relative

to the others.

To that end, I construct a daily panel with 5,417 municipalities from 1 March 2020

to 31 August 2020 with COVID-19 cases and deforestation data. I use a fixed-effects

model to exploit the effects of deforestation on COVID-19’s morbidity of indigenous

populations. The independent variables are lagged in 5 or 14 days, following the

clinical evidence of asymptomatic period after the contamination. This method is

particularly interesting to analyze such big panel data because it captures municipality

within variation and controls for the effects of time-invariant variables. I also conduct

the empirical analysis in a cross-section format because I can add more covariates

1The WHO Executive-Director recently highlighted that ‘indigenous peoples often have a high

burden of poverty, unemployment, malnutrition and both communicable and non-communicable dis-

eases, making them more vulnerable to COVID-19 and its severe outcomes.’ – United Nations news,

July 2020
2Retrieved at 23 September 2020 from COVID-19 Dashboard - Johns Hopkins University
3Retrieved at 21 September 2020 from WHO Coronavirus Disease (COVID-19) Dashboard
4Data from the Real Time Deforestation Detection System (Deter) of the National Institute for

Space Research - INPE
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and explore the potential mechanisms through which deforestation affects COVID-19

transmission in indigenous peoples.

Deforestation is a powerful and consistent variable to explain the transmission of

COVID-19 to indigenous populations. Relying on the fixed-effects model, I find that

one unit increase in deforestation per 100 Km2 is associated, on average, with the

confirmation of 2.1 to 2.4 new daily cases of COVID-19 in indigenous people 14 days

after the deforestation warnings. If I add nonlinearity in the model, the coefficient

jumps to 5.5. The deforestation per Km2 that takes place in t = 1 will increase the

COVID-19 cases among indigenous people by 9.5% fourteen days later (t = 15). Using

weekly panel data, a unit increase in deforestation warnings per 100 Km2 elevates the

new COVID-19 by 30% two weeks after the event.

My main cross-section results, based on a state-fixed effects estimation, show that

one unit change in warning areas for deforestation per 100 km2 within the Amazon

Forest and the Cerrado ecosystem in Brazil increases the number of COVID-19 cases

confirmed in originary peoples by 55. A straightforward linear calculation suggests

that, on average, deforestation explains at least 22% of all COVID-19 cases confirmed

in indigenous people until 31 August 2020. Population density and economic inequality

are the most relevant control variables correlated with coronavirus transmission among

originary peoples.

Under the ‘bad controls’ framework (Angrist and Pischke (2008)), I also test the

key transmission mechanisms – namely, wildfires, cattle ranching, illegal mining, and

conflicts involving indigenous people – as controls. The evidence suggests that the two

strongest mechanisms through which deforestation affects the spread of COVID-19 in

indigenous communities are illegal mining and conflicts. But deforestation explains a

large part through which illegal mining (84 to 91%) and conflicts (81 to 97%) contribute

to new COVID-19 cases of indigenous people, considered that, as a ‘bad control’, it

affect the spread of COVID-19 through other channels as well.

I run the robustness checks regression deforestation in COVID-19 hospitalizations,

following the primary panel data’s same econometric approach. The effect of defor-

estation on COVID-19 hospitalizations is not as direct as is the case of COVID-19

transmission. Besides, the clinical development of the patient requires to take into

consideration additional individual characteristics. In light of those circumstances, I

use the hospitalization data as a proxy for COVID-19 incidence. While this dataset

from the Ministry of Health provides the possibility to compare COVID-19 hospital-

izations by race, there are much fewer observations for indigenous peoples. Using this

database, I find that deforestation is only positively correlated – and statistically sig-
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nificant – with COVID-19 hospitalization in indigenous people, but not with other

races. I estimate that 9.14% of all COVID-19 hospitalizations of indigenous people

relate to deforestation.

A larger literature explores the negative externalities of deforestation on the econ-

omy and society (Nordhaus (2019), Malhi et al. (2008), Castro et al. (2019)). A grow-

ing amount of evidence shows policy (Souza-Rodrigues (2019) Assunção et al. (2019))

Burgess, Costa, and Olken (2019) Chimeli and Soares (2017)) , political (Pailler (2018)),

and economic forces (Sonter et al. (2017)) play a role in deforestation in Brazil, espe-

cially in the Amazon region. A growing stream of works has been developing on the im-

pact of the COVID-19 on racial (Bertocchi and Dimico (2020), McLaren (2020)), gen-

der (Alon et al. (2020)), opportunity (Bacher-Hicks, Goodman, and Mulhern (2020))

and economic inequalities (Campello, Kankanhalli, and Muthukrishnan (2020)). In

the case of Brazil, Baqui et al. (2020) and Bruce et al. (2020) evaluated the impact

of COVID-19 in different ethnicities using the Ministry of Health database5 that does

not incorporate the indigenous health statistics, since they are not harmonized.

This paper innovates in analyzing an additional negative externality of deforesta-

tion in the context of a pandemic affecting indigenous populations. As a result, it also

shed light on a specific mechanism on how ethnic and health inequalities have been

deepening as the pandemic develops, and the government fails to respond.

To my knowledge, this is the first paper that estimates the relationship between de-

forestation and the spread of COVID-19 affecting indigenous peoples. Also, this is the

first paper that uses the COVID-19 datasets published by the Special Department of

Indigenous Health (SESAI)6) at the Ministry of Health and the Articulation of Indige-

nous Peoples of Brazil (APIB), the Brazilian indigenous peoples’ major representative

organization.

I believe the findings are of relevance to policymakers as well. Ending deforesta-

tion – and fighting all the illegal economic activities related to it – brings enormous

benefit for the climate and the environment as a whole and contributes to curb the

transmission of COVID-19 among indigenous populations.

The rest of the paper is organized as follows. The next section presents the back-

ground of the context in which indigenous peoples in Brazil are dealing with increasing

deforestation and COVID-19 transmission. I then detail the data and the empirical

strategy in Sections 3 and 4. Subsequently, I will present the empirical results, fol-

lowed by sections 6 and 7 on the transmission mechanisms and robustness check. I

5SIVEP-Gripe (Sistema de Informação de Vigilância Epidemiológica da Gripe)
6Secretaria Especial de Saúde Ind́ıgena
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conclude with the main takeaways of the study.

2 Indigenous peoples, deforestation, and COVID-

19

There are 311 indigenous peoples living in Brazil, totaling 760 thousand people (0.36%

of the total population). As of 31 August 2020, the COVID-19 pandemic affected 158

of those communities. The COVID-19 cases in the indigenous people represent 0.6

to 0.8% of the total7. In the Amazon region, the indigenous mortality is the highest

among all the ethnic groups (Fellows et al. (2020)), while for the whole country, ‘pardos’

and black people present the highest coronavirus death toll (Baqui et al. (2020)).

However, the existing comparison of COVID-19 transmission – not mortality –

among races using Brazil as a case study underestimates the effects of COVID-19 on the

indigenous peoples (Baqui et al. (2020), Bruce et al. (2020)). The main reason is that

indigenous public health department statistics do not integrate the universal health

system’s statistics8. The Ministry of Health assistance to indigenous communities is

run separately from the universal health system and decentralized in the Indigenous

Special Sanitary Districts (ISSD9). There are 34 ISSDs in Brazil, and their borders do

not follow the country’s original administrative boundaries. The government reports

COVID-19 statistics of the indigenous peoples exclusively at the ISSD level, which

aggregates 219 municipalities and several indigenous peoples.

Besides, the access of indigenous communities to health equipment is scarce. Given

the level of severity observed in the case of COVID-1910 and the geographical barriers,

isolated indigenous communities face relevant obstacles to reach on time specialized

health facilities or intensive care units. On top of it, there are 120 communities

uncontacted, and 76% of those have not been confirmed yet. The existing concern is

the chance of illegal miners, missionaries, or illegal ‘land grabbers’ transmit COVID-19

to the uncontacted indigenous peoples11.

All the factors mentioned above may increase the sub-notification of COVID-19

cases and delay their reporting. Oviedo et al. (2020) and Azevedo et al. (2020) estimate

7The lower bound is the Ministry of Health data and the upper bound, the The Articulation of

Indigenous Peoples of Brazil (APIB) data.
8Sistema Unico de Saúde, SUS, as it is called in Portuguese.
9The acronym in Portuguese is DSEIs

10Reuters/G1, 15 May 2020
11Data from Instituto Socioambiental (ISA)
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the vulnerability of the indigenous communities to COVID-19, where they have also

considered demographic and infrastructure aspects. The Articulation of Indigenous

Peoples of Brazil (APIB)12, a representative organization of the indigenous peoples,

highlights other reasons of sub-notification, such as racism, misreporting, and lack of

transparency of the official authorities (APIB (2020)).

The Amazon region detains the highest concentration of COVID-19 cases, hospi-

talization, and indigenous deaths for COVID-19. The states of Amazonas and Pará

represents 38% of the Covid-19 cases reported in indigenous people. Map 1 also dis-

plays that this is the region where the highest deforestation incidence13.

While shreds of evidence show that deforestation might be one of the key variables

to explain the spread of COVID-19 among indigenous communities, analysts, and in-

digenous representation bodies point out other variables as well. They are: illegal

mining14, land grabbing and timber lodgers15, cattle ranching and meat processing

plants16, and transport through the rivers17. Moreover, health workers18 and mis-

sionaries19 pose a potential risk of the spread of COVID-19 among indigenous people

considering the imminent contact with their communities.

However, the association between deforestation and transmission of COVID-19 is

not automatic. COVID-19 is a disease transmitted primarily by droplets from cough-

ing, sneezing, or even talking (WHO (2020)). Therefore, although human proximity

is required to transfer the disease, there are still several reasons to believe that defor-

estation is related to the pathogen’s spread.

First, 72% of the deforested lands in 2020 are in conservation areas and indige-

nous lands20, which entails some level of – peaceful or violent – social interaction.

APIB (2020) reports compelling cases of how deforestation can disentangle in conflicts.

Second, whether deforestation targets land grabbing, cattle ranching, illegal mining,

or timber extraction, indigenous communities are already exposed to the virus through

improper contact with infected people21. Socioambiental (2020), for instance, argues

the threat imposed by deforestation for the Yanomami people is highly dangerous due

12Articulação dos Povos Ind́ıgenas do Brasil (APIB)
13According data from the Deter system, Terrabrasilis, INPE
14Data from Amazonia Socioambiental
15G1, 4 August 2020
16Globo Rural, 10 June 2020
17BBC, 8 May 2020
18Instituto Socioambiental, 24 July 2020
19The Economist, 9 July 2020
20Folha de S. Paulo, Mining and Deforestation, 25 June 2020
21O Globo, Ianomami, mining and COVID-19, 2 June 2020
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Figure 1: COVID-19 cases confirmed in indigenous people, deforestation and illegal

mining in Brazil

¯0 425 850 1,275 1,700212.5
Kilometers

COVID-19 cases confirmed 
in indigenous people, 

deforestation and illegal 
mining in Brazil

This map depicts the number of  COVID-19 cases 
confirmed in indigenous people in Brazil, 
deforestation hot spots from 1 March  to 
31 August 2020, and ilegal mining sites.  
Sources: IBGE, APIB, SUS, INPE, RAISG
and FUNAI. 
Elaborated by Humberto Laudares, Ph.D. 
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to a greater vulnerability to COVID-19 exposure. The conflicts and close interac-

tions between miners and indigenous have transmitted COVID-19 to about 40% of

Yanomami people. Third, deforestation puts pressure on indigenous people to have

a forced displacement22 to regions where the virus may already be present. Finally,

Oliveira et al. (2020) and Rocha and Sant’Anna (2020) argue that the fires from the

increasing deforestation, combined with the drought and wildfires, worsens respiratory

health risks, including the COVID-19 cases, increasing the demand for health services

and the locomotion to cities.

Based on the evidence mentioned above, the following section briefly describes

the data used in the empirical analysis. It also explains the identification strategy

used to show the effects of deforestation on the spread of COVID-19 in indigenous

communities.

3 Data

In this section, I describe the different sources and levels of aggregation of the main

variables used in the empirical analysis. The Annex details all other variables used as

controls.

3.1 Panel data

The panel has 184 days and 5,417 municipalities, totaling 969,728 observations. It

starts on 1 March, when the pandemic officially started in Brazil, and ends on 31

August 2020. The two data sources of COVID-19 cases confirmed in indigenous people

used in the paper are from the Special Department of Indigenous Health (SESAI)23 at

the Ministry of Health, and the Articulation of Indigenous Peoples of Brazil (APIB).

SESAI is responsible for collecting data from indigenous people, and the reporting

is apart from the Brazilian universal health system. The datasets are at Indigenous

Special Sanitary Districts (ISSD) level, which are decentralized administrative health-

care units dedicated to the indigenous peoples. There are 34 ISSDs within the borders

of 219 municipalities. The APIB’s estimates are based on SESAI’s statistics, but the

organization adds more information collected through the indigenous networks and

local governments countrywide and subtracts the duplicated data. APIB’s objective,

22National Congress, 27 June 2020
23In Portuguese, Secretaria Especial de Saúde Ind́ıgena
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in this case, is to reduce the sub-notification of COVID-19 cases in indigenous people

(APIB (2020)).

The APIB argues lack of transparency on SESAI statistics – essential to deal with

the pandemic – and testing for indigenous peoples. The SESAI’s dataset, for instance,

does not inform whether the indigenous people that contracted COVID-19 lives in

indigenous lands, non-urban settings, or not. It also does not notify which indigenous

peoples the diagnosed people belong to. The absence of this information hampers how

these communities plan in dealing with the pandemic themselves. It makes the task

to match the data of SESAI very challenging with other Ministry of Health’s datasets.

However, SESAI and APIB databases are the best available information to study the

spread of COVID-19 in indigenous populations.

To this end, as a first step, I convert the data from ISSD to municipal level, based

on the size of the indigenous population living in each municipality relative to the

ISSD total. The Annex section details the data conversion to the municipal level.

For robustness, I also use the COVID-19 hospitalizations of indigenous people

from the Ministry of Health’s SIVEP-Gripe database as a proxy for COVID-19 inci-

dence, and reports the daily data from the Brazilian universal health system (SUS24).

However, there are fewer indigenous peoples’ observations than the other two panels

because the SIVEP-Gripe does not include data from SESAI. I believe that most of

the data is from indigenous living in the cities, even though there seems to be an

overlap between the datasets25. Besides, the SIVEP-Gripe dataset reports COVID-19

hospitalizations by race. The relationship between deforestation and COVID-19 hos-

pitalization tends to be weaker than the cases reported. However, the main advantage

of working with this data as proxy is the possibility to compare the results with other

ethnic groups, namely black, white, ‘pardo’ (mixed), and East Asian (yellow) people.

On the right side of the equation, deforestation, the main independent variable, is

measured by the warning areas of deforestation in 100km2 within the Amazon Forest

and the Cerrado (Brazilian Savannah) ecosystems. The data, collected from Brazil’s

National Institute for Spatial Research, is at the municipal level from 1 March to 31

August 2020.

Table 1 exhibits the summary statistics of the daily data, totaling 996,876 obser-

vations.

24Sistema Único de Saúde
25In the case of deaths reported, APIB (2020) estimates an overlap around 41%, while 10.8% of

the total is not clear if it is an overlap or not.
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Table 1: Summary statistics: daily panel data

Variables N Mean SD Min Max Sum

COVID-19 confirmed cases of indigenous people (SESAI) 996,876 0.023 0.519 0 90 23,179

COVID-19 confirmed cases of indigenous people (APIB) 996,876 0.0291 .822 0 251 28,985

COVID-19 hospitalizations of indigenous people 996,728 0.001 0.042 0 8 1,163

COVID-19 hospitalizations of black people 996,728 0.016 0.308 0 40 15,527

COVID-19 hospitalizations of white people 996,728 0.109 1.667 0 248 108,942

COVID-19 hospitalizations of ‘pardo’ people 996,728 0.112 1.378 0 151 111,290

COVID-19 hospitalizations of East Asian people 996,728 0.004 0.096 0 14 3,754

Deforestation (per 100km2) 996,728 0.000 0.004 0 0.7 116.2

Log Deforestation (per km2) 7,053 -0.729 1.453 -8.517 4.324

Notes to Table 1. Table 1 displays the descriptive statistics of the key variables used in the panel data

estimations. The COVID-19 confirmed cases of indigenous peoples’ data are published by the Ministry

of Health’s Special Department of Indigenous Health (SESAI)26) and by the Articulation of Indigenous

Peoples of Brazil (APIB), the Brazilian indigenous peoples’ major representative organization. The

COVID-19 hospitalization data from the Ministry of Health’s SIVEP-Gripe database is used in the

robustness check. Deforestation data is extracted from the Real-Time Deforestation Detection System

(Deter) of the National Institute for Space Research - INPE.

I also collapse the daily data to weekly to smooth the noise. In the case of COVID-

19 cases in indigenous people is even more relevant due to potential delays in the

reporting because of geographical distances and low access to health equipment. Table

7 displays the summary statistics of the weekly data.

3.2 Cross-section

The main dependent variable used in the cross-section analysis is the accumulated

numbers of COVID-19 cases reported by the Special Department of Indigenous Health

(SESAI) at the Ministry of Health and the total cases compiled by APIB. The defor-

estation data, the primary independent variable, is presented in accumulated values

from 1 March to 31 August 2020.

