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The value of a cure: An asset 
pricing perspective1

Viral V. Acharya,2 Timothy Johnson,3 Suresh Sundaresan4 and 
Steven Zheng5

Date submitted: 26 November 2020; Date accepted: 26 November 2020

We provide an estimate of the value of a cure using the joint behavior 
of stock prices and a vaccine progress indicator during the ongoing 
COVID-19 pandemic. Our indicator is based on the chronology of stage-
by-stage progress of individual vaccines and related news. We construct a 
general equilibrium regime-switching model of repeated pandemics and 
stages of vaccine progress wherein the representative agent withdraws 
labor and alters consumption endogenously to mitigate health risk. The 
value of a cure in the resulting asset-pricing framework is intimately 
linked to the relative labor supply across states. The observed stock 
market response to vaccine progress serves to identify this quantity, 
allowing us to use the model to estimate the economy-wide welfare gain 
that would be attributable to a cure. In our estimation, and with standard 
preference parameters, the value of the ability to end the pandemic is 
worth 5-15% of total wealth. This value rises substantially when there is 
uncertainty about the frequency and duration of pandemics. Agents place 
almost as much value on the ability to resolve the uncertainty as they do 
on the value of the cure itself. This effect is stronger – not weaker – when 
agents have a preference for later resolution of uncertainty. The policy 
implication is that understanding the fundamental biological and social 
determinants of future pandemics may be as important as resolving the 
immediate crisis.

1	 We thank Dick Berner, Rob Engle, Matt Richardson, Venky Venkateswaran, and Olivier Wang for their 
comments and suggestions. We also received valuable comments from participants at NYU Stern Finance 
Department seminar, Advisory Board Meeting of NYU Stern Volatility and Risk Institute, and UIUC Gies 
Finance Department seminar. We are grateful to the Vaccine Centre at the London School of Hygiene & 
Tropical Medicine for sharing data.

2	 New York University, Stern School of Business, NBER, and CEPR.
3	 University of Illinois at Urbana-Champaign.
4	 Columbia University, Graduate School of Business.
5	 New York University, Stern School of Business.
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1 Introduction

Quantifying the scale of the economic damage caused by the coronavirus pandemic is a crucial

step in assessing policy responses along social, medical, fiscal, and monetary dimensions. This

paper builds on the hypothesis that stock markets may contain valuable information for gauging

this magnitude. Stock markets – which corrected by as much as 40-50% at the outbreak of the pan-

demic – have rebounded robustly within six months. While there are many explanations proposed

for the seeming disconnect between the real economy ravaged by the pandemic and the buoyant

stock market, one candidate on the table relates to the progress in development of vaccines1 to end

the pandemic. On the one hand, only the arrival of an efficacious vaccine is considered as a defini-

tive event that will end the pandemic and result in robust economic recovery.2 On the other hand,

stock prices – by reflecting forward-looking expectations – should reflect the economic value of

credible progress in the development of vaccines; this value arises from the ability of vaccines

to end the pandemic and is naturally related to the scale of the economic damage caused by the

pandemic.

The relationship between stock prices and vaccine development is well-illustrated by the fol-

lowing examples. On May 18 and July 14, 2020, Moderna, one of the vaccine developing compa-

nies, announced good news relating to the progress in its Phase I clinical trials and moving to the

next stage of trials. Similarly, on November 9, 2020, Pfizer and BioNTech announced positive news

regarding their Phase III clinical trials. In response to these news, the U.S. stocks gained over $1

trillion in cumulative market capitalization over these three days, with several pandemic-exposed

sectors such as airlines, cruise ships, and hotels experiencing 10-20% appreciations on each day.

These moves were both economically large and indicative of time to deployment of a vaccine

being an important factor driving variation in stock market prices.3

In this paper, we build upon these observations and offer an asset-pricing perspective to esti-

mate the value of a cure, i.e., the amount of wealth that a representative agent would be willing

to pay for obtaining a vaccine that puts an end to the ongoing pandemic. While there are several
1We use “cure" and “vaccine" interchangeably to denote something that brings the pandemic to an end, despite being
medically very different.

2See Lauren Fedor and James Politi, Financial Times, May 18, 2020 in the Appendix.
3See (1) Matt Levine, Money Stuff, May 19, 2020, (2) Matt Levine, Money Stuff, July 16, 2020, (3) John Authers,
Bloomberg Opinion, November 10, 2020, and (4) Laurence Fletcher and Robin Wigglesworth, Financial Times, Novem-
ber 14, 2020 in the Appendix.
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estimations of how costly the pandemic is to the economy, our approach is different and novel in

that it uses stock market data to calculate the value of a cure and indirectly provides an estimate

of the pandemic’s economic cost.

First, we document empirically the joint behavior of stock returns (for market portfolio and

cross-section of industries) and expected time to deployment of a vaccine. To this end, we con-

struct a novel “vaccine progress indicator." Our indicator is based on the chronology of stage-by-

stage progress of individual vaccines (obtained from the Vaccine Centre at the London School of

Hygiene & Tropical Medicine) and related news (obtained from FactSet). Using data on vaccine

development for past epidemics and surveys during the COVID-19 pandemic, we calibrate the

probabilities of transition across different stages of vaccine development and use news to “tap"

these probabilities up or down. We then simulate over 200 vaccine “trials" corresponding to the

vaccines being developed, factoring in a correlation structure between trials based on relevant

characteristics such as their approach (“platform"), common company, etc. The result of this ex-

ercise is a vaccine progress indicator using all available information at a given point of time ex-

pressed in terms of expected time to deployment of a vaccine.4 The evolution of our indicator is

shown in Figure 1.

We then relate stock market returns to changes in the expected time to deployment of a vaccine

by regressing the returns on changes in our vaccine progress indicator, controlling for lagged

returns as well as large moves attributable to release of other macroeconomic news. Allowing

for some lead-lag structure in the relationship, e.g., due to leakage of news or dating noise in our

news data, we estimate that a reduction in the expected time to deployment of a vaccine by a year

results in an increase in the stock market return as a whole by between 4 to 8% on a daily basis.

The joint relationship exhibits the anticipated cross-sectional properties, with the co-movement

between returns and changes in the vaccine progress indicator being stronger for sectors most

affected by COVID-19 pandemic (see Figure 4).

Second, we build a general equilibrium regime-switching model of pandemics with asset pric-

ing implications to translate this empirical co-movement of stock returns and vaccine progress

indicator into the value of a cure. We develop a general equilibrium model of an economy with a

4An analogy from credit risk literature is that of a first-to-default basket in which several correlated firms are part of a
basket and the quantity of interest is the expected time to a first default.
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representative agent that has stochastic differential utility (Epstein-Zin preferences) with endoge-

nous labor and consumption choices. The state of the economy can be “normal," i.e., without a

pandemic, or in a pandemic; within the pandemic, there are several regimes mapping into the

stages of vaccine development. The economy transitions across these states based on a set of sta-

tionary probabilities. Once the economy switches out of a pandemic, another pandemic may occur

in future. Labor augments agent’s capital stock that can be readily converted into consumption;

however, labor exposes the agent to the pandemic in that within the pandemic regime, the agent

can be hit by a health shock that destroys forever a part of the agent’s capital stock, and this likeli-

hood is proportional to the labor supply.5 A key feature of the model is that the agent withdraws

labor in the pandemic states in order to mitigate the economic exposure to a health shock.

Third, we characterize the solution to the agent’s problem of choosing labor and consump-

tion in each state of the economy and the respective objective function values, which are inter-

dependent but are amenable to a straightforward numerical solution of a fixed-point problem. We

can then examine the pricing kernel and asset prices in this framework; in particular, we eval-

uate the value of a claim to future output, and study its relationship with the expected time to

switching out of a pandemic state as a theoretical counterpart to our empirical estimate of co-

movement between stock market return and changes in vaccine progress indicator. A key insight

of our asset-pricing perspective is the following: the improvement in the welfare of the agent in

switching out of a pandemic is related to the extent of contraction in labor in the pandemic state

relative to the non-pandemic one; this same labor contraction is an important statistic (modulated

by preference and pandemic parameters) determining how sensitive are stock prices to progress

towards deployment of a vaccine. The model delivers the implication that the value of moving

from a pandemic state to a non-pandemic state is simply the ratio of marginal propensity to con-

sume in the pandemic state to the marginal propensity to consume in the non-pandemic state,

augmented by the intertemporal elasticity of substitution. Thus, the desire to resolve uncertainty

sooner is informed by the endogenous consumption choices made by the household in Pandemic

states.
5The permanent loss of capital stock can be due to a variety of factors such as loss of life, reduced productivity or
attrition of human capital in working from home amidst closures of schools and lack of child care support, filing of
bankruptcies with deadweight losses in asset value, and firing of labor with difficulty in re-matching to available jobs
at a future date.
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We can therefore readily connect our empirical work to the theoretical asset-pricing perspec-

tive. With standard preferences parameters employed in the literature, the value of a cure turns

out to be worth 5-15% of wealth (formally, capital stock in the model), corresponding to an ap-

proximately 25% contraction of labor during the pandemic relative to the non-pandemic state.