The benefit of using a cross-section at the municipal level is adding several other

control variables and capturing the mechanisms through which deforestation affects

the spread of COVID-19 in indigenous communities. Besides, adding relevant controls

also minimizes the potential bias derived from omitted variables.
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Table 2: Summary statistics: cross-section

Variables N Mean SD Min Max

COVID-19 cases of indigenous people (SESAI) 5,417 4.286 36.723 0 1,025

COVID-19 cases of indigenous people (APIB) 5,417 5.350 47.176 0 1,164

COVID-19 hospitalizations of indigenous people 5,417 0.215 2.021912 0 64

COVID-19 hospitalizations of black people 5,417 2.867 39.884 0 2,367

COVID-19 hospitalizations of white people 5,417 20.115 255.001 0 17,044

COVID-19 hospitalizations of ‘pardo’ people 5,417 20.548 181.798 0 9,134

COVID-19 hospitalizations of East Asian people 5,417 0.693 10.889 0 738

Deforestation (per 100km2) 5,417 0.020 0.172 0 5.552

Population density 5,385 123.405 637.898 0.049 14,208

Illegal mining 5,385 0.008 0.0920 0 1

Conflict involving indigenous people (CPT) 5,417 0.037 0.188 0 1

Conflict involving indigenous people (CIMI) 5,417 0.040 0.197 0 1

Cattle ranching 5,334 31,664 72,910 21 1571,245

Wildfires - Fire Radiative Power (FRP) 5,417 1,179 12,493 0 506,161

GDP 5,385 9.749 0.678 8.097 12.750

Inequality (Gini coefficient) 5,380 0.503 0.066 0.284 0.808

Extreme poverty 5,384 0.279 0.448 0 1

Number of emergency rooms 5,384 0.059 0.366 0 13

Access to public roads 3,503 3.983 1.795 -4.605 12.496

Proximity to waterway 5,385 0.055 0.227 0 1

Proximity to an environmental protection agency (Ibama) 5,385 0.937 0.597 0 4.012

Access to clean water 2,558 0.677 0.240 0 1

Access to treated sewage 2,558 0.350 0.470 0 1

Rainfall 5,040 11.634 5.335 0 33

Distance to the coast 5,084 0.048 0.213 0 1

Distance to the state capital 5,299 251.472 164.103 0 1,476

Altitude 5,299 411.488 293.885 0 1,628

Latitude 5,385 -16.49 8.30 -33.68 4.60

Longitude 5,385 -46.27 6.445 -72.89 -34.81

Types of soil :

Sglei 5038 0.009 0.096 0 1

Slat 5038 0.338 0.473 0 1

Sluvi 5038 0.038 0.192 0 1

Sneo 5038 0.130 0.336 0 1

Snit 5038 0.030 0.171 0 1

Splan 5038 0.040 0.196 0 1

Splint 5038 0.036 0.188 0 1

Notes to Table 2. Table 2 exhibits all variables included in the cross-section analysis. The Annex

brings detailed information about each of them.
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The control variables include access to clean water, public roads and waterways27,

population density, GDP, income inequality, and geographical variables, such as rain-

fall, altitude, and distance to the state capital (see in the Annex for a detailed descrip-

tion of the variables). I also use illegal mining, conflicts involving indigenous people,

wildfires, and cattle ranching as control variables, even if they are also the main mech-

anisms connecting deforestation with the dissemination of COVID-19 in indigenous

communities.

Table 2 exhibits the summary statistics of the variables used in the cross-section

estimates.

4 Empirical Strategy

The empirical analysis exploits the relationship between deforestation and COVID-19

cases from 1 March 2020 to 31 August 202028. The following econometric model will

be the main reference in analyzing a municipal level and daily panel data. I estimate

equations of the form:

COV IDit = α + ρCOV IDi(t−l) + βΓi(t−l) + δt + λi + υit, (1)

where COV IDit is the dependent variable that captures the number of COVID-

19 cases of indigenous people in the municipality i in period t. The lagged variable

of COVID-19 cases in l time units on the right-hand side is included to reflect the

disease transmission mechanism’s intrinsic persistence. Γi(t−l) is the main explanatory

variable, namely the lagged value of deforestation alerts per 100 Km2. The parameter

β measures the causal effect of deforestation on the transmission of COVID-19 in

indigenous people. Additionally, λi is the set of municipality dummies and δt the time

effects related to common trends in deforestation. The error term is expressed by υi(t),

absorbing all other omitted effects. Time is expressed by t, and l is the lagged values.

The fixed-effects model measures the municipality within variation over time. The

parameter λi captures time-invariant municipality unobserved characteristics that af-

fect deforestation, avoiding the potential problem of omitted variables. This is the key

difference between the pooled ordinary least squares (OLS) model and the fixed-effects.

I use the lagged values (of 5 and 14 days) of the main independent variables in the

estimations. There are two reasons for that. First, the empirical literature on public

27Waterways are the main transportation modal in the Amazon region.
28The first cases of COVID-19 in indigenous communities started to be reported from 1 April.

However, since I use lagged variables for the independent variable, the data starts from 1 March 2020
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health reports that individuals infected with coronavirus may remain asymptomatic

between 5 to 12 days (Lauer et al. (2020)). The authors’ findings show that 97.5% of

patients develop symptoms within 11.5 days of infection. On the other hand, the WHO

states that the incubation period of the coronavirus is, on average, 5 to 6 days, but

it can be up to 14 days29. Second, as mentioned before, the geographic barriers and

difficult access to hospitals by indigenous people delay the reporting of contaminated

indigenous people’s health status. Also, SESAI reports the COVID-19 cases by the

day of the diagnosis, not the contamination day. In the Amazon region, where there

is the highest concentration of indigenous peoples, the main transportation system is

fluvial. A trip to a medium city can take more than a day. Besides, using lagged

variables eliminates any potential contemporaneous effects between Covid-19 reported

cases and deforestation.

I also estimate the relationship mentioned above using a cross-section, by accumu-

lating both COVID-19 cases and deforestation values for the whole period analyzed

and adding other relevant covariates. The main estimations based on the cross-section

data rely on the state-fixed effects model, that captures within-state variation, λi,

while time dimension δt remains constant because t = 1. The specification is partic-

ularly interesting because the states – together with the municipalities – are the key

federal entities that implement policies to combat the COVID-19 in Brazil. There was

significant heterogeneity in the policies adopted across the country. Therefore, esti-

mating the state-fixed effect and the other covariates added tend to be more efficient

in reducing the omitted variables bias than the OLS.

The cross-section data allow us to investigate the mechanisms that reinforce the

relationship between deforestation and the spread of COVID-19 to originary peoples,

such as illegal mining, cattle ranching, wildfires, and conflicts involving indigenous

people, under the ‘bad control’ framework (Angrist and Pischke (2008) and Cinelli,

Forney, and Pearl (2020)). In this case, the mentioned mechanisms can also be the

outcome of deforestation. Controlling for them would introduce bias in the estimation

results and lead to the ‘bad control’ problem. However, ‘bad controls’ are useful to

provide insights about the mechanisms through which the independent variable affects

the dependent one, once compared the estimations that contemplate and do not include

them (Maccini and Yang (2009).

The next section exhibits the main results of my analysis.

29See at WHO COVID-19 Situation Report 73
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5 Results

5.1 Panel data results

Figure 1 exhibits a visual format of the main results. Table 3 reports the main results of

the panel data using municipal level fixed-effects estimation. Throughout the paper,

the standard errors used are robust against heteroskedasticity and clustered at the

municipal level to prevent serial correlation. Columns 1 to 4 have as dependent variable

COVID-19 cases reported by the Ministry of Health (SESAI), and columns 5 to 8

exhibit COVID-19 cases reported by the Indigenous Peoples association (APIB). The

independent variable, deforestation, is lagged in 14 days. Table 8 reports the same

estimation using 5 days lagged independent variables. The first and the fifth columns

report pooled OLS results, while the others exhibit fixed effects estimations.

Table 3 implies that one unit increase in deforestation per 100 Km2 is associated,

on average, with the confirmation of 2.1 to 2.4 new daily cases of COVID-19 in in-

digenous people 14 days after the deforestation warnings. As a reference, the OLS

coefficient is 3.9 for the cases reported by SESAI (column 1) and 4.7 when using the

cases consolidated by APIB (column 5), both with 14 days lag deforestation as an in-

dependent variable. Adding nonlinearity in the model, columns (3) and (7) report one

unit increase in deforestation areas per 100 Km2 explaining 5.1 and 5.5 new COVID-

19 cases in indigenous people respectively30. Table 3 also shows that deforestation,

which takes place in t = 1, will increase the COVID-19 cases among indigenous people

by 3.5 (column 4) to 9.5% (8) fourteen days later (t = 15).

The reason to add nonlinearity in columns (3) and (7) is natural and geographical

barriers, such as rivers and mountains, and infrastructure. I would expect that the

sign of the coefficient of deforestation is positive, while the squared value is negative,

as in table 3 holds.

I find that lagged values of COVID-19 cases reported in indigenous people within

a given municipality, since the disease is highly contagious (Petersen et al. (2020)), ex-

plain 14 to 30% of the new cases of COVID-19 reported in the same ethnic group. The

implicit cumulative effect of deforestation on COVID-19 dissemination31 coefficients is

negative and lower than one.

Performing the estimations using weekly data, I lose variability, however, it smooths

30For reference, the median is 0.004. The maximum points for deforestation are that up to 0.28

(SESAI) and 0.33 per 100 Km2 (APIB)
31The implicit cumulative effect of deforestation coefficient is estimated by Deforestation per 100

Km2
t−l/(1-COVID-19 casest−l). This variable was based on Acemoglu et al. (2008)
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the data and accounts for potential delays in reporting COVID-19 cases in indigenous

peoples. I use lagged independent variables in one and two weeks. Table 9 reports

one unit increase in deforestation per 100 Km2 is associated, on average, with the

confirmation of 6.3 to 10.3 new weekly cases of COVID-19 in indigenous people one

or two weeks after the deforestation warnings (columns 1, 2, 5 and 6). The quadratic

models in columns (3) and (7) show that one unit increase in deforestation areas per

100 Km2 explains the COVID-19 transmission to 25 (SESAI) to 33 (APIB) indigenous

people per week. Alternatively, columns (4) and (8) suggest that one unit increase in

deforestation warnings per 100 Km2 increases the weekly transmission of COVID-19

among indigenous peoples by 15.4% (SESAI) to 30% (APIB).

Table 3: Fixed-effects results: deforestation and COVID-19 cases in indigenous peoples

COVID-19 cases SESAI COVID-19 cases APIB

Pooled Fixed Fixed Fixed Pooled Fixed Fixed Fixed

OLS effects effects effects OLS effects effects effects

(1) (2) (3) (4) (5) (6) (7) (8)

Deforestation (per 100 Km2)t−14 3.912*** 2.400** 5.056*** 4.818*** 2.076*** 5.476***

(1.258) (0.945) (1.943) (1.292) (0.733) (1.684)

Log Deforestation (per Km2)t−14 0.0350* 0.0948***

(0.0197) (0.0269)

Deforestation (per 100 Km2)2t−14 -7.657** -9.804***

(3.147) (3.469)

COVID-19 cases SESAIt−14 0.415*** 0.296*** 0.296*** 0.265***

(0.0561) (0.0522) (0.0522) (0.0569)

COVID-19 cases APIBt−14 0.227*** 0.140*** 0.139*** 0.0986

(0.0330) (0.0331) (0.0331) (0.0731)

Implied cumulative -0.894 -0.885* -0.828* -0.793* -0.915** -0.773* -0.698 -0.794*

effect of deforestation (0.478) (0.481) (0.471) (0.467) (0.466) (0.456) (0.456) (0.413)

Constant 0.0159*** -0.00003 -0.00004 0.223** 0.0199*** -0.00007 -0.00008 0.451***

(0.00210) (0.00216) (0.00216) (0.0938) (0.00229) (0.00327) (0.00327) (0.139)

Observations 920,874 920,876 920,876 6,495 920,876 920,839 920,839 6,494

R-squared 0.151 0.083 0.083 0.100 0.051 0.021 0.021 0.067

Number of municipalities 5,417 5,417 913 5,417 5,417 913

Notes to Table 3. Columns 1 and 5 present pooled OLS estimations with robust standard errors clus-

tered by municipality in parentheses. The remaining columns are fixed-effects estimation at municipal

level with time and municipality dummies and robust standard errors clustered at municipal level in

parentheses. The implicit cumulative effect of deforestation coefficient is estimated by Deforestation

per 100 Km2
t−l/(1-COVID-19 casest−l). All the independent variables are lagged in 14 days. The

standard errors are in parentheses, where *** p<0.01, ** p<0.05, * p<0.1.
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5.2 Cross-section results

This section presents the results of cross-section data. Table 4 shows the estimations

using OLS (columns 1 and 5) and state fixed effects (columns 2, 3, 4, 6, 7 and 8),

allowing for within state variation. In columns 4 and 8, I add as controls the main

mechanisms that correlate with both the COVID-19 cases and deforestation variables

(see table 6). While they can be called ‘bad controls’, equations’ coefficients might be

biased when they are included, thus they are important as a reference in the analysis.

The columns (3) and (7) exhibit my main estimations because they include ‘good’

but not ‘bad’ controls, which reduces the potential bias found in both OLS equations

(columns 1 and 5), and the state fixed-effects estimations without the incorporation

of key covariates (columns 2 and 6). Thus, although I opted to include fewer control

variables, there are quite relevant controls for the analysis32.

The main results imply that one unit change in warning areas for deforestation

per 100 km2 within the Amazon Forest and the Cerrado ecosystem in Brazil increases

COVID-19 cases by 37.39 (SESAI) to 55.22 (APIB) indigenous people. As expected,

the coefficients are smaller than the OLS baseline (columns 1 and 5) but quite similar

to the state-fixed effects baseline (columns 2 and 6).

Until the end of August, the warning areas of deforestation totaled 11,622 Km2.

Doing a straightforward linear calculation means that, on average, 4,345 to 6,418

indigenous people could have contracted COVID-19 due to the deforestation, based

on SESAI and APIB data, respectively. In other words, deforestation explains at least

18.7 to 22.1% of all COVID-19 cases confirmed in indigenous people until 31 August

2020.

Population density and economic inequality are key variables to explain the spread

of COVID-19 in Developing Countries (Ahmed et al. (2020), Pequeno et al. (2020)),

which is also the case here. Both variables are positively correlated with COVID-19

cases and statistically significant. One unit hike in the Gini coefficient, which captures

income inequality, is associated with an increase of 67 to 86 news cases of COVID-

19. The mentioned results are even more concerning in the context of a pandemic

that will certainly enlarge income and opportunity gaps between the rich and the

poor (Campello, Kankanhalli, and Muthukrishnan (2020) Blundell et al. (2020), Dorn,

Cooney, and Sabin (2020), Vahidy et al. (2020)).

There are few mechanisms through which deforestation could enhance human con-

tact and contribute to the spreading of the coronavirus, such as wildfires, cattle ranch-

32In the Annex, I present additional regressions with more controls for reference.

48
C

ov
id

 E
co

no
m

ic
s 5

3,
 2

3 
O

ct
ob

er
 2

02
0:

 3
3-

71



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

ing, illegal mining, and conflicts. All those variables correlate with both COVID-19

cases and deforestation. Not only they can serve as a transmission mechanism of defor-

estation, but these mechanisms can also contribute to more COVID-19 contamination

independently of deforestation. For instance, illegal mining can be expanded through

deforestation in indigenous lands (Sonter et al. (2017)), generating some sort of hu-

man contact between indigenous and non-indigenous. Also, COVID-19 can be spread

through well established illegal mining activities independently of deforestation.

Columns (4) and (8) include the mentioned variables as ‘bad controls’. While I

will take a closer look at them in the next section, Table 4 pinpoints their correlation

with COVID-19, once controlled for deforestation and remaining covariates. Only

illegal mining and conflicts present the expected – and statistically significant at the

99% confidence interval – results. I find that the presence of illegal mining in a given

municipality results in 122 to 160 cases of COVID-19.

Since there are 46 municipalities with reported illicit mining activities, I can deduce

that, on average, illegal mining explains 22 to 25% of the COVID-19 in indigenous

people in Brazil. Similarly, the existence of conflicts involving indigenous people,

including land disputes with illegal miners and timber lodgers, in a given municipality

is linked with 41 to 53 COVID-19 cases. Doing a similar calculation with the 199

registered, they could explain about 36% of the indigenous people’s COVID-19 cases.

While the illegal mining and conflict dummies are useful for the analysis, they present

limitations. First, as a binary variable, they capture the average effect of the existence

of those activities in a given municipality but not of their intensity as a continuous

variable such as deforestation. Second, in 23 towns (50% of cities that posse illegal

mining activities reported) the data overlaps, and the variables also correlate with

each other.

However, even using the ‘bad controls’ as controls, the effects of deforestation

on the transmission of COVID-19 to indigenous people is consistently positive and

statistically significant. The magnitude of the coefficients drop by 55 to 61% but

remains relatively large, explaining 8.5%, on average, of all COVID-19 cases that

indigenous people contracted in Brazil. Nevertheless, an equation that included ‘bad

controls‘ is more useful to check how robust the baseline estimation is and understand

its transmission mechanisms.

In the following section, I will discuss further the main mechanisms of transmission.
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Table 4: State-fixed effects (accumulated): deforestation and COVID-19 cases in in-

digenous peoples

COVID-19 cases SESAI COVID-19 cases APIB

OLS State fixed State fixed State fixed OLS State fixed State fixed State fixed

effects effects effects effects effects effects

(1) (2) (3) (4) (5) (6) (7) (8)

Deforestation (100km2) 46.58*** 37.20*** 37.39*** 16.67*** 65.64*** 55.09*** 55.22*** 21.46***

(10.27) (2.853) (2.943) (4.285) (17.02) (3.695) (3.835) (5.586)

Population density 0.00139* 0.00298*** 0.00235** 0.00523***

(0.000768) (0.00113) (0.00100) (0.00147)

GDP -0.479 -1.275 0.348 -0.713

(1.016) (0.963) (1.324) (1.255)

Inequality (Gini coefficient) 67.23*** 48.05*** 86.13*** 62.09***

(9.099) (8.623) (11.86) (11.24)

Wildfires -0.116** -0.0257

(0.0566) (0.0737)

Cattle ranching 0.00290 -0.00174

(0.00810) (0.0106)

Illegal mining 121.7*** 159.9***

(5.961) (7.772)

Conflict 41.63*** 53.11***

(2.720) (3.546)

Constant 3.327*** 3.519*** -35.18*** -18.55* 4.009*** 4.225*** -55.37*** -33.89**

(0.487) (0.466) (10.82) (10.29) (0.629) (0.603) (14.10) (13.42)

Observations 5,417 5,417 5,040 4,992 5,417 5,417 5,040 4,992

R-squared 0.048 0.147 0.146 0.254 0.057 0.133 0.141 0.251

Geographical controls No No Yes Yes No No Yes Yes

Notes to Table 4. Columns 1 and 5 present OLS estimations with robust standard errors in paren-

theses. The remaining columns are fixed-effects estimation at state level and robust standard errors

clustered at state level in parentheses. The geographical variables included are rainfall, distance to

the coast, distance to the state capital, and altitude. The standard errors are in parentheses, where

*** p<0.01, ** p<0.05, * p<0.1.

6 Mechanisms

This section focus on the transmission channels of the main effect. To this end, I

use the cross-section data. Columns (4) and (8) of Tables 4 function as a reference

for this section as well, since it estimates the effects of the set of main mechanisms –

wildfires, illegal mining, cattle ranching, and conflicts – on COVID-19 cases reported

in indigenous communities. I rely on the same type of estimations applied in the prior

section: OLS and state-fixed effects.

Table 11 regresses the mechanisms variables on deforestation to estimate their joint
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relationship with the main independent variable of the model. I consistently find a

positive correlation between the mechanisms and deforestation. The coefficients of cat-

tle ranching lose their statistical significance when other control variables are added to

the model. Taking column (2) as a reference, I find that one percent change in wildfires

and cattle ranching are associate with a 7.15% and 4.6% change in deforestation, and

a municipality that posses illegal mining and conflict is associated, respectively, with

179.3% and 63.1%33 change in deforestation.