The reason why the economy would attach such a large value to the vaccine is because the pan-

demic causes a permanent loss of capital stock when it effects agents, which in turn is reflected in

the significant precautionary contraction of labor during the pandemic. In spite of the simplicity of

the model of the pandemic, we can readily examine externalities in the setup. Specifically, the rep-

resentative agent can impose through its labor choice exposure for all other agents in the economy,

but not internalize this spillover; we examine the difference in the value of a cure with a pandemic

containment labor choice being made by the representative agent versus that by the central plan-

ner. Since the planner contracts the labor more and optimally reduces pandemic exposure for the

economy as a whole, the planner attaches a lower value to the cure than the representative agent

does.6

Our estimate of the value of a cure depends crucially on the frequency and the expected du-

ration of the pandemic. This raises the natural question of parameter uncertainty around these

pandemic properties. Such uncertainty is natural given the rare nature of such pandemics and

the evolving understanding of connections between various pandemics (SARS, H1N1, COVID-

19, etc.).7

This is the final exercise we undertake. We specialize our framework to just two states, non-

pandemic and pandemic (without individual stages of vaccine development), but allow for un-

certainty about frequency and duration of pandemics. The agent learns about these parameters

as pandemics arrive and end. We can extend our asset-pricing framework also to this setting with

uncertainty and learning. It turns out that the value of the cure rises sharply when there is un-

certainty about the frequency and duration of pandemics. Indeed, we find that the representative

agent would be willing to pay as much for resolution of this parameter uncertainty as for the cure

6Note, however, that the planner may attach a higher value to the cure if the arrival of the pandemic were to result in
social costs outside the capital stock dynamics for the agent.

7See, for example, “COVID-19 Is Bad. But It May Not Be the ’Big One’", Maryn McKenna, Wired, June 17, 2020,
“Coronavirus Response Shows the World Is Not Ready for Climate-Induced Pandemics", Jennifer Zhang, Columbia
University Earth Institute, February 24, 2020, and “The next pandemic: where is it coming from and how do we stop
it?", Leslie Hook, Financial Times, October 29, 2020.
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absent such uncertainty. This effect is stronger – not weaker – when agents have a preference for

later resolution of uncertainty (formally, an elasticity of intertemporal substitution, or EIS, which

is lower than the inverse coefficient of relative risk aversion) as this induces a more significant

contraction of labor during pandemics. Through the learning channel, there can also therefore be

“scarring" effects wherein agent’s consumption upon exit from a pandemic does not revert to the

pre-pandemic levels due to the increase in updated probability of future pandemics. An impor-

tant policy implication that can be drawn is that understanding the fundamental biological and

social determinants of future pandemics, for instance, whether pandemics are related to zoonotic

diseases triggered more frequently by climate change, may be as important to mitigating their

economic impact as resolving the immediate pandemic-induced crisis.

A few caveats are in order. Our model of pandemics is close to that of rare disasters in asset-

pricing literature (Barro, 2006; Gabaix, 2012; Tsai and Wachter, 2015) but with endogenous ex-

posure of the agent to disasters as well as featuring endogenous consumption, labor and asset

prices. However, we do not feature SIR-style dynamics of an individual pandemic itself. Finally,

our model also does not feature the impact of economic-stabilization policies such as fiscal or

monetary support.

The rest of the paper is organized as follows. Section 2 relates to the existing literature. Section 3

describes the construction of vaccine progress indicator and estimates of its covariance with stock

market returns. Section 4 presents our general equilibrium regime-switching model of pandemics

with endogenous labor and consumption decisions, and asset prices in this framework that in

turn help estimate the value of a cure for the pandemic. Section 5 extends (two-state version of)

the model to allow for parameter uncertainty and learning to study the impact on the value of a

cure from such uncertainty and the value attached to resolving it. Section 6 concludes with some

further directions for research. All proofs not in the main text are contained in the Appendix.

2 Related Literature

While the literature studying the economic impact of the pandemic has exploded in a short period

of time, there is relatively little focus on the role played by vaccine development and its progress.

We first relate to the theoretical literature in asset pricing that is closest to our model; we then
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relate to the empirical literature on observed contraction in employment and consumption during

the COVID-19 pandemic.

Hong et al. (2020b) study the effect of pandemics on firm valuation by embedding an asset

pricing framework with disease dynamics and a stochastic transmission rate, equipping firms

with pandemic mitigation technologies. Similar to our paper, they model vaccine arrival as a

Poisson jump process between pandemic and non-pandemic states. Hong et al. (2020a) combine

the model of Hong et al. (2020b) with pre- and post-COVID-19 analyst forecasts to infer market

expectations regarding the arrival rate of an effective vaccine and to estimate the direct effect of

infections on growth rates of earnings. In particular, they develop a regime-switching model of

sector-level earnings with shifts in their first and second moments across regimes.

In both these papers, the pricing kernel is exogenously specified for the pandemic and the

non-pandemic states. In contrast, our model is general equilibrium in nature with the representa-

tive agent choosing labor and consumption (and, in turn, investment in capital) endogenously to

mitigate health risk. Deriving asset prices from first principles in a regime-switching framework

of pandemics – which allows for several sub-states in a pandemic relating to vaccine progress – is

an important theoretical contribution of our paper. We build upon this setup further to introduce

learning when there is parameter uncertainty about pandemic parameters.8

For empirical work, Hong et al. (2020b) fix expected pandemic duration around one year but

show in comparative statics that asset prices show considerable sensitivity to the arrival rate of

the vaccine. Hong et al. (2020a) use their model to infer the arrival rate of the vaccine. In contrast,

we provide a “vaccine progress indicator" in the form of an estimated time to vaccine deployment

using actual data and related news on the clinical trials of vaccines for COVID-19 presently under

progress; we relate this vaccine progress indicator to stock market returns to infer labor contraction

in the pandemic relative to the non-pandemic state, which we then combine with our asset-pricing

framework to provide an estimate of the value that the representative agent would attach to the

vaccine.

Elenev et al. (2020) incorporate a “pandemic state" with low but disperse firm productivity

that recurs with low probability for studying government intervention in corporate credit mar-

8On a technical front, Hong et al. (2020b,a) consider aggregate transmission risk into SIR-style model, whereas our
model of health risk arising from a pandemic is closer to the literature on rare disasters cited in the Introduction.
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kets. While we do not model credit markets in our setup, our differentiating novel features are:

construction of a vaccine progress indicator and estimation of its joint relationship with stock mar-

kets, and mapping it into a general equilibrium regime-switching model of pandemics with asset

prices in order to derive an estimate of the value of a cure.

Kozlowski et al. (2020) model learning effects that lead to long-term scarring after the pan-

demic is over as policy responses relating to debt forgiveness in the current pandemic can lead to

lower leverage and consumption in the post-pandemic era.

Collin-Dufresne et al. (2016) show that learning can amplify the pricing of macroeconomic

shocks when the representative agent has Epstein-Zin preferences and Bayesian updating. Our

results on learning and the impact of parameter uncertainty on the value of a cure are related to

the findings of both these papers; our model can generate both long-term scarring in consump-

tion due to updated probability of pandemics and significant contraction of labor and consump-

tion when parameter uncertainty is high, when the Elasticity of Intertemporal Substitution is low.

Interestingly, expected time to deployment of a vaccine can be considered as a “macroeconomic

shock" in our model that affects asset prices and depends crucially on parameter uncertainty in a

manner that interacts with deep preference parameters.

We now turn to the related empirical evidence on labor and consumption. Muellbauer (2020)

models a larger drop in consumption than income with a credit-augmented consumption func-

tion. Using customized survey data, Coibion et al. (2020a,b) find the pandemic led to a 20 million

decline in the number of employed workers by the first week of April, and attributed 60 percent

of the decline in the employment-to-population ratio by May to lockdowns. Dingel and Neiman

(2020), Mongey et al. (2020) and Beland et al. (2020) classify occupations by their work from home

feasibility, documenting more adverse labor market outcomes for occupations with high proxim-

ity among coworkers.9 For those looking for employment, Forsythe et al. (2020) find job vacan-

cies had fallen 40% by April 2020 compared to pre-COVID-19 levels, with the largest declines in

leisure, hospitality and non-essential retail. Consequently, Bernstein et al. (2020) find a flight-to-

safety effect, with job seekers shifting searches from early-stage ventures to larger firms, while

also considering lower salaries, and alternative roles and locations.

9Apollo Global Management’s Torsten Slok estimates 27 million jobs are in close physical proximity occupations, led
by health care, leisure and hospitality, and teachers.
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Baker et al. (2020a) deploy transaction-level data to study consumption responses to the pan-

demic, finding an increase in the beginning in an attempt to stockpile home goods, followed by

a sharp decrease as the virus spread and stay at home orders were enforced. Using customized

survey data, Coibion et al. (2020a) find lockdowns decreased consumer spending by 30 percent,

with the largest drops in travel and clothing. Bachas et al. (2020) find a rebound in spending, espe-

cially for low-income households, since mid-April. Chetty et al. (2020) further find high-income

households significantly reduced spending, especially on services that require in-person interac-

tions, leading to business losses and layoffs in the most affluent neighborhoods. Outside the US,

Sheridan et al. (2020) and Andersen et al. (2020) find aggregate spending decreased 27% in the first

seven weeks following Denmark’s shutdown, with the majority of the decline caused by the virus

itself regardless of social distancing laws. Chen et al. (2020) use daily transaction data in China

and find severe declines in spending, especially in dining, entertainment and travel sectors.