On the other hand, table 12 exhibits the reversed calculation, estimating the effects

of deforestation on the mechanisms. I confirm that the relationship between them is

positive and statistically significant. Tables 13 and 14 exhibit the results of each

mechanism regressed on COVID-19 cases without deforestation as an independent

variable. I find positive and statistically significant values only for wildfires, illegal

mining, and conflicts.

The evidence suggests that the two strongest mechanisms through which defor-

estation affects the spread of COVID-19 in indigenous communities are illegal mining

and conflicts. In the subsections below, I comment on each of those two mechanisms

separately, based on the ‘bad controls’ framework (Angrist and Pischke (2008)).

6.1 Illegal mining

Table 11 implies a high correlation between deforestation and illegal mining. Column

(6) in table 14 shows that the existence of illegal mining in a given municipality is

associated with 189 (column (6)) or 174.5 (column (9)) cases of COVID for indigenous

people. The estimated coefficient for illegal mining in column (8) at table 4, which

controls for deforestation, is 159.9.

I interpret this as an indication that deforestation contributes to the transmission

of COVID-19 to originary peoples through illegal mining (≈ 84 to 91%) and other

potential mechanisms aside deforestation.

6.2 Conflicts

In the Brazilian setting, conflict is an intuitive mechanism through which deforesta-

tion can disseminate COVID-19 among indigenous communities. Simultaneously, it

is intertwined with other mechanisms such as illegal mining, wildfires, or forced dis-

placements34

33I followed the standard calculation: (exp(B) - 1)*100%
34I have not found data to test these mechanisms.
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Table 11 shows that conflicts is correlated with deforestation. Column (8) in table

14 implies that the occurrence of conflicts involving indigenous peoples within the

borders of a municipality is associated with 65.8 (column (8)) or 54.6 (column (9))

cases of COVID. Table 4, controlling for deforestation, estimates this parameter in

53.11.

My understanding is that deforestation explains a large part through which conflicts

contribute to new COVID-19 cases of indigenous people (81 to 97%), but, as a bad

control, I also recognize that it affects the spread of COVID-19 through other channels

as well.

7 Robustness check

The available databases report COVID-19 cases by the 34 Indigenous Special Sanitary

Districts (ISSD). According to Saúde Ind́ıgena) (2020), until 29 August 2020, 54.1%

of the the notified COVID-19 cases were confirmed. 95% of the confirmed cases were

based on laboratory tests35, while the remaining cases were clinically diagnosed. About

378 (1.6%) of the cases resulted in death. SESAI’s data does not report hospitalization

rates.

Alternatively, the Ministry of Health’s SIVEP-Gripe database reports COVID-19

hospitalizations by race. However, as mentioned before, there are very few indigenous

peoples’ observations compared to the other two panels used in this paper. Based on a

shred of evidence, I believe that the Ministry of Health’s SIVEP-Gripe dataset mostly

contains information from indigenous living in the cities, although it is not certain

how much both datasets overlap.

The effect of deforestation on COVID-19 hospitalizations is not as direct as is

the case of COVID-19 transmission. Besides, the clinical development of the patient

requires to take into consideration additional individual characteristics. In light of

those circumstances, I use the hospitalization data as a proxy for COVID-19 inci-

dence. Therefore, I rely on this data to check for robustness and compare the effect

of deforestation on COVID-19 hospitalization among races, namely indigenous, black,

white, ‘pardo’ (mixed), and East Asian (yellow) people.

Table 5 reports the main results of deforestation on hospitalizations by race, based

on a daily and municipal level panel data, and on a fixed-effects model. The indepen-

dent variables are lagged in 14 days, reproducing the same approach used in the table

35APIB (2020) argues that SESAI only uses the serological test (rapid tests), and not the gold

standard COVID-19 real-time reverse transcription polymerase chain reaction (rRT-PCR) test.
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3. I note that deforestation is only positively correlated – and statistically significant

– with COVID-19 hospitalization in indigenous people. Column (2) implies that one

unit increase in deforestation areas per 100 Km2 at t − 14 is associated with 0.05

COVID-19 hospitalizations of indigenous people.

Table 5: Fixed-effects results: deforestation and COVID-19 hospitalizations by race

Indigenous Black White ‘Pardo’ East Asian

OLS Fixed effects Fixed effects Fixed effects Fixed effects Fixed effects

(1) (2) (3) (4) (5) (6)

Dependent variable is COVID-19 hospitalizations by race

Deforestation (per 100 Km2)t−14 0.120*** 0.0525*** 0.0151 0.0200 0.184 -0.0102

(0.0459) (0.0112) (0.0521) (0.199) (0.211) (0.0206)

Indigenoust−14 0.137*** 0.0661***

(0.0160) (0.0010)

Blackt−14 0.487***

(0.0009)

Whitet−14 0.568***

(0.0008)

‘Pardo’t−14 0.576***

(0.0008)

East Asiant−14 0.170***

(0.0010)

0.0011*** -0.0000 0.0008 0.0253** 0.0071 0.0011

(0.00004) (0.0005) (0.0026) (0.0100) (0.0106) (0.0010)

Observations 920,890 920,890 920,890 920,890 920,890 920,890

R-squared 0.019 0.005 0.237 0.322 0.337 0.030

Number of municipalities 5,417 5,417 5,417 5,417 5,417 5,417

5,417 5,417

Notes to Table 3. Columns 1 exhibits a pooled OLS estimation with robust standard errors in

parentheses. The remaining columns are fixed-effects estimation at the municipal level with time

and municipality dummies and robust standard errors in parentheses. All the independent variables

are lagged in 14 days. Columns 1 and 2 have as dependent variable COVID-19 hospitalizations

of indigenous people, column 3, black, 4, white, 5, ‘pardo’ (mixed), and 6, East Asian (‘yellow’).

Following the Brazilian Institute of Geography and Statistics’ classification and guidelines, the race

self-declared by the patients. The standard errors are in parentheses, where *** p<0.01, ** p<0.05,

* p<0.1.

Table 15 exhibits the accumulated data in a cross-section format. Columns (1)

and (2) confirm the finding of table 5, where deforestation only presents a positive and

statistically significant causal effect on COVID-19 of indigenous people, but not of the

other races.

Until the end of August, the warning areas of deforestation totaled 11,622 Km2.

Based on the deforestation parameter estimated in column (2), I can infer that, on

53
C

ov
id

 E
co

no
m

ic
s 5

3,
 2

3 
O

ct
ob

er
 2

02
0:

 3
3-

71



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

average, 106 indigenous people are hospitalized because of COVID-19 due to defor-

estation. In other words, it represents 9.14% of all COVID-19 hospitalizations of

indigenous people until 31 August 2020. The percentage is about half the magnitude

found using SESAI and APIB’s data.

At the same time, population density and inequality associate with COVID-19

hospitalizations across all ethnic groups. But the magnitude of the coefficients differs

substantially for each race. Table 15 show that white people’s coefficients are, one

average, 422 times higher than for the indigenous people, 4.8 than for black people,

and 0.15 than for ‘pardos’. While richer municipalities tend to have, on average,

a higher number of COVID-19 hospitalizations across all races, except for indigenous

people, inequality of income is consistently correlated with COVID-19 hospitalizations.

8 Final considerations

This paper documents a positive and statistically significant relationship between de-

forestation and the transmission of COVID-19 in indigenous communities. This cor-

relation, when using hospitalization as a proxy of COVID-19 incidence, was not found

in other ethnic groups. Even in the context of the COVID-19 pandemic, deforestation

and the intertwined expansion of illegal mining have been growing in Brazil – espe-

cially in the Amazon region and within the indigenous reserves – with the consent of

the current central government. Consequential conflicts involving indigenous peoples,

also within indigenous reserves, boost the transmission of COVID-19 in this vulnerable

ethnic group.

Using new datasets, I find that deforestation explains about 22% 0f all COVID-19

cases confirmed in indigenous populations. One Km2 deforested today results in 9.5%

more new COVID-19 cases in two weeks.

I do not have the presumption to state that deforestation causes the growth of

COVID-19 cases in native populations. Further work is necessary to reach that con-

clusion; however, I believe this paper brings a stepping-stone for additional work on

this topic. Also, the fact that COVID-19 related statistics of indigenous peoples and

data from private health system are not included in a common reporting system it is

a problem in itself. The data harmonization on COVID-19 would be vital to track the

disease’s development on a more realistic base and better evaluate the effects of the

pandemic on society.

I believe the presented results are policy-relevant. The evidence suggests that

ending deforestation is an optimal environmental policy. Still, it is also a health and
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economic key issue given the importance to curb the spread of the COVID-19 and

decrease the intensity of the economic shocks the pandemic has been causing at micro

and macro levels.

55
C

ov
id

 E
co

no
m

ic
s 5

3,
 2

3 
O

ct
ob

er
 2

02
0:

 3
3-

71



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

References

Acemoglu, Daron et al. (June 2008). “Income and Democracy”. In: American Eco-

nomic Review 98(3), pp. 808–42. doi: 10.1257/aer.98.3.808. url: https:

//www.aeaweb.org/articles?id=10.1257/aer.98.3.808.

Ahmed, Faheem et al. (May 2020). “Why inequality could spread COVID-19.” In:

The Lancet. Public health 5 (5), e240. issn: 2468-2667. doi: 10.1016/S2468-

2667(20)30085-2. ppublish.

Alon, Titan et al. (Apr. 2020). The Impact of COVID-19 on Gender Equality. COVID

Economics, Working Paper 4. Center for Economic Policy Research. url: https:

//cepr.org/sites/default/files/CovidEconomics4.pdf.

Angrist, Joshua D and Jörn-Steffen Pischke (2008). Mostly harmless econometrics: An

empiricist’s companion. Princeton university press.

APIB (2020). Vidas Ind́ıgenas Importam! COVID-19 e Povos Ind́ıgenas, o enfrenta-

mento das violências durante a pandemia. Tech. rep. Articulação dos Povos Ind́ıgenas

do Brasil (APIB).

Assunção, Juliano et al. (2019). Optimal environmental targeting in the amazon rain-

forest. Tech. rep. National Bureau of Economic Research.

Azevedo, M. et al. (2020). “Análise de Vulnerabilidade Demográfica e Infraestrutural
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Annex

Description of the variables

The main variables are described as follows:

Dependent Variables

• Number of weekly COVID-19 hospitalizations(Panel Data) by race (In-

digenous, Black, White, ‘Pardos’, East Asian people) at municipal level - From

March 1st to August 31th, 2020.

• Number COVID-19 infections (Covid-19 Cases SESAI) for indigenous

people recognized by the Special Secretariat for Indigenous Health (SESAI)

within the Brazilian Unified Health System (SUS) - From April 1st to August

31th, 2020.

∗ The obtained database counted the number of infections throughout the 34

Special Indigenous Health Districts (ISSD) located in the country. Since

the analysis was executed at the municipal level, I needed to proportionally

distribute the number of cases reported by the SESAI for each municipality

that is located at least in one of these ISSDs (The distribution among ISSDs

and municipalities can be found here).

∗ I applied a relative frequency based on the estimates for the indigenous

population in each of theses municipalities (IBGE, 2019) to find the corre-

sponding proportion and, thus, determine the number of cases of infected

from the ISSDs at the municipal level, as follow:

Sesai(x, y) = yi,d
xi∑

n=j xj

∗ Where (y) is the daily number (d) of infected on a certain ISSD in which

contains a determined municipality (i); (x) is the indigenous population of

this particular municipality; and (j) is the set of all municipalities that are

found on this specific ISSD.

• Number of COVID-19 infections (Covid-19 Cases APIB) for indigenous

people recognized by the Articulation of the Indigenous Peoples of Brazil (APIB)

- From April 1st to August 31th, 2020.

60
C

ov
id

 E
co

no
m

ic
s 5

3,
 2

3 
O

ct
ob

er
 2

02
0:

 3
3-

71

https://saudeindigena.saude.gov.br/corona
http://www2.datasus.gov.br/DATASUS/index.php?area=060206&item=1
https://sidra.ibge.gov.br/Tabela/3175
http://emergenciaindigena.apib.info/en/


COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

∗ The APIB granted us access to their database, which counted the daily

number of the indigenous people infected not considered by the SESAI-

SUS. As mentioned previously, the organization claims that the Brazilian

Government (through SESAI) is under-notifying the actual number of in-

digenous infected by COVID-19. Although they gave us information at the

municipal level, some instances did not have the municipality for the cases

recognized and only the state in a respective day. Another point was that

this database only accounted for a surplus of cases that SESAI did not

consider in its reports.

∗ Similar to the estimated number of cases at the municipal level from the SE-

SAI database (Sesai(x,y)), I needed to proportionally distribute the number

of cases reported by the APIB for the instances that did not have munici-

palities, but only the states mentioned. Likewise, I did not account for all

municipalities inside a state, but only those located inside in at least one

Special Indigenous Health District (ISSD).

∗ I then applied a Relative Frequency based on the estimates for the indige-

nous population (IBGE, 2019) in each of theses municipalities to find the

corresponding proportion and, thus, determine the number of cases of in-

fected from the States at the municipal level, as follow:

Apib(x, y, z) = yi,d
xi∑

n=j xj
+ zi,d

xi∑
n=s xs

∗ Where (y) is the daily number (d) of infected on a certain ISSD in which

contains a determined municipality (i); (x) is the indigenous population of

this particular municipality; and (j) is the set of all municipalities that are

found on this specific ISSD. Also, (z) is the daily number (d) of infected on

a certain State in which contains a determined municipality (i); and (s) is

the set of municipalities that are found on this specific State which are also

located in at least one of the ISSDs.

• Accumulated number of COVID-19 hospitalizations by race (Indigenous,

Black, White,‘Pardos’, East Asian people) at municipal level - From March 1st to

August 31th, 2020. Data collected from DataSUS - SRAS database and retrieved

at September 7th, 2020.

Independent Variable of Interest
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• Deforestation: Accumulated warning areas for deforestation (in 100 km2)

within the Amazon Forest and the Cerrado ecosystem at the municipal level

- From March 1 to August 31, 2020. I also use the data in the natural log for-

mat. Data collected from Brazil‘s National Institute for Space Research - Deter

database and retrieved at September 7 20th 2020.

• Deforestation (Panel data): Daily and weekly evolution to warning areas for

deforestation (per 100 km2) within the Amazon Forest and the Cerrado ecosys-

tem at the municipal level - From March 1 to August 31, 2020.

• Log deforestation: Natural log of daily data of warning areas for deforestation

(per km2) within the Amazon Forest and the Cerrado ecosystem at the municipal

level - From March 1 to August 31, 2020.

Other variables used as a control in the analysis at municipal level were:

1. Population data by race and total estimate of the Brazilian population. Data

collected from Brazilian Institute of Geography and Statistics (IBGE) - 2010

Census and 2019 population estimates respectively;

• Indigenous population (% Total): Proportion of indigenous people at

municipal level.

• ‘Pardos’ population (% Total): Proportion of ‘pardos’ people at mu-

nicipal level.

• Black population (% Total): Proportion of black people at municipal

level.

• White population (% Total): Proportion of white people at municipal

level.

• Yellow population (% Total): Proportion of yellow people at municipal

level.

2. Access to multidisciplinary indigenous health care teams (EMSI). Data observed

from March to June 2020 and retrieved at DataSUS - CNES Equipes de Saude.

• Average of multidisciplinary indigenous health care teams outside

and inside the Legal Amazon by municipality.

3. Data from the National Sanitation Information System (SNIS): (1) Water and Sewage

[2018]; (2) Solid Waste [2018]; (3) Rainwater [2018];
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• Access to clean water: Proportion of municipal population that have

access to clean water in 2018.

• Access to treated sewage: Proportion of municipal population that have

access to treated Sewage in 2018.

• Access to public roads: Extension of public roads inside the municipality

(km) in 2018.

• Urban density: Proportion of urban population over the urban area of a

municipality in 2018.

• Urban density: Total population of the municipality per Km2.

4. Gini Index and GDP by municipality in Brazil. Data collected from SUS - Tabnet

and Brazilian Institute of Geography and Statistics (IBGE), 2017 respectively;

• Inequality (Gini coefficient): Gini index based on GDP at municipal

level in 2010.

• GDP: Municipal GDP in 2017.

5. Cities with isolated indigenous populations. Data collected by the Instituto

Socioambiental, COVID-19 and retrieved at August 14th, 2020;

• Existence of uncontacted tribes: Binary variable for municipalities that

have uncontacted tribes (confirmed and not confirmed) in their territory in

2020. Source of the data: Instituto Socioambiental, 2020.

6. Geographical variables produced with the software GIS based on shapefiles from

the Brazilian Institute of Geography and Statistics (IBGE);

• Rainfall: Average of rainfall at the municipal level in millimeters per hour

(mm).

• Waterway: Binary variable for municipalities in which their centroids are

at least 100 km distance to the nearest waterway.

• Distance to the coast: Distance of the municipal capital until the closest

cost area (km).

• Distance to the state capital: Distance of the municipal capital until

its state capital (km).

• Altitude: Municipality altitude (m).
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7. Illegal mining

• Illegal mining: Binary variable for municipalities that have an illegal min-

ing activity. The data was compiled by the Amazon Geo-Referenced Socio-

Environmental Information Network (RAISG), Ilegal Mining Map and re-

trieved on August 14th 2020.

8. Land conflicts;

• Number of land conflicts: Total number of land conflicts involving In-

digenous people in Brazil in 2019. Data collected by the ‘Commissão Pas-

toral da Terra’.

• Land Conflicts - CACI: Conflicts occurred involving indigenous people at

the municipal level until 2019 (Dummy Variable). Created by the Fundação

Rosa Luxemburgo, in partnership with Armazém Memória and InfoAmazo-

nia, the database was collected at the Cartography of the Attacks against

(CACI) website.

9. Cattle ranching;

• Cattle ranching: The total number of bovine cattle by municipality per

1,000Km2. Also used in natural logarithmic form. Data from IBGE, Censo

Agropecuário 2017.

10. Wildfire: Fire Radiative Power (FRP);

• Wildfire: Fire Radiative Power (FRP): Measurement of the radiant

energy released per time unit by burning vegetation per 1,000Km2. Also

used in natural logarithmic form. Data from INPE, Burning Program, for

the Amazon and Cerrado regions.

11. Indigenous Territories

• Indigenous Territories: Municipalities that have Indigenous lands offi-

cially recognized in Brazil (Updated in 2019). Data retrieved from IBGE -

Indigenous and ’Quilombola’ peoples database.

12. IBAMA - Environmental protection agency

• IBAMA: Distance of centroid of a given municipalities to the nearest en-

vironmental protection agency (IBAMA) local office. The variable was

calculated by the authors using GIS. Data retrieved from IBAMA.
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Additional figures and tables

Figure 2: COVID-19 cases confirmed in Brazil, in the Developing and Developed

countries

Table 6: Correlation matrix of selected (correlated) variables

Correlation matrix

COVID-19 (SESAI) COVID-19 (APIB) COVID-19 hospitalizations Deforestation Wildfires Cattle ranching Illegal mining Conflicts

COVID-19 (SESAI) 1

COVID-19 (APIB) 0.9724 1

COVID-19 hospitalizations 0.5241 0.4997 1

Deforestation 0.2198 0.2408 0.1153 1

Wildfires 0.2023 0.2294 0.1107 0.7618 1

Cattle ranching 0.1406 0.1388 0.1257 0.3696 0.2927 1

Illegal mining 0.3745 0.3837 0.2026 0.3709 0.3924 0.2228 1

Conflicts 0.3170 0.3108 0.2039 0.2529 0.1688 0.2085 0.2319 1
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Figure 3: COVID-19 cases in indigenous peoples and deforestation

Table 7: Summary statistics: weekly panel data

Variables N Mean SD Min Max Sum

COVID-19 confirmed cases of indigenous people (SESAI) 146,260 0.158 2.299 0 136 23,179

COVID-19 confirmed cases of indigenous people (APIB) 146,260 0.198 3.188 0 294 28,985

COVID-19 hospitalizations of indigenous people 146,260 0.008 0.167 0 26 1,163

COVID-19 hospitalizations of black people 146,260 0.106 1.958 0 212 15,527

COVID-19 hospitalizations of white people 146,260 0.745 11.192 0 1,170 108,942

COVID-19 hospitalizations of ‘pardo’ people 146,260 0.761 9.117 0 738 111,290

COVID-19 hospitalizations of East Asian people 146,260 0.0257 0.527 0 57 3,754

Deforestation (per 100km2) 146,260 0.001 .0131 0 1.3 116.2
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Table 8: Fixed-effects results: deforestation and COVID-19 cases in indigenous peoples

COVID-19 cases SESAI COVID-19 cases APIB

Pooled Fixed Fixed Fixed Pooled Fixed Fixed Fixed

OLS effects effects effects OLS effects effects effects

(1) (2) (3) (4) (5) (6) (7) (8)

Deforestation (per 100 Km2)t−5 3.247*** 1.440** 4.739*** 3.695*** 1.641** 4.209***

(1.078) (0.635) (1.548) (1.174) (0.820) (1.428)

Log Deforestation (per Km2)t−5 0.0451** 0.0453*

(0.0178) (0.0260)

Deforestation (per 100 Km2)2t−5 -9.446*** -7.350***

(2.933) (2.580)

COVID-19 cases SESAIt−5 0.292*** 0.164*** 0.164*** 0.100***

(0.0212) (0.0166) (0.0167) (0.0294)

COVID-19 cases APIBt−5 0.138*** 0.109*** 0.109*** 0.0431

(0.0194) (0.0220) (0.0220) (0.0459)

Implied cumulative -0.699 -0.666 -0.569 -0.688 -0.877 -0.763 -0.687 -0.592

effect of deforestation (0.577) (0.562) (0.518) (0.561) (0.651) (0.639) (0.600) (0.631)

Constant 0.0168*** -0.00003 -0.00005 0.204*** 0.0195*** -0.00008 -0.00009 0.285**

(0.00198) (0.00234) (0.00234) (0.0764) (0.00222) (0.00320) (0.00320) (0.113)

Observations 969,627 969,627 969,627 6,971 969,627 969,590 969,590 6,970

R-squared 0.083 0.030 0.030 0.067 0.048 0.014 0.014 0.080

Number of municipalities 5,417 5,417 913 5,417 5,417 913

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 9: Weekly fixed-effects results: deforestation and COVID-19 cases in indigenous

peoples

COVID-19 cases SESAI COVID-19 cases APIB

Fixed effects Fixed effects

(1) (2) (3) (4) (5) (6) (7) (8)

Deforestation (per 100 Km2)t−1 6.370*** 10.30***

(1.314) (3.337)

Deforestation (per 100 Km2)t−2 7.852*** 25.61*** 8.976*** 33.53**

(2.293) (8.420) (2.999) (13.03)

Log deforestation (per 100 Km2)t−2 0.154** 0.300***

(0.0668) (0.110)

Deforestation (per 100 Km2)2t−2 -32.97*** -45.59**

(12.31) (19.33)

Constant -0.0003 -0.0004 -0.0013 0.671** -0.0005 -0.0005 -0.0017 1.076***

(0.0191) (0.0199) (0.0199) (0.285) (0.0245) (0.0255) (0.0256) (0.299)

Observations 140,842 135,425 135,425 5,112 140,842 135,425 135,425 5,112

R-squared 0.009 0.009 0.012 0.044 0.007 0.006 0.009 0.033

Number of municipalities 5,417 5,417 5,417 914 5,417 5,417 5,417 914

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

67
C

ov
id

 E
co

no
m

ic
s 5

3,
 2

3 
O

ct
ob

er
 2

02
0:

 3
3-

71



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Table 10: State-fixed effects (accumulated): deforestation and COVID-19 cases in

indigenous peoples

COVID-19 cases SESAI COVID-19 cases APIB

OLS State fixed State fixed State fixed OLS State fixed State fixed State fixed

effects effects effects effects effects effects

(1) (2) (3) (4) (5) (6) (7) (8)

Deforestation (100km2) 41.59** 69.60*** 69.31*** 22.95*** 59.25** 83.55*** 80.84*** 30.17***

(15.18) (10.88) (4.067) (4.728) (25.21) (12.26) (5.579) (5.931)

Population density 0.000221 0.00153* 0.000135 0.00128 0.000762 0.00284** 0.000412 0.00247

(0.000700) (0.000836) (0.000595) (0.00120) (0.00107) (0.00136) (0.000817) (0.00151)

Inequality (Gini coefficient) 103.5** 32.01** 21.28** 34.30*** 131.0** 44.97** 33.10*** 45.30***

(43.09) (12.82) (8.328) (10.06) (50.26) (17.04) (11.42) (12.62)

Extreme poverty -1.645 -1.967 -2.493 -2.575

(1.195) (1.475) (1.640) (1.850)

Access to roads 1.042*** 0.769*** 0.0123 1.336*** 0.913** -0.0415

(0.341) (0.272) (0.322) (0.413) (0.374) (0.404)

Access to treated water -4.393* -1.520 -7.540** -3.840

(2.434) (2.355) (3.619) (3.230)

Proximity to waterways 10.80 2.826 -0.00426 15.05 6.049* 0.757

(6.706) (2.478) (2.772) (9.140) (3.399) (3.477)

Number emergency rooms 6.749*** 7.322*** 12.01*** 12.93***

(0.979) (1.452) (1.343) (1.821)

Constant -48.64** -19.80 -13.80*** -19.35*** -75.31** -34.23 -20.05*** -26.71***

(20.78) (14.27) (4.633) (5.190) (32.81) (21.51) (6.356) (6.511)

Observations 5,380 2,414 2,413 3,261 5,380 2,414 2,413 3,261

R-squared 0.082 0.163 0.301 0.329 0.089 0.148 0.257 0.359

’Bad controls’ No No No Yes No No No Yes

Geographical controls No Yes Yes Yes No Yes Yes Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 11: State-fixed effects (accumulated): deforestation and mechanisms

Log deforestation per 100Km2

OLS State fixed State fixed State fixed State fixed

effects effects effects effects

(1) (2) (3) (4) (5)

Log wildfires 0.0715*** 0.0715*** 0.0323*** 0.0159* 0.0209**

(0.00710) (0.00568) (0.00825) (0.00842) (0.00862)

Log cattle ranching 0.0425*** 0.0457*** 0.00225 -0.0117 -0.0123

(0.00750) (0.00694) (0.00973) (0.0106) (0.0106)

Illegal mining 1.097*** 1.027*** 1.252*** 1.234*** 1.204***

(0.348) (0.121) (0.229) (0.228) (0.228)

Conflict 0.658*** 0.489*** 0.545*** 0.472*** 0.488***

(0.122) (0.0582) (0.0933) (0.0939) (0.0962)

Log local government -0.0107 -0.00819 -0.00843

total revenues (0.00951) (0.00987) (0.00988)

Distance to environmental protection 0.00744 -0.0336 -0.0382

agency’s (IBAMA) nearest office (0.0305) (0.0338) (0.0339)

Indigenous population/Total -0.669

(0.599)

Constant -0.475*** -0.497*** 0.144 0.0839 0.943

(0.0673) (0.0631) (0.196) (0.205) (0.619)

Observations 5,385 5,385 1,801 1,698 1,698

R-squared 0.160 0.267 0.316 0.331 0.334

Geographical controls No No No Yes Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 12: Mechanisms: effects of deforestation on wildfires, cattle ranching, illegal

mining, and conflicts

Log wildfires Log cattle ranching Illegal Mining Conflicts

(1) (2) (3) (4) (5) (6) (7) (8)

Log deforestation (km2) 0.494*** 0.407*** 0.276*** 0.166*** 0.0159*** 0.0148*** 0.0326*** 0.0321***

(0.0318) (0.0335) (0.0265) (0.0256) (0.00148) (0.00154) (0.00307) (0.00313)

Constant 1.706*** 0.917*** 9.141*** 8.221*** 0.00733*** -0.00778 0.0343*** 0.0205**

(0.0245) (0.107) (0.0203) (0.0820) (0.00114) (0.00492) (0.00236) (0.0100)

Observations 5,417 4,994 5,417 4,994 5,385 4,994 5,417 4,994

R-squared 0.635 0.634 0.363 0.380 0.183 0.175 0.161 0.173

Geographical controls No Yes No Yes No Yes No Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 13: Mechanisms: effects of wildfires, cattle ranching, illegal mining, and conflicts

on the transmission of COVID-19 cases in indigenous people

COVID-19 cases reported in indigenous people (SESAI)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log wildfires 1.028*** 0.656** 0.318

(0.257) (0.276) (0.257)

Log cattle ranching 0.444 -1.044*** -1.595***

(1.062) (0.386) (0.360)

Illegal mining 153.7*** 140.8*** 129.3***

(33.87) (5.528) (5.440)

Conflicts 61.15*** 50.61*** 42.58***

(9.680) (2.787) (2.668)

Population density 0.00156** 0.000587 0.00137* 0.00142* 0.00002

(0.000781) (0.000846) (0.000734) (0.000756) (0.000776)

GDP -0.312 0.477 -0.574 -0.384 -0.994

(1.058) (1.033) (0.971) (0.999) (0.972)

Inequality (Gini coefficient) 68.61*** 74.02*** 56.36*** 61.47*** 54.71***

(9.268) (9.334) (8.714) (8.966) (8.596)

Proximity to waterways (100 km) -3.263 -3.128 -0.300 -1.830 0.122

(2.568) (2.565) (2.417) (2.487) (2.359)

Constant 2.486*** -38.25*** 0.206 -39.03*** 2.991*** -28.20*** 2.032*** -34.42*** -10.97

(0.648) (11.24) (10.09) (11.12) (0.995) (10.35) (0.325) (10.64) (10.54)

Observations 5,417 5,040 5,417 5,040 5,385 5,040 5,417 5,040 5,040

R-squared 0.123 0.120 0.001 0.120 0.148 0.220 0.098 0.173 0.260

Geographical controls No Yes No Yes No Yes No Yes Yes

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table 14: Mechanisms: effects of wildfires, cattle ranching, illegal mining, and conflicts

on the transmission of COVID-19 cases in indigenous people

COVID-19 cases reported in indigenous people (APIB)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log wildfires 1.581*** 1.048*** 0.520

(0.334) (0.361) (0.336)

Log cattle ranching 0.735 -0.702 -1.448***

(1.311) (0.505) (0.469)

Illegal mining 201.4*** 189.5*** 174.5***

(48.93) (7.207) (7.102)

Conflicts 77.14*** 65.78*** 54.59***

(12.59) (3.649) (3.483)

Population density 0.00261** 0.00187* 0.00233** 0.00239** 0.00112

(0.00102) (0.00111) (0.000957) (0.000990) (0.00101)

GDP 0.528 1.588 0.319 0.605 -0.440

(1.384) (1.353) (1.265) (1.308) (1.269)

Inequality (Gini coefficient) 87.96*** 93.24*** 71.92*** 79.21*** 67.44***

(12.13) (12.22) (11.36) (11.74) (11.22)

Proximity to waterways (100 km) -5.022 -4.682 -0.965 -3.079 -0.398

(3.359) (3.359) (3.151) (3.256) (3.080)

Constant 2.594*** -59.22*** -1.385 -65.09*** 3.662*** -47.14*** 2.517*** -55.96*** -26.95*

(0.842) (14.70) (12.09) (14.56) (1.208) (13.49) (0.413) (13.94) (13.76)

Observations 5,417 5,040 5,417 5,040 5,385 5,040 5,417 5,040 5,040

R-squared 0.101 0.107 0.001 0.106 0.153 0.214 0.095 0.160 0.252

Geographical controls No Yes No Yes No Yes No Yes Yes

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

Table 15: Cross-section: state fixed-effect estimates of the effect of deforestation on

COVID-19 hospitalizations by race

COVID-19 hospitalizations

Indigenous Black White ‘Pardo’ East Asian

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Deforestation (100km2) 0.825*** 0.915*** -0.378 -0.596 -1.476 -3.380 13.27 14.87 0.210 0.0629

(0.160) (0.152) (3.336) (3.331) (21.34) (21.55) (15.19) (14.59) (0.914) (0.934)

Population density 0.0003*** 0.0219*** 0.127*** 0.110*** 0.0046***

(0.00004) (0.0008) (0.0056) (0.0038) (0.0002)

PIB 0.000591 3.249*** 23.43*** 26.26*** 0.930***

(0.0524) (1.150) (7.440) (5.037) (0.323)

Inequality (Gini coefficient) 3.155*** 54.07*** 379.7*** 259.6*** 12.74***

(0.469) (10.30) (66.63) (45.11) (2.889)

Constant 0.198*** -1.629*** 2.875*** -57.31*** 20.14*** -401.8*** 20.28*** -371.7*** 0.689*** -15.36***

(0.0260) (0.558) (0.544) (12.25) (3.482) (79.26) (2.479) (53.66) (0.149) (3.436)

Observations 5,417 5,040 5,417 5,040 5,417 5,040 5,417 5,040 5,417 5,040

R-squared 0.120 0.137 0.011 0.142 0.011 0.122 0.014 0.189 0.005 0.087

Geographical controls No Yes No Yes No Yes No Yes No Yes

Standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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The triple effect of Covid-19 on 
Chinese exports: First evidence 
of the export supply, import 
demand and GVC contagion 
effects

Felix L. Friedt1 and Kaichong Zhang2

Date submitted: 12 October 2020; Date accepted: 13 October 2020

In this study, we estimate the overall impact of the novel Coronavirus 
pandemic on Chinese exports and differentiate the hypothesized `triple 
pandemic effect' across its three components: 1) the domestic supply 
shock; 2) the international demand shock; and 3) the effects of global 
value chain (GVC) contagion. We find that Chinese exports are very 
sensitive to the severity of the global Coronavirus outbreaks. Average 
export elasticity estimates with respect to new Chinese and foreign 
destination country infections range from -2.5 to -4.6. Against a Covid-19-
free counterfactual, our estimates predict that the pandemic has reduced 
Chinese exports by as much as 40% to 45% during the first half of 2020, 
but that these losses have peaked and are expected to partially recover 
by the end of the year. Moreover, we find that all three shocks contribute 
to the pandemic-induced reduction in Chinese exports, but that GVC 
contagion exerts the largest and most persistent influence explaining 
these losses. Among the three shocks, the impact of GVC contagion 
explains around 75% of the total reduction in Chinese exports, while the 
domestic supply shock in China accounts for around 10% to 15% and the 
international demand shock only explains around 5% to 10%. As a result 
of these varying transmission channels, the pandemic effects appear to be 
very distinct from those explaining the Great Trade Collapse in 2008‑09.

1	 Assistant Professor of Economics, Department of Economics, Macalester College.
2	 Undergraduate economics and political science student, Macalester College.
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1 Introduction

The novel Coronavirus has disrupted the global economy, and in particular international trade (Baldwin,

2020a). According to the ’World Trade Statistical Report 2020’, published by the World Trade organization,

global container throughput has dropped by 8% during the fist quarter of 2020, while new export orders

declined by as much as 50% for both goods and services over the same time period (World Trade Organi-

zation, 2020a). Parallels have been drawn between the trade effects of the current pandemic and financial

crisis of 2008, and some researchers anticipate the pandemic-induced contraction in international trade to

overshadow the Great Trade Collapse of 2008-09 (Baldwin, 2009, 2020a). Baldwin and Freeman (2020), for

example, argue that, unlike the financial crisis which stifled global demand for traded products, the pan-

demic triggers a ‘triple effect’ on trade through 1) the disruption of domestic supply, 2) the reduction in

global demand, and 3) the contagion effect spread through disrupted global value chains (GVC). As the

world’s largest exporter and second largest importer of internationally traded goods and services and a

central node in the GVC networks of a variety of products, China not only faces the ramifications of this

global pandemic through its dependence on trade, but disruptions to Chinese exports may also be the root

cause of the ‘infection’ of the globalized economy.

In this study, we estimate the overall impact of the Coronavirus pandemic on Chinese exports and

explore the heterogeneity of trade effects across Chinese provinces, international trade partners, and com-

modities. Moreover, we dissect the hypothesized ‘triple pandemic effect’ on trade and evaluate the indi-

vidual contributions of the pandemic-induced domestic supply, international demand, and GVC contagion

shocks. Our investigation sheds first light on the sensitivity of international trade flows to the pandemic

along all three of these transmission channels and shows that Chinese exports not only fall in response to a

rise in domestic and international destination country Covid-19 cases, but also through increasing exposure

of Chinese production to the GVC contagion. Our baseline empirical analysis of the elasticity of Chinese

exports with respect to domestic and foreign infections provides economically and statistically significant

estimates suggesting that for every 1% rise in new domestic and international Coronavirus cases Chinese

exports fall by 2.5% to 4.6%. In aggregate, these estimates suggest that the short-run losses in Chinese ex-

ports during the first half of 2020 may be as large as 40% to 45% of the predicted counterfactual Chinese

exports in the absence of the pandemic.

The differentiation of the individual transmission mechanisms shows that all three channels contribute
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to the reduction in Chinese exports, but do so at different points in time and to varying degrees. The in-

ternational demand effect, captured by the number of new foreign Covid-19 cases, for example, has an

immediate negative impact on Chinese exports that lasts for about one month after the rise in new cases.