While this literature estimates the costs of the pandemic for the economy by directly looking

at consumption and labor data, our approach is to estimate the value of a cure that takes the

economy out of the pandemic. We construct a novel vaccine progress indicator, examine the stock

market’s sensitivity to this indicator, and then use a structural asset pricing framework to then

back out the value of a cure.

A number of papers have modeled climate risk using the approach that long-run risk of cli-

mate risk can manifest itself through Poisson shocks to the capital stock, which is the approach we

are pursuing here. A detailed survey of this literature is provided by Tsai and Wachter (2015) in

the context of better understanding asset pricing puzzles. A number of papers, including Pindyck

and Wang (2013), explore the welfare costs associated with climate risk. This paper addresses

the issue of how much should society be willing to pay to reduce the probability or impact of a

catastrophe.

3 Vaccine Progress Indicator and its Covariance with Stock Returns

As described in the introduction, the paper’s hypothesis is that the stock market may convey

important information about the social value of resolving the pandemic. This section explains

how we attempt to extract that information. There are two distinct steps. First, we construct a

method for summarizing the state of vaccine research throughout 2020. Second, we estimate the
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stock market response to its changes.

3.1 Measuring Vaccine Progress

Readers are, by now, broadly familiar with the contours of the global effort to develop a vaccine for

COVID-19. Through many of the excellent tracker apps, dashboards, and periodic survey articles

we were all educated about the dozens of candidates under study, and their progress through

pre-clinical work and clinical trials. On any given day, the state of the entire enterprise is a high-

dimensional object consisting of multiple pieces of information about all of the projects. Our goal

is to reduce that high dimensional object to a single number. Also, crucially, the number should

have a tangible physical (or biological or economic) interpretation.

The single most salient aspect of vaccine development, the number that nearly all discussions

boiled down to, was the anticipated time until widespread availability of a proven candidate. We

therefore construct estimators of that quantity, using information that was available to observers

at the time.

To do this, we introduce a stochastic model of candidate progress. We obtain the pre-clinical

dates and trial history of vaccine candidates from the London School of Hygiene & Tropical

Medicine (LSHTM). The model necessarily involves many parameters for which we have little

hope of obtaining precise estimates. Details of our choices of all parameters are explained in Ap-

pendix B. We will validate our choices both by examining robustness to reasonable variation and

by comparing them to other actual ex ante forecasts published during the sample period.10

Our stochastic model is a means to simulate, on each day t, the ultimate outcome of each of the

candidates given their state of development as of that day. That simulated outcome, for candidate

n ∈ {1, . . . , N}, is either success, defined as widespread deployment by some date Tn > t, or failure,

which can be described as Tn = ∞. Using the model, we can then run a large number, M, of joint

simulations as of day t encompassing all of the candidates. In each simulation, m, the earliest time

to widespread availability is T?
m = minn{Tn}. The cross-simulation average value of T?

m < ∞ is the

model’s expectation Ts
t for the time to success, conditional on at least one of the active candidates

succeeding. Some fraction, µ, of simulations will result in all candidates failing. Our forecast is

the full expectation, EtT? defined as (1− µ)Ts
t + µT f , where T f is an estimate of the expected time

10The appendix also presents evidence that our distributional assumptions are reasonably consistent with the (small)
set of observed trial outcomes.
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to first success by a project other than those that are currently active.11 In addition to the mean,

the model also delivers the full distribution, and hence all quantiles, of T? as of each date.

The model starts with a standard partition of the clinical trial sequences between pre-clinical,

Phases I, II, III, application submission, and approval stages. A candidate in each stage either

succeeds and moves to the next stage or fails.12 We append a final stage: deployment, which an

approved vaccine possibly still could not attain, e.g., due to technical infeasibility or emergence

of serious safety concerns. Our assumption is that each stage is characterized by an unconditional

probability of success, πs, and an expected duration, τs.13 We model each stage transition as a

2-state Markov chain with exponentially distributed times. Specifically, if we define two exponen-

tially distributed random variables tu and td with intensities

λu
s =

πs

τs
and λd

s =
1− πs

τs
(1)

then it is straightforward to show that ts = min{tu, td} is exponentially distributed with intensity

1/τs and that the probability of success, defined as tu < td, is πs.

Since our objective is to model the joint outcomes of all the vaccine projects, we need to spec-

ify the joint distribution of successes and failures. We do this by assuming the exponential times

{tu
n}N

n=1 are generated by a Gaussian copula with correlation matrix R, and likewise for the times

{td
n}. The elements of the correlation matrix are set to positive values to capture the dependence

between candidates. This positive dependence arises most obviously because all the vaccines

are targeting the same pathogen, and will succeed or fail largely due to its inherent biological

strengths and weaknesses. Beyond that, we also capture the dependence of candidates on one of

a handful of strategies (or platforms) for stimulating immunological response. If, for example, an

RNA-based platform proves to be safe and effective, then all candidates in this family would have

a higher likelihood of success.14 Finally, some research teams (institutes or companies) have sev-
11The model does not attempt to forecast the entry of new projects.
12This is a simplification. Candidate vaccines will actually undergo multiple overlapping trial sequences with different

patient populations, delivery modalities, or medical objectives (endpoints). One sequence could fail while others
succeed. Trials can also combine phases I and II or II and III. In our empirical implementation we focus on the most
advanced trial of a candidate. This follows Wong et al. (2018).

13Our success probabilities are taken from pharmaceutical research firm BioMedTracker and are based upon historical
outcomes of infectious disease drug trials. Our duration estimates are based on projections from the pharmaceutical
and financial press during 2020. See Appendix A for several examples.

14In October, two candidate vaccines had their trials paused due to adverse reactions: both were based on adenovirus
platforms.
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eral candidate vaccines. Positive correlation between their outcomes may arise through reliance

on common technological components, resources, or abilities.

As described so far, the “state” of a candidate is simply its current clinical-trial phase. This

is not realistic in the sense that initiation of a new phase, as captured by the commencement of a

new stage trial, is often known in advance. The trial start date (as reported to the U.S. government)

may not actually be the date of the arrival of news about the candidate. Likewise, within a stage

(as a trial is progressing), the “state” is not static. Information about the trial (preliminary results),

or more complete information about earlier trials, may be published or released to the press or

leaked. Trial schedule information (delays or acceleration) may be announced. Regulatory actions

by non-U.S. authorities may also convey information. For all of these reasons, we modify our

framework by adjusting the probability of each candidate’s current-stage success on the date of

arrival of news specific to it.15 Because positive news is more likely to be revealed than negative

news, we also deterministically depreciate each candidate’s success probability in the absence

of news. We will verify below that our conclusions about the stock market response to vaccine

progress are not driven by our assumptions regarding the arrival of interim trial news.16

Our indicator of vaccine progress aims to capture expectations about deployment principally

in the U.S. since this is likely to be the primary concern of U.S. markets. Because of political con-

siderations, we believe that observers at the time judged it to be very improbable that vaccines

being developed in China and Russia would be the first to achieve widespread deployment in the

U.S. Our base case construction for this reason omits candidates coded in the LSHTM data as orig-

inating in these countries.17 This assumption is consistent with the progress of these candidates

receiving minimal coverage in the U.S. financial press. We will also verify that including them in

our index does not change our primary results.

It is worth acknowledging that, in focusing on the scientific advancement of the individual

candidates, our measure does not currently attempt to capture general news about the vaccine de-

velopment environment and policy. For example, news about the acquisition and deployment of

15Our source of news is FactSet StreetAccount. We classify vaccine related stories into seven positive types and six
negative types. The types and probability adjustments are given in the appendix.

16Technically, altering the marginal success probabilities within a trial induces a non-exponential unconditional
marginal distribution of trial duration. We retain the exponential assumption of the Gaussian copula for tractability.
Our results are robust to using constant probabilities.

17We retain candidates coded as multi-country projects including Russia or China.
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delivery infrastructure by governments (or the failure to do so) could certainly affect estimates of

the time to availability. We also do not capture the news content of government financial support

programs, or pre-purchase agreements. The Fall of 2020 saw open debate about the standards that

would be applied for regulatory approval, the outcome of which could have affected forecasts as

well. While we could alter our index based on some subjective assessment of the impact of news

of this type, we feel we have less basis for making such adjustments than we do for modeling

clinical trial progress.

Figure 1: Expected Time to Vaccine Deployment

Note: Figure shows our estimate of the expected time to widespread deployment of a COVID-19 vaccine in
years. Dashed lines show one standard deviation bands.

Figure 1 shows the model’s estimation of the expected time to widespread deployment from

January through October of 2020, and Figure 2 shows the number of active vaccine projects. The

starting value of the index, in January, is determined by our choice of the parameter T f because,

with very few candidates and none in clinical trials, there was a high probability that the first

success would come from a candidate not yet active. However this parameter effectively becomes

irrelevant by March when there are dozens of projects. The index is almost monotonically declin-

13

Co
vi

d 
Ec

on
om

ic
s 6

1, 
11

 D
ec

em
be

r 2
02

0:
 1-

72



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

ing, since there were no reported trial failures and very few instances of negative news through

at least August. The crucial aspects of the index for our purposes are the timing and sizes of the

down jumps corresponding to the arrival of good news.