Thereafter, it appears that the disruption of their own production causes foreign countries to increase their

demand for imports from China, which in turn offsets some of the initial demand-driven losses. The do-

mestic (Chinese) supply effect on Chinese exports, captured by the number of new Chinese Coronavirus

cases, is slightly lagged and strongest one to two months after a rise in local cases. At their respective peaks,

both of the pandemic-induced domestic supply and international demand shocks are similar in magnitude

and account for about 30% to 40% of the reduction in Chinese exports. The GVC contagion effect on Chi-

nese exports is significant and delayed by about one month. That is, one month after a rise in the global

Covid-19 exposure of intermediate inputs that are used in production of Chinese exports, the GVC conta-

gion takes a negative toll. We find that these ripple effects are significant and account for the majority of the

reduction in Chinese exports. In aggregate, more than 75% of the total pandemic effect on Chinese exports

can be explained by the disruption of GVCs, which dissipates much slower than the domestic supply and

international demand shocks.

Lastly, we take advantage of the disaggregated Chinese customs data and explore idiosyncrasies in

the Covid-19 effects along three distinct dimensions, including Chinese provinces, foreign countries, and

commodities. Several notable patterns emerge. First, not all provinces suffer the same fate in terms of their

exports. While the majority of Chinese regions experience the expected significant decline in exports, a

handful of provinces report year-over-year increases in exports between the first halves of 2019 and 2020 (i.e.

Anhui, Bejing, Jiangxi, etc.). Second, the sensitivity of Chinese exports with respect to foreign cases seems

to decline with a country’s level of development and distance to China, perhaps indicating that higher

income countries are more dependent on Chinese exports and/or better equipped to continue the flow of

international goods during this pandemic. Lastly, we find that the nature of this global pandemic and the

unique regulatory responses shape the impact on Chinese exports of various commodities. While exports

of pharmaceutical products significantly rise with the intensity of the Coronavirus outbreak, products that

are typically air freighted suffer significant reductions in exports due to the collapse of international air

travel.

To derive at these conclusion, we develop a new dataset that combines detailed provincial customs

data on Chinese exports from January 2019 through June 2020 with information on the spread of the novel
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Coronavirus both in China and overseas. Furthermore, we augment these data with country-industry-

specific statistics on ‘Foreign Value Added’ and ‘Indirect Value-Added Exports’ (Koopman et al., 2014)

that are derived from national and regional input-output tables and part of the UNCTAD-Eora Global

Value Chain Database (Casella et al., 2019). Combining Chinese and international Coronavirus case counts

with information on value-added trade, we are able to characterize the industry-specific exposure of GVCs

pertinent to Chinese production and evaluate the resulting GVC contagion effect on Chinese exports in

isolation from the domestic Chinese supply and international demand shocks.

Our work builds on the previous research investigating the trade effects of other major disruptions,

such as the Great Trade Collapse of 2008-09 or the Great Japanese Earthquake of 2011, and contributes

to the rapidly growing literature on the economic effects of the global Coronavirus pandemic. Much of

the very recent research has focused on the pandemic-induced demand and supply shocks in a variety of

different contexts, such as the U.S. stock and labor markets (see, for example, Papanikolaou and Schmidt

(2020) and Baker et al. (2020), or Cajner et al. (2020) and Coibion et al. (2020), among others). In short,

the supply shock is attributed to the public-health-related containment measures that severely limit the

mobility and productivity of workers and the demand shock is the result of the unprecedented spike in

unemployment (Coibion et al., 2020), reductions in consumer spending (Bachas et al., 2020) and investment

uncertainty that leads to a ‘wait-and-see’ mode (Baldwin, 2020b).

Some research has considered the pandemic effects on international trade. Bonadio et al. (2020), for

example, offer a general view of the pandemic shock on international trade. The authors evaluate the re-

silience of economies to pandemic-induced contractions, suggesting that the economic destruction is mainly

caused by the stringent containment measures and the reopening of the economy, especially by the largest

economies like US, China, Russia, Germany, and Japan, would generate a considerable positive impact

(Bonadio et al., 2020). Leibovici et al. (2020) evaluate the pandemic effects on trade of essential goods and

find that the ensuing welfare effects critically depend on a country’s trade balance with respect to those

commodities. Drawing parallels between the Coronavirus pandemic and the SARS outbreak in 2003, Fer-

nandes and Tang (2020) estimate the impact of SARS on firm-level Chinese trade to gain insights into the

likely effects of the current pandemic. Fernandes and Tang (2020) find that SARS impacted Chinese pro-

ducers for over two years after the initial outbreak and that the effects varied across firms. Small firms are

found to be more likely to exit, while producers of more capital- and skill-intensive commodities or those

that are more upstream on the supply chain drive the recovery of Chinese trade post SARS.
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Baldwin and Freeman (2020) as well as Baldwin and Tomiura (2020) develop a conceptual framework

that closely considers the specific mechanisms driving these trade effects. The authors argue that the pan-

demic has the potential to cause a ‘triple hit’ on manufacturing sectors, including the direct supply dis-

ruption due to various containment efforts, the supply-chain contagion due to the disruptions of the in-

ternational flow of intermediate inputs, and the decline in global demand due to reduction in consumer

spending and investment delays. Using the textile as well as information and communication technology

(ICT) industries as examples, Baldwin and Tomiura (2020) also point to China as the ‘workshop of the

world’ central to a multitude of GVCs and critical to understanding the comprehensive pandemic effect on

international trade. We contribute to the literature by providing first estimates of the pandemic effects on

Chinese exports along all three of these dimensions and offering initial insights on the significance of the

theorized GVC contagion.

As such our work is closely related to the analyses of other large-scale economic shocks on international

trade, such as the Great Trade Collapse 2008-09 (GTC) or the 2011 Japanese Earthquake. Previous research

on the GTC of 2008-09, for example, has shown that the past demise in trade outpaced the decline in global

GDP and can be largely attributed to the reduction in global demand (Crowley and Luo, 2011; Levchenko

et al., 2010; Altomonte et al., 2012) as well as constraints on trade finance during the Great Recession (Ahn

et al., 2011; Chor and Manova, 2012).1 Baldwin (2020a) has drawn parallels between the GTC and the

Coronavirus pandemic and argues that the latter trade shock may be more intense due to the multifaceted

supply and demand transmission channels we study here.

In contrast to the demand-driven GTC, the 2011 Japanese Earthquake impacted trade through the sup-

ply disruption that resulted from significant damage to production, energy and transportation infrastruc-

ture in Japan. While Ando and Kimura (2012) show that the domestic supply disruptions reduced Japanese

trade, research by Boehm et al. (2019) and Li et al. (2015) illustrates that even such a unilateral shock can

cause significant international spillover effects due to the interconnectedness of global production net-

works. One of the critical distinctions between the Japanese Earthquake of 2011 and the current Covid-19

pandemic, however, is one of scope. While the former disaster hit a single hub in the global supply chain

1Levchenko et al. (2010), for example, show that the 2008-09 GTC exceeded the reduction in global GDP due to the financial
crisis and argue that the amplified response in trade is a result of its composition. The authors show that the majority of trade is
comprised of durable goods which tend to be more sensitive to negative demand shocks than non-durables. (Altomonte et al., 2012)
advance this discussion and suggest that a reduction in demand for final goods can lead to an amplified response in the demand for
traded intermediate products further up in the supply chain. The depletion of inventories, strategically build to offset uncertainties in
downstream demand, has a ’bullwhip’ effect that propagates and amplifies the negative demand shock throughout the GVC network
and is the counterpart to the GVC contagion we investigate in this study.
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network, the latter has impacted all of the major manufacturing hubs around the globe (Baldwin and Free-

man, 2020). The ability of affected firms to find qualified substitutes for intermediate inputs from other

unaffected countries contributed to the rapid recovery from the 2011 Japanese Earthquake (Todo et al.,

2015), but is a luxury that is not necessarily afforded by the Covid-19 pandemic. Our estimates produce

evidence to suggest that, while the domestic supply and international demand shocks are economically and

statistically significant, the GVC contagion effect explains the majority of the disruption in trade and causes

longer lasting ramifications for Chinese exports.

The remainder of the paper is organized as follows. Section 2 provides background information on

the novel Coronavirus outbreak and regulatory responses in China and the rest of the world, and offers

a first glimpse at the trade effects resulting from the pandemic. In section 3, we develop a conceptual

framework that is informed by the discussion of Baldwin and Tomiura (2020) and derive our baseline and

primary empirical specifications. In section 4, we discuss the construction of our dataset and summarize

the relevant statistics. We present our empirical results in Section 5. Lastly, we provide a brief discussion of

our analysis in section 6 and conclude in section 7.

2 Background

The first cases of Covid-19 were reported in Wuhan China dating back to November 17, 2019 according to

the South China Morning Post (Ma, 2020). Accelerated by the mass holiday travel during Chunyun (the

Spring Festival travel season), the virus spread rapidly in the Hubei province and throughout China. Figure

1 illustrates the steep ascent of new confirmed Chinese Coronavirus infections in January and February,

2020. Throughout February, for example, new confirmed cases in China increased by 572% from 11,821 to

79,389 confirmed infections. As a result, China became the first epidemic hot spot in 2020.

In order to slow the spread of the infection, the Chinese government elected rigorous quarantine policies

locking down entire metropolitan cities with millions of residents, such as Wuhan, Qianjiang, and Huang-

gang in the Hubei province. Furthermore, regulators decided to block major highways, railways, and air

lines between cities. Local municipalities followed suit and issued similar policies, such as the prohibition

of gatherings (even between family members) and ceasing all public transportation, in order to curb the

spread of the novel Coronavirus. In some cases, locally issued permits allowed essential activities, such as

grocery shopping, but were restricted to the district of residence. In the most infected areas, such as Wuhan,
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Figure 1: Chinese Exports and Covid-19 Cases

however, even grocery shopping was banned by the government and replaced by a centralized grocery de-

livery system to provide residents with daily necessities. Under such strict control, China quickly reached

the peak of new Coronavirus infections, but also severely restricted economic activity. New daily confirmed

cases in all of China dropped from 15,153 on February 17 to 206 by March 1, 2020, while a Chinese produc-

tion index, published as part of the Federal Economic Reserve Database, suggests an average contraction

in manufacturing sectors of over 25% during this time period.

Since then, the Chinese government has shifted its focus toward economic recovery. In terms of fiscal

policy, the central government of China announced a 4.6 trillion Yuan stimulus package and synchronized

financial support for manufacturers of medical and daily necessities as well as the agricultural sector. By

March and April, many cities enacted plans to reopen the economy and issued guidance on returning to

work according to the number of new local cases. Mobility and activity restrictions were removed gradually

and prioritized the return of workers to essential industries (International Monetary Fund, 2020). During

this process, any detection of new infections, such as those experienced by Shulan Jilin in May 2020, trig-

gered an immediate emergency status restricting residential mobility and placing residential districts under
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strict surveillance. Most cities, however, successfully reopened their economies and China experienced a

3.2% real GDP growth rebound by June 2020.

While China experienced first signs of recovery during the second quarter of 2020, the novel Coron-

avirus began to spread throughout the rest of the world. Europe became the second hot spot of the pan-

demic, followed by the United States, which surpassed China and Italy in terms of total confirmed deaths

by mid April and remains the country with the most Coronavirus infections today. Figure 1 documents

this rapid increase in new international infections and shows no signs of reprieve by June 2020. In fact,

by August 2020, the outbreak of Covid-19 has affected 188 countries with 18 million confirmed cases and

700,000 confirmed deaths; and on September 1, the number of global daily new cases reached 439,370, the

highest point since the outbreak of Covid-19.

With the rise of new infections, many governments enacted a number of different policies in an attempt

to limit further contagion. Most European countries, such as Italy or Germany, adopted severe containment

policies ranging from travel restrictions to bans on every form of public gathering. The United States also

declared a state of emergency, increased testing, closed schools and non-essential businesses, and imple-

mented social distancing to fight the spread of the pandemic (International Monetary Fund, 2020). Many

of these policies were enforced until late May and early June, when most of the European countries and

the United States announced the relaxation of Covid-related restrictions allowing businesses to reopen

and travel to resume among Schengen-area members. In turn, a second wave of Coronavirus infections

emerged shortly thereafter and by July 17 daily new cases in the United States reached the peak with 75,821

new confirmed cases.

Over this time period, the world economy experienced one of the most severe contractions in recent

history. Early research efforts estimate a 2% to 4% reduction in global GDP due to Covid-19 (Maliszewska

et al., 2020), with some countries expected to experience economic contractions of more than 10% under pes-

simistic forecasting assumptions (Fernandes and Tang, 2020). Similar to the GTC in 2008-09, the response

in international trade is expected to surpass these reductions in GDP and some experts anticipate that the

collapse in international trade due to the pandemic will exceed the GTC in 2008-09 (Baldwin, 2020a). Early

estimates by the WTO, for example, predict global trade in 2020 to decline by as much as 32%. Barichello

(2020), who analyzes Canadian agricultural trade, posits an expected decline of 12% to 20% despite the fact

that agricultural commodities are relatively insulated from changes in demand. Our data presented in Fig-

ure 1 offer some preliminary evidence that corroborates these projections. A comparison between Chinese
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exports in December 2019 and February 2020 suggests a decline of $126 billion or 53%. These statistics,

however, likely overstate the immediate effect of Covid-19 as the time period under consideration includes

the Chinese New Year celebrations, during which exports tend to fall significantly (see February 2019 in Fig-

ure 1). The year-over-year change in exports suggests a decline of $37 billion in January and $23 billion in

February and equates to a 17% reduction in both months relative to the previous year. This year-over-year

comparison, however, ignores the substantial growth Chinese exports experienced in 2019 and therefore

underestimates the true pandemic-induced trade effect. Combining the year-over-year reduction with the

anticipated export growth, that is forgone due to the pandemic, yields a rough estimate of Chinese export

losses as high as 42% in January and February and around 30% to 35% thereafter.

3 Conceptual Framework

The gravity equation of international trade is the empirical ‘workhorse model’ for trade economists (Head

and Mayer, 2014) and a good point of departure for evaluating the potential trade effects of the Coronavirus

pandemic. In the traditional framework, exports (Xij) from country i to country j are positively correlated

with the economic mass or GDP (Y) of both countries and inversely related to the distance and other barriers

to trade, such as tariffs, between them (τij). In its simplest form the gravity model of trade can be expressed

as follows:

Xij =
YiYj

τij
. (1)

And, several necessary amendments have been made in previous research to account for the complexities of

a global and interconnected economy that influence international trade flows (see, for example, Anderson

and Van Wincoop (2003)).

Nonetheless, this simple model lends itself to conceptualize some of the potential mechanisms through

which Covid-19 can influence international trade. On the exporter’s side, the outbreak of the novel Coron-

avirus can disrupt the production of tradable goods and services. In fact, mass quarantines and entire city

lock-downs as coordinated and mandated in China, for example, have led to a temporary standstill in the

production of the world’s largest supplier of manufactured goods. In the simple gravity equation (1), this

adverse domestic supply shock is reflected in a reduction of country i’s GDP, which in turn reduces country

i’s exports.
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On the importer’s side, the impact of a rise in infections with the novel Coronavirus is more ambigu-

ous. On the one hand, more infections can result in a disruption of local production which may result in

a substitution away from domestic goods and towards imported products, which would stimulate exports

to the affected destination country. On the other hand, the likely reduction in consumer demand, invest-

ment uncertainty, and disruption of local production that uses foreign intermediate inputs can drastically

reduce the demand for imported products. An example of a such a shock is given by the GTC of 2008-09,

which has been largely attributed to the reduction in global demand (Crowley and Luo, 2011).2 Moreover,

in terms of the anticipated effect of a reduction in demand, several factors may amplify the impact on inter-

nationally sourced, rather than domestically produced, goods. First, the majority of trade is comprised of

durable goods which have been shown to be more sensitive to negative demand shocks than non-durables

(Levchenko et al., 2010). Second, a reduction in demand for final goods can lead to an amplified response in

the demand for traded intermediate products further up in the supply chain. The depletion of inventories,

strategically build to offset uncertainties in downstream demand, has a ’bullwhip’ effect that propagates

and amplifies the negative demand shock throughout the GVC (Altomonte et al., 2012). In our gravity

equation, this adverse international demand shock is reflected in a reduction of the importing country j’s

GDP, which in turn reduces country i’s exports to country j.

In addition to these first order shocks to the supply of the exporting country and the demand of the

importing country, the pandemic has the potential to cause notable ripple effects through GVCs. Unlike the

Great Trade Collapse of 2008-09, these ripple effects are rooted in the significant disruption of the produc-

tion of intermediate inputs experienced by the major suppliers around the globe. Coining this the ’GVC

contagion’ effect, Baldwin and Tomiura (2020) argue that the early epicenters of the Coronavirus outbreak,

including China, U.S., Japan, Germany, and South Korea, are also manufacturing hubs for a large number

of inputs used by numerous GVCs spread acorss a broad network of countries. The interconnectedness

among these hubs likely amplifies local disruptions and spreads the economic pandemic effects to many

other countries reliant on these centers of production.

In order to gain some initial insights on all three of these pandemic effects on international trade, we

develop an empirical framework of Chinese provincial-level exports that captures each of these potential

transmission channels. Given the recency of the Coronavirus outbreak and lag in the reported statistics on

2There is some evidence that constraints on the trade finance during the Great Recession also played a role in the demise of trade
during this time period (see, for example, or Ahn et al. (2011) or Chor and Manova (2012)).
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GDP, however, we must rely on an alternative measure that (1) captures the intensity of the pandemic and

(2) strongly correlates with the potential shocks to domestic supply and international demand. We argue

that case counts of new Coronavirus infections are one such measure giving a timely and location-specific

insight on the severity of the pandemic. Moreover, we believe that this pandemic statistic is indicative of

the economic strains and regulatory restrictions placed on an economy to curb further contagion of the

virus and therefore correlated with the potential supply and demand shocks on international trade.

Accordingly, we model exports (Xpjkt) from Chinese province p to foreign country j of commodity k at

time t as a function of the number of new Coronavirus infections reported by Chinese provinces (CIpt) and

their foreign trade partners (CIjt). While provincial-level pandemic statistics are indicative of the domestic

export supply shock, international case counts should provide a window into the expected foreign import

demand shock. The baseline empirical specification then takes the following form:

xpjkt = β0 + β1cipt + β2cijt + αpj + αk + αt + εpjkt, (2)

where the lower case letters represent the inverse hyperbolic sine (IHS) transformation of the aforemen-

tioned variables.3 In line with many empirical specifications of the gravity equation (Head and Mayer,

2014), we control for province-to-country (αpj), commodity (αk), and time (αt) fixed effects that are intended

to capture differences in time-invariant bilateral trade costs, such as distance, industry characteristics, i.e.

durable versus non-durable products, and macroeconomic trends influencing Chinese exports across all

countries and provinces.

Because we intend to estimate the effects of domestic and foreign Coronavirus infections on Chinese ex-

ports, we cannot separately include time-varying country- or province-specific fixed effects. Consequently,

a limitation of this specification is the inability to control for time-varying country- or province-specific

unobservables, such as changes in bilateral trade costs during our sample period. If such an unobserv-

able correlates with the outbreak and spread of Coronavirus infections, either in China or overseas, our

estimates of β1 and/or β2 would be biased. One particular concern is the ongoing U.S.-China trade war.

To mitigate the influence of these contemporaneous commercial policy changes we exclude the U.S. from

our primary estimation sample and test sensitivity of our results against this restriction. Our findings are

3We use the IHS transformation, rather than the natural log, because it is defined at zero-valued trade observations and infection
counts and yields coefficient estimates that are readily interpretable as export elasticities. The results are generally robust to the logged
transformation and exclusion of zero-valued observations.
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largely robust to this adjustment.

To capture the third channel of the pandemic effect, namely the GVC contagion, we integrate an addi-

tional variable in our baseline specification. The intent is to create a measure that captures the exposure of

Chinese export industries to the ‘infection’ of the underlying GVC networks these industries depend upon.

This ‘infection’, of course, is a result of the Coronavirus-induced disruptions of foreign suppliers. To this

end, we calculate the monthly share of global infections each foreign country faces. We then weight these

relative infection shares by the share of foreign value added (FVA) a country provides to Chinese exports of

a particular commodity.4 In other words, each share provides a snap shot of how ‘infected’ a particular link

of the supply chain network is, while the weights measure how important this link is to Chinese exports of

a particular commodity.5 Suppose, for example, that Germany is the sole supplier of foreign inputs to Chi-

nese export industry A, but supplies no intermediate inputs for Chinese export industry B. If Germany is

the only country affected by the novel Coronavirus and reports 100% of new global infections, than Chinese

export industry A faces the maximum degree of GVC contagion, while export industry B faces none.

In reality, GVCs are, of course, much more complex involving many countries at different stages of

production. To capture the level of ‘infection’ of such complex supply chains, we sum these weighted shares

across the full set of foreign countries J. Aggregated, our variable gives us a sense of the total exposure that

Chinese industries of exported products face due to the pandemic-induced disruption of GVCs. The exact

expression for our measure of GVC contagion (GVC-C) is given as follows:

GVC-Ckt =
J

∑
j=1

[
FVAjkt̄

∑j FVAjkt̄
∗ 100 ∗

CIjt

∑j CIjt
∗ 100

]
, (3)

where we fix the level of FVA in 2016 prior to the Coronavirus outbreak (and U.S.-China trade war) to avoid

any contemporaneous feedback effects on the GVC network characterized by FVA.

Finally, we argue that the timing of the domestic supply shock, international demand shock, and GVC

contagion on Chinese exports may vary for each of these transmission channels. That is, one may expect

the domestic supply and international demand shocks, captured by rising Chinese and foreign destination

country Coronavirus infections, to take effect before the GVC contagion, which must first ripple through the

4FVA is a term often used in the GVC literature (see, for example, Johnson and Noguera (2012) and Koopman et al. (2014)) and
measures the amount of the total value of Chinese exports that is attributable to intermediate inputs produced in foreign countries,
exported to China, and then used in the production of Chinese exports.

5By the level of ‘infection’ we mean the severity of the Covid-19 outbreak in a given country relative to all other Chinese trade
partners.
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GVC network. Consequently, our final and preferred empirical specification includes the contemporaneous

(s = 0) as well as one- through three-months (S = 3) lagged terms of our key variables and can be expressed

as follows:

xpjkt = β0 +
3

∑
s=0

[
βscipt−s + λscijt−s + ψsGVC-Ckt−s

]
+ αpj + αk + αt + εpjkt. (4)

The coefficients of interest can be collected in three distinct sets. Coefficient vector β captures the con-

temporaneous and lagged domestic supply shock on Chinese exports. Coefficient vector λ captures the

contemporaneous and lagged international import demand shock on Chinese exports. Lastly, coefficient

vector ψ measures the contemporaneous and lagged effects of the GVC contagion that may arise as the

supply of intermediate inputs from foreign countries is disrupted by the pandemic.

4 Data

To estimate Equations (2) and (4) and test whether any of these three transmission channels influence trade

during the time of the Coronavirus pandemic, we construct a new dataset that combines Chinese customs

data, sourced from the General Administration of Customs of the People’s Republic of China (GACC), with

detailed information on the spread of Covid-19, both in China and a number of foreign countries. The

GACC trade data report exports at the Chinese Province - Foreign Country - two-digit HS commodity level

on a monthly frequency. The full sample includes exports of 97 commodity classes originating from 31

Chinese provinces that are destined for 241 foreign countries and runs from January 2019 to June 2020.6

We combine these trade data with detailed information on the Chinese Coronavirus outbreak published in

the monthly statistical report of China’s National Health Commission. Staring in January 2020, the data

include the new confirmed case and death counts observed in each province and provide insight into the

severity of each province’s Covid-19 supply shock.

International Covid-19 data at the country level are publicly available from the European Centre for

Disease Prevention and Control (ECDC) and include monthly case and death counts for many foreign

countries, the first of which are reported in January 2020. Because we don’t observe international infection

and death counts for every country, a merger between the ECDC and GACC datasets reduces the number

6Due to delays resulting from the Coronavirus outbreak, Chinese authorities opted to combine exports in January and February
2020 as a single month. We split these data according to the January and February shares in 2019. This essentially smooths the
immediate impact across the first two months. Our results are robust to alternative strategies for allocating the combined statistics to
the individual months.

84
C

ov
id

 E
co

no
m

ic
s 5

3,
 2

3 
O

ct
ob

er
 2

02
0:

 7
2-

10
9



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

of foreign nations to 199. Furthermore, it is important to note that case and death counts are based on

daily reports and subject to some mismeasurement due long reporting chains. To address this issue we use

aggregated monthly statistics and restrict the primary estimation sample to a set of 64 countries for which

we observe case and death counts for six consecutive months in 2020. We test the sensitivity of all of our

results against this sample restriction and obtain robust coefficient estimates when we expand the set of

countries.

Lastly, we augment our trade and Covid-19 data with detailed information on country-indstury-specific

value added trade. Specifically, we derive data on FVA contributing to Chinese exports and ‘indirect value-

added exports’ (DVX) provided by Chinese exporters to foreign country trade from the UNCTAD-Eora

Global Value Chain Database.7 These data are based on a host of national and regional input-output tables

and can be used to characterize the global GVC network of over 187 countries and 123 industries from 1990

to 2019 (2017-2019 values are forecasted) (Casella et al., 2019). To avoid any contemporaneous feedback

effects from the pandemic and forecasting errors for the most recent years, we hold these statistics constant

at their respective 2016 values. To finalize our data, we build an industry-commodity concordance that

maps 84 of the 123 Chinese sectors reported in the EORA dataset and 86 out of 97 traded commodities

into 43 categories of industries producing tradable goods. Combining the information on FVA with the

international cases counts and Chinese trade data allows us to calculate our GVC contagion measure for 43

export industries according to Equation (3).

We summarize this novel dataset by considering each of its unique dimensions separately. In Table 1,

we begin from the perspective of Chinese provinces. Column (1) provides a concordance between Chinese

provinces and regions. whereas columns (2) through (7) offer a detailed view on the provincial exposure to

the domestic supply shock, the international demand shock, and the GVC contagion. Columns (2) through

(5), for example, report monthly averages as well as cumulative totals of provincial case and death counts

from January through June 2020. The data show a large degree of variation in the severity of the provincial-

level outbreaks with total confirmed cases ranging from 1 in Tainjin to 68,135 in Hubei, where the city

of Wuhan is located. Consequently, we expect the intensity of the domestic supply shock to also vary

significantly across these provinces.

7FVA and DVX are measures borrowed from the GVC literature. At the bilateral level, these represent the individual country-
industry-to-country-industry linkages that make up the GVC networks. While FVA measures the importance of foreign country
exports to Chinese producers of exported commodities, DVX determines how important industry-specific Chinese exports are as an
intermediate input in the value added that is exported by foreign countries (Koopman et al., 2014).
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Table 1: Chinese Provincial Summary Statistics

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Export Exposure to Covid-19
Yr.-over-Yr. Change
(Jan.-Jun. 2019-20)

Chinese Chinese Avg. New Avg. New Total Total Trade wgt. GVC Total Exports Exports
Province Region Cases Deaths Cases Deaths Foreign Cont. Exports ($ bil.) ($ Bil.) (%)

per Month per Month Cases (Jan.-Jun. 2019)

Anhui Province East 165.2 1.0 991 6 10,104.6 64.7 19.2 0.6 3.2
Beijing North 153.7 1.5 922 9 3,637.0 57.0 35.5 0.1 0.2
Chongqing Southwest 97.0 1.0 582 6 11,688.5 67.7 25.2 -1.0 -4.0
Fujian Province East 60.5 0.2 363 1 9,010.1 61.6 59.9 -7.8 -13.1
Gansu Province Northwest 27.3 0.3 164 2 3,257.6 60.0 1.0 -0.4 -43.0
Guangdong Province South Central 273.5 1.3 1,641 8 8,066.6 62.6 292.0 -33.7 -11.5
Guangxi Zhuang Aut. Region South Central 42.3 0.3 254 2 4,130.3 61.8 19.3 -2.4 -12.2
Guizhou Province Southwest 24.5 0.3 147 2 3,660.3 63.2 2.1 0.1 6.5
Hainan Province South Central 28.5 1.0 171 6 5,568.7 56.3 2.4 -0.4 -18.2
Hebei Province North 58.2 1.0 349 6 7,763.1 62.8 16.0 -0.3 -1.6
Heilongjiang Province Northeast 39.7 0.2 238 1 5,388.8 57.9 2.4 0.0 0.6
Henan Province South Central 212.7 3.7 1,276 22 14,613.9 62.7 21.3 -0.4 -2.1
Hubei Province South Central 11,355.8 752.0 68,135 4,512 8,615.4 63.7 15.7 -1.7 -10.7
Hunan Province South Central 169.8 0.7 1019 4 5,785.9 61.1 18.9 0.5 2.5
Inner Mongolia Aut. Region North 157.8 2.2 947 13 5,074.3 53.2 2.7 -0.3 -11.8
Jiangsu Province East 109.0 0.0 654 0 9,805.0 64.2 189.9 -16.5 -8.7
Jiangxi Province East 155.3 0.2 932 1 7,149.9 63.4 16.8 3.6 21.5
Jilin Province Northeast 33.0 0.0 198 0 5,178.4 60.1 2.4 -0.3 -11.7
Liaoning Province Northeast 118.7 1.2 712 7 5,510.5 63.0 22.8 -4.4 -19.3
Ningxia Hui Aut. Region Northwest 12.5 0.0 75 0 7,413.7 54.0 1.1 -0.5 -45.0
Qinghai Province Northwest 3.0 0.0 18 0 5,346.2 46.3 0.2 -0.1 -64.6
Shaanxi Province Northwest 53.3 0.5 320 3 4,848.4 65.0 14.3 -1.7 -11.9
Shandong Province East 132.0 1.2 792 7 7,704.1 62.4 77.6 -2.0 -2.6
Shanghai Province East 25.8 0.3 155 2 9,686.1 63.9 93.9 -2.4 -2.5
Shanxi Province North 25.8 0.3 155 2 16,000.1 63.1 5.1 -0.6 -12.5
Sichuan Province Southwest 99.2 0.5 595 3 10,295.8 65.5 24.8 3.8 15.4
Tianjin North 33.0 0.5 198 3 7,643.7 63.8 21.1 -1.4 -6.6
Tibet Aut. Region Southwest 0.2 0.0 1 0 773.0 62.1 0.2 -0.1 -60.4
Xingjiang Uygur Aut. Region Northwest 12.7 0.5 76 3 1,978.2 63.4 6.7 -1.9 -28.4
Yunnan Province Southwest 30.8 0.3 185 2 2,502.0 57.6 6.4 -1.0 -15.5
Zhejiang Province East 211.5 0.2 1,269 1 9,426.4 62.9 154.7 -0.2 -0.1

Total - - 83,534 4,634 217,626.3 - 1,171.4 -72.8 -6.2%

Notes: Monthly information on provincial progression of the pandemic, including new cases, new deaths as well as total cumulative cases and deaths were
obtained from Chinese National Health Commission. Monthly province-level statistic on Chinese exports are published by the General Administration of
Customs of the People’s Republic of China. , Monthly statistics on the number of international cases are sourced from the European Centre for Disease
Prevention and Control. Lastly, FVA data to calculate the GVC contagion measure stems from the UNCTAD-Eora Global Value Chain Database.
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In column (6), we present the sum of trade-weighted international case counts that each province faces

in the destination countries of its exports.8 Total Chinese export exposure to trade-weighted international

cases amount to nearly 220,000 cases, while provincial level exposure ranges from 773 to 16,000. We inter-

pret this as evidence that each province faces a significant amount of export exposure to foreign infections

and is likely to suffer the ramifications of the international demand shock.

In column (7), we report our GVC contagion variable (see Equation (3)), which measures the degree of

industry-specific exposure to all international Coronavirus infections. For the purposes of this summary,

we determine the provincial-level exposure to GVC contagion by weighting our industry-specific variable

with each province’s trade composition across these affected industries. Again, we use the first six months

of 2019 to determine these trade weights predating the Coronavirus outbreak. The data show that, since

every Chinese province is engaged in exports of commodities that are exposed to the disruptions of the

underlying international supply chains, each region is similarly vulnerable to GVC contagion in aggregate.

Our measure ranges from 46.3 in the Qinghai province to 67.7 in Chongqing.

We combine these intensity measures of the pandemic-induced supply and demand shocks with infor-

mation on the total and relative year-over-year change in provincial exports between the first halves of 2019

and 2020 (columns (9) and (10)). The data provide preliminary evidence that domestic confirmed Coron-

avirus cases, trade-weighted international infections, and GVC contagion all negatively correlate with the

total change in provincial exports. In other words, greater intensity of the local outbreak and higher lev-

els of exposure to the foreign cases, either directly through the demand channel or indirectly through the

disruption of the GVC network, coincide with greater losses in exports during the first half of 2020. In-

terestingly, Table 1 also shows that provinces with a more severe local outbreak face greater exposure to

foreign cases, both directly through demand for its own exports to these countries and indirectly through

the ‘infected’ value added produced by foreign countries participating in the GVC network that provides

intermediate inputs to Chinese exporters.

Overall, Table 1 shows that Chinese exports during the first half of 2020 fall by $72.8 billion relative to

the previous year. This total reduction in exports amounts to a 6.2% year-over-year loss. As Figure 1 shows,

however, this may be a very conservative estimate of the pandemic-induced losses in trade, as Chinese

exports grew by over $4 billion per month on average in 2019. Based on this 2019 trajectory, one would

have expected a 25% year-over-year increase in Chinese exports by 2020 in the absence of the pandemic.

8Trade weights are based on provincial exports during the first half of 2019.
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Shifting our perspective, we plot Figures 2a through 2c to look at the data through the lens of foreign

countries importing Chinese products. These maps depict the country-specific total number of confirmed

Coronavirus cases during our sample period (Figure 2a), as well as the trade-weighted exposure to Chinese

infections through imports from China (Figure 2b) and the relative year-over-year change in these imports

(Figure 2c). Figure 2a demonstrates that international cases during the first half of 2020 are largely concen-

trated in North America, Europe, and South America, while many African nations report smaller numbers

of total infections. In contrast, Figure 2b illustrates that global exposure to the Chinese supply disruption

(through Chinese exports) is more evenly distributed. South America, the Democratic Republic of Congo,

Tunisia, France and Poland, Zambia and several countries neighboring China (i.e. India, Pakistan, Thai-

land, Laos, and Vietnam, among others) appear most vulnerable to the Chinese supply disruption. North

America, Russia, Germany, Italy, and Spain, and many African nations, including Morocco, Algeria, Egypt,

Sudan, Angola, and South Africa, among others, also face above average levels of exposure.

Figure 2c links these pandemic patterns to country-specific changes in imports from China and shows

that North and South American countries, as well as nations located in the northern and southern regions

of Africa, or those neighboring China experience the largest relative reductions in imports from China.

Somewhat unexpectedly, many European nations, which face a large number of domestic infections and/or

a high degree of exposure to the Chinese supply disruptions, indicate very moderate reductions in imports

from China (or even slight increases).

Next, we consider the dynamic dimension of our data and trace the year-over-year monthly changes in

Chinese regional-level exports and continental imports from China over time (see Figures 3a through 3f).

The bar charts plot the progression of trade adjustments in January, March, and May of 2020 against the

number of new domestic cases as well as the level of exposure to new international infections. The figures

show that early pandemic-induced changes in Chinese exports, both from the Chinese and international

perspectives, are more correlated with the local number of infections than the exposure to overseas cases.

That is, while all Chinese regions face some exposure to new international Coronavirus cases, East and

South Central China, for example, experience the highest numbers of new infections and also report the

largest reductions in exports (Figures 3a and 3c). Similarly, from the international perspective, all continents

appear to face a relatively even level of exposure to Chinese cases (through imports from China), but Asia,

North America, and Europe illustrate largest reductions in imports from China while also reporting the

highest numbers of new infections in January and March 2020 (Figures 3b and 3d).
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Total Cases
(2493,113781]
(371,2493]
(42,371]
[1,42]
No data

(a) Total International Covid-19 Cases (Jan.-June 2020)

Import-weighted Chinese
Case Exposure
(1870,13560]
(1585.5,1870]
(1343,1585.5]
[519,1343]
No data

(b) International Exposure to Chinese Cases (Jan.-June 2020)

Yr-over-Yr % Change in
Imports from China
[-67,-11]
(-11,-5]
(-5,5]
(5,5842]
No data

(c) International Change in Imports from China (Jan.-June 2019 to 2020)

Figure 2: Int’l Distribution of Covid-19 Cases and Changes in Imports from China
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By May 2020, the number of new Chinese infections has fallen drastically and the previously noted cor-

relations are much less apparent. While South Central and East Chinese provinces continue to experience

the largest year-over-year reductions in exports, the North and Northeastern provinces report the largest

number in new infections in May 2020 (see Figure 3e). Interestingly, European countries, which reported

some of the largest reductions in imports from China earlier in 2020, experience a notable year-over-year

rise in imports from China by May 2020, despite having a significant number of new infections (Figure 3f).

Lastly, we consider the industry dimension of our data. Of particular interest, of course, is the GVC

contagion that each Chinese industry faces as well as the primary contributors to this likely disruptions of

international supply chains. To this end, Table 2 lists the top ten most exposed (Panel A) and least exposed

(Panel B) industries as well as their respective GVC contagion values. As columns (1) and (2) of Table 2 show

our measure of GVC contagion ranges from 32.4 for the least exposed industry (Pulp of wood and recovered

paper and paperboard) to 74.5 for the most exposed sector (Aircraft, spacecraft, and parts thereof). While

this range suggests a fair amount of dispersion, column (2) of Table 2 also shows that we calculate a GVC

contagion value above 60 for 37 of 43 Chinese export industries. That is, almost all industries are expected

to face a significant degree of disruption to their international supply chain network.