Figure 2: Number of Active COVID-19 Vaccine Projects

Note: Figure shows the number of active COVID-19 vaccine candidates. Data as of November 2020.

3.1.1 Validation

We are aware of two datasets that contain actual forecasts of vaccine arrival times, as made in

real-time. As a validation check, we compare our index to these.

The two data sets are surveys, to which individuals supplied their forecasts of the earliest

date of vaccine availability. Comparisons between these pooled forecasts and our index require

some intermediate steps and assumptions. In both cases, the outcomes being forecast are given

as pre-specified date ranges. Thus, on each survey date, we know the percentage of respondents

whose point forecast fell in each bin. For each survey we estimate the median response, assum-

ing a uniform distribution of responses within the bin containing the median.18 Under the same

18While it is tempting to equate the surveys’ distribution of forecasts with a forecasted distribution, these are concep-
tually distinct objects that need not coincide. In addition, in each survey, the farthest out forecast bin is unbounded,
meaning that “never” (or “more than 3 years from now”) is a possible response. So, for both reasons, it is problematic
to compute a weighted average forecast across the response bins. The modal response bin is also not a good summary
statistic for the same reason, and also because it depends on the bin widths.
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assumption, we can also tabulate the percentage of forecasters above and below our index.

The first survey is conducted by Deutsche Bank and sent to 800 “global market participants”

asking them when they think the first “working” vaccine will be “available”. The survey was con-

ducted four times between May and September. The second survey is conducted by Good Judge-

ment Inc., a consulting firm that solicits the opinion of “elite superforecasters.” Their question

asks specifically “when will enough doses of FDA-approved COVID-19 vaccine(s) to inoculate 25

million people be distributed in the United States?” (Information about the number of responders

is not available.) Responses are tabulated daily, starting from April 24th. For brevity, we examine

month-end dates. Table 1 summarizes the comparison.

Table 1: Forecast Comparison

Deutsche Bank
Date Survey median VPI % respondents below

May 1.158 0.958 35.0
June 1.162 0.893 31.2
July 0.920 0.595 20.8
Sep 0.625 0.561 44.3

Superforecasters
Date Survey median VPI % respondents below

April 1.902 1.291 16.1
May 1.603 0.958 14.6
June 1.189 0.893 31.0
July 0.808 0.595 32.7
August 0.519 0.606 58.4
September 0.445 0.518 57.2

Note: Table compares forecasts for the earliest date of vaccine availability in years. The top panel compares
the median from a survey conducted by Deutsche Bank, while the bottom panel compares the median from
a survey conducted by Good Judgement Inc. The column VPI denotes the forecast from our estimated
vaccine progress indicator, and the last column reports the percent of respondents from each survey with
forecasts below ours. Survey respondents are reported in calendar intervals. The comparison assumes
a uniform distribution of forecasts in time within the median bin. The survey dates are as of the end of
the month in the first column, except the Deutsche Bank September survey which is for the week ending
September 11, 2020.

Our forecasts align well with those of the Deutsche Bank survey, though ours are more opti-

mistic than the median. The optimism is more pronounced when compared to the superforecasters

early in the pandemic. Although we are within the interquartile range of forecasts after May, the
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earlier dates see us in the left-tail of the distribution. A possible reason is the specificity of the

particular survey question, which specifies an exact quantity of the vaccine being distributed in

the United States. Respondents may have more skeptical of feasible deployment than we have

assumed. We will examine robustness of our results below to increasing the probability of an

approved vaccine failing in the deployment stage.

3.2 Stock Market Response

Figure 3 plots vaccine progress (inverted) along with the market portfolio’s year-to-date perfor-

mance. In principle, assessing the stock market response to changes in vaccine progress should

be straightforward. However, the circumstance of 2020 complicate the task. In a nutshell, there

was a lot else going on. The amount of information for markets to digest was enormous and mul-

tifaceted. Even the information flow just about coronavirus research other than vaccine trials was

voluminous. Thus, how to control for non-vaccine related news becomes an important considera-

tion.