The narrow dispersion of industry-specific GVC contagion comes from the fact that almost all Chinese

export industries procure over 80% of their international intermediate inputs from a small set of dominant

foreign suppliers. Among these manufacturing hubs that supply intermediate inputs to Chinese exports

are the United States, South Korea, Japan, Germany, Italy, Brazil, and to some extent Russia, India, and the

United Kingdom (see columns (3) and (4) of Table 2). Because of these similar dependencies, most Chinese

export industries face a similar degree of GVC contagion.

As suggested by Baldwin and Freeman (2020), manufacturing sectors appear more vulnerable to GVC

contagion than exports of other sectors. We note that there are several key manufacturing sectors among

the top ten most exposed industries. These include manufactured aircraft and spacecraft, vehicles, railway,

ships, nuclear reactors, machinery, and mechanical appliances, among others. In contrast, as one might

expect, the group of least exposed Chinese export industries includes basic commodities, such as ores, slag,

and ash, mineral fuels and oils, as well as iron and steel and animal and vegetable products (see column

(1) of Table 2). Some industries that do not necessarily fit this pattern include man-made fibres and textiles,

fabrics, as well as furniture.
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Figure 3: Monthly Exposure to Chinese and Int’l Covid-19 Cases and Changes in Trade
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Table 2: GVC Contagion by Chinese Export Industry

(1) (2) (3) (4) (5) (6)
Industry GVC-C Top 5 Contributing Foreign Countries GVC-C Y-o-Y Change

Share in Exports
of Top 5 (Jan.-June, 2019-20)

(%) ($ bil.) (%)

Panel A: Top Ten
Aircraft, spacecraft, and parts thereof 74.5 U.S., South Korea, Japan, Germany, Italy 84.4 -0.3 -15.2
Raw hides, Articles of leather, Furskins, Prepared feathers, etc. 74.0 South Korea, U.S., Italy, Japan, Germany 87.1 -5.4 -27.8
Vehicles other than railway and parts and accessories thereof 70.2 U.S., South Korea, Japan, Germany, Brazil 84.5 -4.5 -12.6
Nuclear reactors, machinery and mechanical appliances and parts thereof 69.7 U.S., South Korea, Japan, Germany, Brazil 83.2 -9.6 -4.7
Ships, boats and floating structures 67.5 U.S., South Korea, Japan, Germany, Italy 84.0 -1.8 -15.9
Base metals (other than iron and steel), and articles thereof, etc. 66.7 South Korea U.S., Brazil, Japan, Germany 82.6 -2.5 -13.6
Tools, implements, cutlery, other parts and articles of base metal 66.6 U.S., South Korea, Japan, Germany, Brazil 82.4 -1.9 -11.3
Railway or tramway locomotives, track fixtures and fittings, etc. 66.5 U.S., South Korea, Japan, Germany, Brazil 82.7 -1.0 -21.2
Tobacco and manufactured tobacco substitutes 66.4 U.S., South Korea, Japan, Germany, Italy 84.2 -0.2 -36.6
Printed books, newspapers, pictures, etc. 65.8 U.S., South Korea, Japan, Germany, Italy 84.3 -0.4 -23.1

Panel B: Bottom Ten
Iron and steel and articles thereof 61.7 U.S., South Korea, Brazil, Japan, India 81.0 -6.2 -11.5
Animal or vegetable fats and oils, etc. 61.1 U.S., South Korea, Japan, Germany, Russia 79.8 0.1 27.0
Residues and waste from the food industries, animal fodder 60.4 U.S., South Korea, Japan, Russia, Germany 81.1 0.1 3.8
Man-made staple fibres, filaments and textile materials, etc. 60.4 U.S., South Korea, Japan, Italy, Germany 81.8 -7.0 -24.4
Knitted or crocheted fabrics 59.8 U.S., South Korea, Japan, Italy, Germany 82.2 -2.3 -26.1
Preparations of meat, of fish or of crustaceans, etc. 59.8 U.S., South Korea, Japan, Russia, Germany 81.4 -0.5 -11.8
Furniture; bedding, mattresses, lamps and lighting fittings, etc. 59.7 U.S., South Korea, Japan, Russia, Germany 81.0 -5.8 -10.7
Ores, slag and ash 58.6 U.S., South Korea, Japan, Germany, Italy 79.6 0.2 25.4
Mineral fuels, mineral oils and products thereof, etc. 49.8 U.S., South Korea, Japan, Iran, Germany 78.3 -4.0 -17.5
Pulp of wood, recovered (waste and scrap) paper or paperboard, etc. 32.4 U.S., South Korea, UK, Brazil, Japan 73.3 -0.0 -12.5

Notes: Our calculation of GVC contagion (see Equation (3)) depends on the data on foreign-country-to-Chinese-industry Foreign Value Added provided by the
UNCTAD-Eora Global Value Chain Database (Casella et al., 2019). We merge the FVA data with Chinese trade statistics based on a two-digit HS classification. Our
concordance between the Eora GVC database and the GACC trade data aggregates industries across the two datasets and yields 43 matching export industries. The
concordance is available upon request.
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A calculation of the year-over-year changes (from January through June 2020 relative to 2019) in Chinese

exports across the ten most and least exposed industries reveals that more exposure to GVC contagion

positively correlates with the losses in exports, both in terms of total and relative changes. Column (5)

shows that year-over-year changes in exports for the ten most exposed industries ranges from -$0.2 billion

to -$9.6 billion, whereas the ten least exposed industries experience export changes ranging from -$7.0

billion to $0.2 billion. In relative terms, export losses for the ten most exposed industries range from 4.7% to

36.6%, whereas the least exposed industries report relative year-over-year changes in exports ranging from

-26.1% to 27.0% (see column (6) of Table 2).

5 Results

Building on the patterns observed in the raw data, our empirical analysis consists of three components.

First, we conduct our baseline analysis following Equation (2) and estimate the elasticity of Chinese ex-

ports with respect to new domestic and international Covid-19 infections reported in the province of origin

and country of destination. We test the sensitivity of our estimates against model alterations, including

alternative pandemic measures and fixed effects specifications, as well as more relaxed sample restrictions.

Our baseline findings point to significant and robust disruptions in Chinese exports in response to the local

and international outbreak of the novel Coronavirus.

Next, we explore the heterogeneity of these baseline pandemic effects on Chinese exports across various

country and commodity characteristics. New infections in OECD and other high income countries seem to

cause smaller disruptions of imports from China than in other lower income countries. Geography matters

as well. As suggested by Figure 2c, Chinese exports to neighboring countries experience greater disruptions

from international infections.

Lastly, we estimate Equation (4) in an effort to differentiate the international demand effect from the dis-

ruptions resulting from the pandemic-induced GVC contagion. The dynamic coefficient estimates suggest

that the Coronavirus pandemic impacts trade through all three of the discussed transmission channels; and

does so in a staggered fashion over the first 3 month after a rise in new infections.

Across all specifications we correct our standard errors for two-way clusters controlling for correlations

at the bilateral province-to-foreign-country and commodity levels. Depending on the estimation sample,

this correction adjusts standard errors across 1900 to 5000 bilateral trade province-country pairs and 43 to
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97 commodity clusters. Our inference is robust to alternative standard error specifications.

5.1 Baseline Estimates

We begin by estimating Equation (2). Panel A of Table 3 shows the baseline coefficient estimates. We build

from a set of parsimonious specifications that only consider a one-sided pandemic effect (columns (1) and

(2)) or two-sided impact with a limited set of fixed effects (column (3)) to the preferred baseline specifi-

cation given in column (4). This specification produces the elasticities of Chinese exports with respect to

local and foreign Coronavirus cases while controlling for bilateral province-to-foreign-country unobserv-

able characteristics, time-invariant differences across industries, and macroeconomic trends. Across all

of the parsimonious and preferred specifications the coefficients carry the expected negative sign and are

statistically significant at the 1% level. Our estimates suggest that a 1% rise in new Chinese provincial Coro-

navirus cases reduces exports from that province by 3.7%. Foreign cases appear even more detrimental to

trade. A 1% rise in new foreign cases in the destination country lowers it’s imports from China by 4.6%

(see, for example, column (4) in Panel A of Table 3). These findings are consistent across alternative fixed

effects specifications (column (3)) and considering only one of these shocks (columns (1) and (2)).

Reassuringly, these pandemic effects are also robust to alternative measures of the severity of the Coro-

navirus outbreak. Column (5) of Panel A of Table 3 shows that a 1% increase in new Covid-19 related

deaths in Chinese provinces reduces exports by 12.5%, whereas 1% rise in new pandemic-related deaths

in the destination country lowers imports from China by 4.6% - equivalent to the new case effect. Column

(6) demonstrates the impacts of cumulative Coronavirus cases. Both the local and foreign accumulation

of Coronavirus infections reduces Chinese exports. A 1% rise in provincial or foreign country cumulative

cases drops Chinese exports by 8.1% and 3.5%, respectively.

These results are not driven by our sample restrictions excluding the U.S., due to the ongoing trade

war, or other foreign countries, for which we only observe a few months of case data. While including the

latter set of countries reduces the magnitude of the foreign case effect, the coefficients remain statistically

significant at the 1% level. For this sample, a 1% increase in local and foreign cases reduces Chinese exports

by 4.3% and 2.5% respectively (see column (7) of Panel A of Table 3). Even the inclusion Chinese exports

to the United States does not overturn our baseline results. As the coefficients reported in column (8) of

Panel A show, local and foreign outbreaks of the novel Coronavirus have economically and statistically
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Table 3: Pandemic Effects on Chinese Exports

Dependent Variable: (1) (2) (3) (4) (5) (6) (7) (8)
Inverse Hyperbolic

Sine of Exports
Restrict.
Sample

Restrict.
Sample

Restrict.
Sample

Restrict.
Sample

Restrict.
Sample

Restrict.
Sample

Exclude
U.S. only

Incl.
U.S.

Panel A: Baseline Estimates
New Chinese Cases -0.037 -0.037 -0.037 -0.043 -0.042

(0.000) (0.000) (0.000) (0.000) (0.000)
New Int’l Cases -0.046 -0.046 -0.046 -0.025 -0.024

(0.000) (0.000) (0.000) (0.000) (0.000)
New Chinese Deaths -0.125

(0.000)
New Int’l Deaths -0.046

(0.000)
Cumulative Chinese Cases -0.081

(0.000)
Cumulative Int’l Cases -0.035

(0.001)

N 1683468 1683468 1683468 1683468 1683468 1683468 3675150 3717810
R2 0.438 0.438 0.438 0.457 0.457 0.457 0.445 0.449
Province FE Y Y Y N N N N N
Country FE Y Y Y N N N N N
Bilateral FE N N N Y Y Y Y Y
Commodity FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y Y Y Y Y

Panel B: Heterogeneity Analysis
Country Type Geography Commodity Type

OECD High Contiguous Inverse Pharma- Air DVX FVA
Income Neighbor Distance ceuticals Borne

New Chinese Cases -0.036 -0.036 -0.039 -0.043 -0.038 -0.037 -0.028 -0.026
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.016) (0.017)

x Zj -0.004 -0.002 0.015 25.499 0.049 -0.013 0.012 0.005
(0.545) (0.762) (0.130) (0.343) (0.000) (0.698) (0.181) (0.058)

New Int’l Cases -0.061 -0.063 -0.033 -0.026 -0.048 -0.044 -0.044 -0.042
(0.000) (0.000) (0.000) (0.021) (0.000) (0.000) (0.000) (0.000)

x Zj 0.040 0.035 -0.058 -104.071 0.122 -0.050 0.005 0.002
(0.000) (0.000) (0.000) (0.004) (0.000) (0.002) 0.526 0.526

R2 0.457 0.457 0.457 0.457 0.457 0.457 0.526 0.526
N 1683468 1683468 1683468 1683468 1683468 1683468 875304 875304
Bilateral FE Y Y Y Y Y Y Y Y
Commodity FE Y Y Y Y Y Y Y Y
Time FE Y Y Y Y Y Y Y Y

Notes: P-values are reported in the parenthesis. The underlying standard errors are two-way clustered controlling for cor-
relations at the bilateral province-to-foreign-country and commodity levels. In panel A, the regression results presented in
columns (1) through (3) include separate province and foreign country fixed effects, whereas the regression underlying the
results given in columns (4) through (8) include bilateral province-foreign-country fixed effects. All specifications include
commodity and time fixed effects. In panel B, we investigate the heterogeneity of the pandemic effects on Chinese exports
across subgroups of countries (i.e. OECD, high income) with respect to geography (i.e. countries contiguous to China or in-
teracted with inverse distance from China) and commodities (i.e. pharmaceutical products or products primarily transported
by air). Across columns (1)-(6) of Panel A and all columns of Panel B, we restrict the sample excluding exports to the U.S. and
countries for which we observe less than six month of case data on the Covid-19 outbreak. This restricted sample consists of
a total of 1927 bilateral Chinese province to foreign country pairs, for which we observe a positive value of exports for at least
one of 97 commodities over at least one of 18 months from January 2019 to June 2020. Columns (7) and (8) of Panel A include
other foreign countries with fewer Coronavirus case observations and the United States, respectively.
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significant ramifications for international trade.

5.2 Heterogeneity Analysis

Given the wide set of political responses to the pandemic and varying capacities to deal with an outbreak

as well as varying dependencies on international trade, one should not expect these baseline estimates to be

representative of the pandemic impact on imports of every commodity or by every country. To shed light

on these potential idiosyncrasies, we conduct a heterogeneity analysis of the local and foreign case effects

on Chinese exports. Specifically, we explore the variation in pandemic impacts on Chinese exports along

the foreign country and commodity dimensions. Expanding the baseline specification (Equation (2)) with

two simple interaction terms (ciptZl and cijtZl where l = j or k), we delineate the effects on new infections

across different economic or geographical attributes of the destination countries (Zj) as well as a few select

commodity characteristics (Zk). The results are presented in Panel B of Table 3.

We begin by differentiating the new case effects on Chinese exports to OECD and other high-income

countries from those experienced by other, lower income countries. Columns (1) and (2) of Panel B of Table

3 show that a rise in new Chinese infections has essentially the same impact on exports irrespective of the

destination country’s level of income. One way to interpret this finding is that in the face of local supply

disruptions Chinese exporters do not discriminate across foreign buyers from high to low income countries.

In contrast, we find that the import effects of new infections in the destination countries depends on the

country’s level of development. Our coefficients suggest that the impact on imports from China by non-

OECD and low to medium income countries is more than twice as large as the trade disruption experienced

by OECD and other high income countries. A 1% rise in new infections in an OECD country, for example,

reduces imports from China by 2.1%(=-0.061+0.04), whereas the same relative increase in new case in a non-

OECD country reduces imports from China by 6.1% (see column (1), Panel B of Table 3). This indicates that

the pandemic-induced demand shock for traded products is much more severe in low-income countries.

Geography also plays a role in the determination of the pandemic-induced trade effects. Similar to the

influence of income levels, however, geography only shapes the import effects of new infections in the

destination country. While Chinese provincial infections have similar effects on exports to neighboring

countries and those at greater distances, the impact of destination country cases on imports from China

decreases with distance to its trade partner (see columns (3) and (4), Panel B of Table 3). More specifically,
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we find that a 1% increase in new Coronavirus infections in a country neighboring China, such as India,

Pakistan, or Vietnam, causes Chinese exports to these countries to drop by close to 9%(=-0.033+(-0.058)) on

average. This effect is nearly three times as large as the estimated coefficient for non-neighboring countries.

With respect to commodity characteristics, we start by investigating whether Chinese exports of phar-

maceuticals are affected differently from other types of traded products. As expected, the generally negative

impact of the the pandemic on Chinese exports is completely overturned for trade in pharmaceuticals and

other medical equipment. While the effects of new local Chinese infections is essentially neutral on exports

of pharmaceuticals, a rise of new infections in the destination country stimulates imports in medical goods

from China. Specifically, Chinese exports of pharmaceuticals rise by 1.1% and 7.4% for every 1% increase

new Chinese and new foreign cases, while the average Chinese export falls by 3.8% and 4.8%, respectively

(see column (5), Panel B of Table 3).

Aside from isolating the effects on medical goods, we also consider the influence transportation on

shaping the Covid-19 pandemic effect on Chinese exports. Given the significant restrictions on international

travel of persons, which has lead to a 70% decline in air traffic that also facilitates traded products (World

Trade Organization, 2020a), we estimate whether this policy response has the unintended consequence of

significantly reducing Chinese exports of commodities that are typically transported by air. As one might

expect, we find that the elasticity of exports of likely airborne products, such as jewelry or life animals, with

respect to new infections in the destination country is more than twice as large as the elasticity of exports

in other, likely seaborne commodities (see column (6), Panel B of Table 3).

Lastly, we conclude this first component of our heterogeneity analysis by investigating whether individ-

ual linkages in the GVC network influence the impact of new Chinese and foreign infections. This analysis

is a precursor to the primary analysis that aims to capture the full GVC contagion effect. Specifically, we

test whether Chinese exports are more or less sensitive to new infections 1) if these Chinese exports provide

a higher value added to the exports of the foreign destination country (column (7), Panel B of Table 3) or

2) if these exports are flowing to a foreign country that in turn provides a higher value added to Chinese

production through its own exports to China (column (8), Panel B of Table 3). While all of the coefficients

on the relevant interactions terms are positive, only one is statistically significant at the 10% level. This

statistically significant coefficient suggests that new local infections in China have a marginally smaller ef-

fect on exports to foreign countries that, in turn, provide more FVA to Chinese exporters. While this could

be interpreted as strategic behavior that favors trade partners that in turn provide important inputs into
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Chinese production, the evidence is suggestive at best. Overall, we take the results presented in columns

(7) and (8) of Panel B of Table 3 to mean that individual links in the GVC networks play only a minor role

in shaping the pandemic-induced trade outcomes. We look to our primary results to shed more light on the

cumulative GVC contagion effect.

5.3 Primary Estimates of Domestic Supply, Int’l Demand, and GVC Contagion Effects

Our final and primary analysis investigates the individual transmission mechanisms underlying the previ-

ously established pandemic effects on Chinese exports. Estimating Equation (4), we distinguish between

the domestic supply effect (see Panel A of Table 4), the international demand effect (see Panel B of Table 4),

and the GVC contagion effect (see Panel C of Table 4) on Chinese exports as well as their respective tim-

ing. As previously mentioned, the merger between the FVA data and our statistics on Chinese exports and

global infections to calculate the GVC contagion measure limits our estimation sample to 43 matching in-

dustries and 1900 bilateral Chinese-province-foreign-country pairs reducing the number observations from

1.68 million to around 875,000. Because of this sample restriction, we begin by re-estimating our baseline

specification. The coefficient estimates in column (1) of Table 4 are statistically significant at the 5% level or

below and show that new Chinese and international infections continue to reduce Chinese exports.

Interestingly, the point estimates remain virtually unchanged when we include our contemporaneous

GVC contagion measure (see column (2)). That is, during the month that a Chinese province experiences

a 1% rise in new Coronavirus infections the ensuing domestic supply shock reduces Chinese exports by

2.6%. Similarly, the international demand shock due to a rise in destination country cases is immediate and

large. A 1% rise in new infections reduces the demand for imports from China by 4.2%. In contrast, the

potential GVC contagion effect from the disruption of foreign production does not take hold during the

month of a rise in international infections. The point estimate reported in column (2) of Table 4 is positive

and statistically insignificant.

The results reported in columns (3) through (5) of Table 4 consider the dynamic effects of these three

shocks from the first to the third month after a rise in Chinese and international infections. As one might

expect, the disruption of Chinese export supply worsens during the first month after a rise in new infections

and then slowly dampens over the next two month. A one standard deviation increase in new Chinese

infections (see Panel D of Table 5), for example, reduces Chinese exports by more than 11%(=-0.044*2.595)
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Table 4: Supply and Demand Effects of the Covid-19 Pandemic on Chinese Exports

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Individual Effects All Effects

Baseline
Con-

tempo-
raneous

1st

Lag
2nd

Lag
3rd

Lag
IHS of

Exports
IHS of

Exports Exports Exports

Panel A: Domestic Supply Effects
New Chinese Casespt -0.026 -0.026 -0.011 -0.020 -61,136 -35,817

(0.020) (0.028) (0.263) (0.004) (0.021) (0.027)
New Chinese Casespt−1 -0.044 -0.037 -0.055 -91,506 -56,967

(0.002) (0.000) (0.000) (0.011) (0.008)
New Chinese Casespt−2 -0.026 -0.012 -0.014 35,951 17,518

(0.075) (0.375) (0.142) (0.117) (0.192)
New Chinese Casept−3 -0.001 0.021 0.028 65,531 51,164

(0.966) (0.163) (0.015) (0.151) (0.087)
Panel B: International Demand Effects
New Int’l Casesjt -0.042 -0.042 -0.042 -0.011 -108,624 -92,018

(0.000) (0.000) (0.000) (0.101) (0.003) (0.005)
New Int’l Casesjt−1 -0.029 -0.019 -0.026 -9,521 20,681

(0.002) (0.020) (0.000) (0.703) (0.278)
New Int’l Casesjt−2 0.016 0.037 0.017 81,663 72,851

(0.097) (0.000) (0.008) (0.030) (0.039)
New Int’l Casesjt−3 0.037 0.029 0.014 83,029 92,118

(0.002) (0.012) (0.129) (0.099) (0.050)
Panel C: GVC Contagion Effect
GVC-Ckt 0.004 0.007 0.010 -44,236 -26,270

(0.705) (0.462) (0.283) (0.287) (0.286)
GVC-Ckt−1 -0.054 -0.055 -0.056 -70,941 -49,081

(0.001) (0.000) (0.000) (0.065) (0.058)
GVC-Ckt−2 -0.048 -0.035 -0.033 -23,357 -25,997

(0.001) (0.010) (0.003) (0.252) (0.087)
GVC-Ckt−3 -0.018 -0.024 -0.026 -4,643 -9,505

(0.333) (0.223) (0.136) (0.874) (0.585)

N 875304 875304 875304 875304 875304 875304 2061972 875304 2061972
R2 0.526 0.526 0.526 0.526 0.526 0.526 0.519 0.157 0.139
Bilateral FE Y Y Y Y Y Y Y Y Y
Commodity FE Y Y Y Y Y Y Y Y Y
Time FE Y Y Y Y Y Y Y Y Y

Panel D: Summary Statistics
Restricted Sample Mean SD IQR 5th Perc. 95th Perc.

New Chinese Casespt 3.419 2.595 4.836 0 7.137
New Int’l Casesjt 3.837 3.154 6.534 0 8.712
GVC-Ckt 10.681 3.427 3.883 6.483 17.219
Unrestricted Sample
New Chinese Casespt 3.469 2.612 4.836 0 7.137
New Int’l Casesjt 2.828 3.065 5.497 0 8.336
GVC-Ckt 10.698 3.462 3.883 6.483 17.219

Notes: P-values are reported in the parenthesis. The underlying standard errors are two-way clustered controlling for correla-
tions at the bilateral province-to-foreign-country and commodity levels. The restricted estimation sample consists of 43 traded
commodities observed over 18 months for 1,900 bilateral Chinese province-to-foreign-country pairs (columns (1)-(6) and (8))
and 5,119 bilateral pairs for the unrestricted sample, including the U.S. and other countries for which we observe Covid-19 data
only after January 2020 (columns (7) and (9)). Column (1) presents the baseline estimates for this new sample. Starting with
Column (2), we also control for the GVC contagion effect. Columns (2) through (5) report coefficient estimates for each of the
separately estimated dynamic effects ranging from the contemporaneous impacts to the impact after three month. Columns (6)
through (10) report coefficient estimates for each of the jointly estimated dynamic effects. For columns (1) through (8), the de-
pendent variable is given by the IHS of Chinese exports, whereas for columns (9) and (10) the dependent variable is given by
total Chinese exports in U.S. $.
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one month after the worsening of the Coronavirus outbreak, around 7%(=-0.026*2.595) two month later,

and less than 0.5%(=0.001*2.595) three month after the initial domestic supply disruption.

The effects of a shock to international demand are much less persistent and in fact reverse over time.

While the immediate impact of a one standard deviation increase in new destination country infections

on imports from China is large at -13.2%(=-0.042*3.154), it falls to -9.1%(=-0.029*3.154) one month later.

By the second month, the initially negative demand shock has worn off and imports from China actually

rise with a greater number of past destination country infections. This perhaps is the result of the supply

disruption in foreign countries that consequently become more dependent on and demand more imports

from China. Specifically, we find that two to three month after a one standard deviation increase in new

destination country cases imports from China increase by more than 5%(=0.016*3.154) to 11%(=0.037*3.154),

respectively (see columns (4) and (5), Panel B of Table 4).

The effects of GVC contagion arise one month after the initial increase in new foreign cases and are

relatively persistent during the second and third months thereafter. Based on our estimates, we find that

a one standard deviation increase in our GVC contagion measure (see Panel D of Table 5) reduces Chi-

nese exports by more 18.5%(=-0.054*3.427) one month after the initial outbreak and 16.4%(=-0.048*3.427)

the following month. The coefficient on the third lag suggests a reduction of 6.2%(=-0.018*3.427), but is

statistically indistinguishable from zero (see columns (3) through (5), Panel C of Table 4).

Next, we consider the joint estimation of these dynamic pandemic effects on trade (see column (6)).

The domestic supply shock in China continues to exert a negative influence on Chinese exports during the

month of a rise in new Coronavirus infections and two months thereafter. However, only the coefficient on

the first month lag is statistically significant at the 1% level. The international demand shock on Chinese

exports is economically and statistically significant across the immediate and lagged effects. As before, the

pandemic shock in the destination countries reduces imports from China during the month of the outbreak

and one month thereafter, but reverses during the second and third months after the initial rise in foreign

cases. It appears that foreign countries become more reliant on imports from China as their domestic supply

is being disrupted by the pandemic. Similar to the individual analyses, the joint estimation shows that the

GVC contagion is not immediate but takes hold one to two months after the outbreak in foreign countries.

We test the sensitivity of these results against our initial sample restrictions as well as our inverse hy-

perbolic sine transformation of Chinese exports. Including the U.S. and countries for which we observe

new Coronavirus cases only after January, 2020 largely reiterates and strengthens our primary findings.
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The domestic supply shock in China once again becomes statistically significant during the month of a rise

in local cases, but also starts to reverse after a three-month lag. The international demand shock and GVC

contagion coefficients continue to exhibit the aforementioned patterns (see column (7) of Table 4).

The regression analysis of the triple pandemic effect on the untransformed value of Chinese exports also

produces similar estimate patterns with and without the aforementioned sample restrictions (see columns

(8) and (9) of Table 4). The interpretation of our coefficient estimates, however, changes. Considering

the restricted sample analysis (column (8) of Table 4), we find that, on average, a one standard deviation

increase in new Chinese Coronavirus infections reduces Chinese exports of a given commodity from a

given province to a given foreign country by around $150,000 during the month of the outbreak and nearly

$240,000 one month later. Thereafter, the domestic supply shock evaporates quickly and becomes statis-

tically insignificant. On the demand side, a one standard deviation increase in destination country cases

reduces the average province-to-foreign-country trade flow of a two-digit commodity by close to $350,000

during the month of the outbreak. The first lagged effect becomes statistically insignificant. Thereafter,

a previous rise in foreign infections stimulates the demand for imports from China. On average, a one

standard deviation increase in destination country cases raise the demand for Chinese exports by around

$250,000 two to three month after the outbreak. The estimated dynamic GVC contagion effects are all neg-

ative but only statistically significant during the first month after the rise in global infections. This point

estimate suggests that a one standard deviation increase in the ‘infection’ of the supply chain network

reduces Chinese-province-to-foreign country exports of a two-digit commodity by nearly $250,000 on av-

erage. Expanding the sample to include the U.S. and other countries with limited pandemic information

yields very similar qualitative and quantitative evidence of the triple effect of the pandemic (see column (9)

of Table 4).

6 Discussion and Limitations

Overall, these results suggest that all three channels contribute to the pandemic-induced trade effects, but

also indicate that the timing and magnitudes of the domestic supply shock, international demand shock

and impact of GVC contagion vary distinctly. In Table 5, we determine the relative trade effects implied by

the data and our regression estimates reported in columns (8) and (9) of Table 4. We calculate the predicted

relative changes in Chinese exports and break out the monthly dynamics starting from the immediate im-
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pact through the predicted changes three months after a rise in new infections. We use these dynamic

counterfactual estimates to produce a breakdown of the individual relative contributions across the three

supply and demand shocks for each of the immediate and lagged time periods. Statistics reported in Panel

A of Table 5 are based on the restricted sample, whereas Panel B presents this information based on the

unrestricted sample.

Column (1) of Table 5 shows the predicted percentage changes in Chinese exports combining the effects

of the domestic supply shock, international demand shock and GVC contagion. In aggregate, our estimates

suggest that the pandemic has reduced Chinese exports by as much as 45%. For several reasons, however,

we interpret this estimate as an upper bound to the potential pandemic-induced losses in Chinese exports.

First, we note that column (1) of Table 5 demonstrates that the vast majority of these losses are incurred

immediately or one month after a rise of new infections. As time goes on, we find that Chinese exports

tend to partially recover some of those losses. Three month after the initial rise in new global infections,

for example, Chinese exports are predicted to rise by more than 5% above the Covid-free counterfactual

implying that the initial outbreak stimulates Chinese exports to affected countries after two to three months.

Given that our sample ends in June 2020, this gives hope that Chinese exports may recover further by the

end of 2020 and total annual losses in exports will likely fall below our benchmark estimate.

Secondly, we note that many of our observations of exports are zero-valued imposing a potentially im-

portant limitation for our model. Untructated predictions based on linear regression estimates might sug-

gest negative trade values and consequently overestimate the predicted losses in exports. To test whether

this issue plays a significant role, we restrict the sample to bilateral trade flows of two-digit commodities

that post a positive export value for every month in our sample and re-estimate our primary model. Reas-

suringly, many commodities are consistently exported, such that this restricted sample accounts for about

85% of total Chinese exports we observe. The coefficient estimates are qualitatively and quantitatively

consistent with our primary results and the predicted pandemic-induced loss in Chinese exports remains

relatively stable at about 40%.

Lastly, we note that many of the previously-cited estimates of global losses in exports are considerably

lower than our 40% to 45% benchmark, but typically based on year-over-year comparisons in trade. A re-

cent press release by the WTO, for example, predicts global year-over-year annual losses in trade at around

18.5%, up from a pessimistic initial estimate of 32% (World Trade Organization, 2020b). Our data suggest

a 17% year-over-year decline in Chinese exports in January and February and an overall year-over-year
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Table 5: Aggregate Pandemic Effect & Individual Shock Contributions

(1) (2) (3) (4)
Timing of Predicted ∆ Rel. Impact Contributions (%)
Impact in Exports Supply Demand GVC

(%) Shock Shock Contagion

Panel A: Restricted Sample (excl. U.S.)
Immediate only -27.3 19.0 38.0 43.0
1st Lag only -24.3 29.5 2.8 67.7
2nd Lag only 2.1 129.0 202.2 -231.2
3rd Lag only 5.7 72.1 40.9 -13.0
Aggregate Impact -43.8 12.8 10.4 76.8

Panel B: Unrestricted Sample (incl. U.S.)
Immediate only -25.7 18.7 39.1 42.2
1st Lag only -23.1 30.5 -7.2 76.8
2nd Lag only -2.3 -87.4 -166.0 353.4
3rd Lag only 5.2 97.4 48.1 -45.4
Aggregate Impact -45.9 10.3 4.4 85.4

Notes: Predicted levels of exports are based on regressions reported in columns (8) and (9) of
Table 4. Column (1) reports the predicted relative changes in Chinese exports against a Covid-
free counterfactual. Columns (2) through (4) report the relative contributions of the domestic
supply shock, foreign demand shock, and GVC contagion to the predicted change in exports.

reduction of around 5% to 10% during the first half of 2020 depending on the sample. While these statistics

are much lower than our benchmark estimate, it is important to note that such year-over-year comparisons

ignore the annual growth in exports. In our sample, Chinese exports rose, on average, by about 2.1% per

month in 2019 or 25% annually (see Figure 1). Accordingly, an improved estimate of total losses should

combine year-over-year losses with the anticipated export growth forgone due to the pandemic. Based on

our data, this suggests a rough estimate of Chinese export reductions of about 30% to 35%, which is line

with our benchmark estimates, particularly when excluding zero-valued observations.

An interesting question that remains is which of the three pandemic-induced supply and demand

shocks drives the aggregate results. To answer this question we decompose our aggregate estimates into the

individual contributions across the three transmission channels. Our estimates show that GVC contagion

exerts the largest and most consistent negative influence on the change in Chinese exports. In aggregate,

the impact of GVC contagion explains 76.8% to 85.4% of the total reduction in Chinese exports depending

on the estimation sample. The domestic supply shock in China accounts for around 10% to 13%, while the

international demand shock only explains 4.4% in the unrestricted sample and around 10% in the restricted

sample. As such, the mechanics underlying the current pandemic effects on trade appear to be very distinct
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from those explaining the Great Trade Collapse in 2008-09. Many researchers have argued that the 2008-09

GTC is largely attributable to the collapse in global demand, particularly that for durable goods, due the fi-

nancial crisis. In contrast, our estimates suggest that the majority of the pandemic-induced GTC of 2020 can

be explained by the unparalleled disruption of GVCs and the reversal of the international demand shock

two months after the initial outbreak.

It is important to note that these aggregate statistics mask the importance of the domestic supply and

international demand shocks during any of the dynamic period under consideration. While GVC contagion

exerts a persistent negative influence on Chinese exports the effects of the shocks to domestic supply and

in particular international demand reverse after two to three month. As a result, the domestic supply and

international demand shocks offset some of their initially negative impacts and appear as less important

contributors to the losses in Chinese exports in aggregate. If we, however, isolate the contemporaneous

shock contributions during the month of a rise in new infections, for example, we find a much more even

distribution. While the domestic supply shock in China explains around 20% of the immediate reduction in

Chinese exports, the international demand shock and ensuing GVC contagion account for around 40% each.

One month after the initial rise in infections, the contributions to export losses of the domestic supply shock

in China and GVC contagion rises to around 30% and 70%, respectively, while demand shock essentially

evaporates. Thereafter, our estimates indicate that the initially negative Chinese supply and international

demand shocks are overturned and in fact drive an increase in Chinese exports, while GVC contagion

continues to slow export growth. Because of this offsetting effect of the domestic supply and international

demand shocks against the persistent negative impact of GVC contagion, the vast majority of the overall

reduction in Chinese exports is attributable to the global supply chain disruptions and sets this pandemic

apart from other previous impediments to trade.

A final caveat to our results are the facts that the underlying estimation sample only considers Chinese

exports and consists 43 industries producing tradable commodities that match the UNCTAD Eora FVA

data. Aside from a few sectors producing tradable raw materials and basic commodities, the majority of

these industries can be classified as manufacturing. Manufacturing industries, of course, are inherently

more susceptible to the disruption of global supply chain networks. Moreover, China has positioned itself

as the global manufacturing hub and is very much at the center of many GVCs. Consequently, Chinese

exporters provide critical intermediate inputs to foreign producers and are heavily dependent on foreign

suppliers. Keeping these facts in mind, it is not surprising that the estimated contribution of GVC contagion
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to the reduction in Chinese exports outweighs the effects of the domestic supply and international demand

shocks. If our analysis focused on exports of less globally integrated countries and/or industries with less

complex production processes, we would expect the GVC contagion effect to be less dominant.

7 Conclusions

In this study, we have investigated the impact of the 2020 novel Coronavirus pandemic on Chinese exports

during the first half of 2020. Our estimates show that Chinese exports are highly sensitive to the domestic

and global rise in infections and that the pandemic has imposed a major barrier to international trade.

Average Chinese export elasticities with respect to domestic and foreign destination country infections

range from -2.5 to -4.6. In aggregate, the pandemic-induced losses in Chinese exports during the first half

of 2020 are immediate and may be as large 40% to 45%, but will likely decline by the end of the year.

Across the three potential transmission mechanisms, we find that GVC contagion is the primary driver

of these losses in Chinese exports. While the domestic supply and international demand shocks exert a

significant negative influence on Chinese exports during the first two months of an outbreak, the impact

of GVC contagion persists over three months after the initial rise in Coronavirus infections. Moreover, we

find that the pandemic has the unique feature that the international demand shock reverses after about two

months after the initial outbreak and stimulates Chinese exports to affected destination countries, perhaps

to mitigate their own supply disruptions. The combination of this unique demand shock pattern and domi-

nant GVC contagion effect set the pandemic apart from previous trade shocks of this magnitude, including

the primarily demand-driven GTC of 2008-09.

While our study provides some useful insights into the trade effects of the novel Coronavirus pan-

demic, many important questions remain. Future research may investigate whether the pandemic effects

highlighted here are unique to Chinese exports or can be generalized to other countries and other tradable

sectors. Moreover, our dynamic short-run analysis illustrates some interesting supply and demand shock

patterns that deserve more attention in the medium to long-run. As more data become available, it will be

important to understand whether the dominant GVC contagion effect found in our study is short-lived or

whether this intense disruption of global supply chain networks has lasting consequences for international

trade. We believe that our findings suggest that Covid-19 has the potential to reshape global production

networks and alter the way policymakers think about international dependencies in critical sectors. As
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such our findings as well as the answers to these future research questions are relevant to private and

public decision makers alike.
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