Figure 3: Vaccine Progress and Market Performance

Note: Figure plots vaccine progress (inverted and left axis) along with the cumulated year-to-date excess
return on the value-weight CRSP index (right axis). The risk-free rate is the one-month Treasury bill rate.
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Our approach is to run daily regressions of stock market returns on vaccine progress and

exclude days that contained large stock market moves that have been reliably judged to have been

due to other sources of news. Specifically, we employ the classification of Baker et al. (2020b) for

causes of market moves greater than 2.5% in absolute value. Those authors enlist the opinion of

three analysts for each such day and ask them to assign weights to types of causes (e.g., corporate

news, election results, monetary policy, etc). Under their classification, research on vaccines falls

under their “other” category, whereas news about the pandemic itself was usually categorized as

“macroeconomic”. We view market returns on such days as very unlikely to have been driven by

vaccine news if none of the three analysts assigns more than 25% weight to the other category, or if

the return was more negative than -2.5%. The latter exclusion is based on the fact that there were

no significant vaccine setbacks prior to the end of our data window,19 and on the prior knowledge

that positive vaccine progress cannot be negative news. We include dummies for all of the non-

vaccine large-news days. There are 28 such days, 17 of which were in March.

Our approach is imperfect. We have no other controls outside these large move days when

there were certainly other factors influencing markets. Including dummy variables effectively

reduces our sample size. However, at a minimum we are limiting the ability of our estimation to

misattribute the largest market moves to vaccine progress.

Table 2 shows the resulting regression estimates of market impact. These regression specifi-

cations include changes in the vaccine progress indicator in a five day window around each day,

t, on which stock returns are measured. Including changes on days other than the event day-t

guards against our imperfect attribution of the date of news arrival. A priori we suspect it is more

likely that, if anything, markets have information before it is reflected in our index, meaning the

relevant reaction would correspond to the t + 1 or t + 2 coefficients. On the other hand, given the

sheer volume of news being processed during this period, we do not rule out delayed incorpora-

tion of information, which would show up in the t− 1 or t− 2 coefficients. The specifications also

include two lags of the dependent variable to control for short-term liquidity effects. Specifically,

19As of the time of this draft, Baker et al. (2020b)’s website had classified days through June. We append September 3
and September 23 as two dates with negative jumps but arguably were driven by non-vaccine progress related news.
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the regression is

Re
m,t = α +

2

∑
h=−2

βh∆VPIt+h + γ1Re
m,t−1 + γ2Re

m,t−2 +
28

∑
j=1

δj1jump j + εt (2)

where ∆VPIt is the change in vaccine progress indicator, and 1jump j is a dummy equal to one on

the jth jump date from Baker et al. (2020b). The dependent variable is the return to the value-

weighted CRSP index from January 1 through September 30, 2020. Due to data availability, from

October 1 through October 31, 2020 we use the return on the S&P 500 index.

The first column of the table shows results using our baseline vaccine progress indicator. The

coefficient pattern shows the largest negative responses on the t − 1 and t + 2 index changes.

Focusing on the cumulative impact, the sum of the βs is statistically significant at the 1% level. The

precisely estimated point estimate implies a stock market increase of 8.6 percent on a decrease in

expected time to deployment of one year. This number seems plausible: subsequent to our sample,

on November 9th the U.S. stock market opened almost 4% higher in response to positive news

from Pfizer on Phase III trial results. This would imply more sensitivity than the OLS estimate if,

as seems likely, the news revised estimates of time to deployment by less than six months.20

Returning to Table 2, the second and third columns implement the methodology of Kogan

et al. (2017) (hereafter KPSS). Those authors use an empirical Bayes procedure to estimate the

market value of patents using the stock returns to the patenting firm in an event window sur-

rounding patent publication date. As in our case, economic logic rules out a negative response:

vaccine progress cannot be unfavorable news just as the value of a patent must be positive. KPSS

employ a truncated normal prior distribution for the unobserved true response. Conditional on

knowing the return standard deviation, the posterior mean estimate of the response coefficient is

then also distributed as a truncated normal. The estimation methodology generalizes naturally to

a multivariate regression setting.21 (O’hagan (1973).) The table reports posterior mean and stan-

20While it is not the focus of the paper, it is also interesting to ask about the total contribution of vaccine progress to
the stock market performance during the sample period, and to the post-March rally in particular. From March 23 to
October 30 our forecast dropped by 2.5 years, of which 0.6 years was expected. The OLS point estimate then implies
that vaccine news in total would have induced a 16.3% positive return. The return on the S&P 500 during this period
was 47.7%. Hence, vaccine progress could have been responsible for 34% (16.3/47.7-1) of the rally.

21We follow KPSS in assuming a zero mean under the prior for the pre-truncated normal distribution, assuming returns
are normally distributed, and in using the regression residual to estimate the return standard deviation. Note that
the estimation still includes dummy variable for market jump days making the normality assumption plausible.
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dard deviations for the individual response coefficients and for their sum.22 The methodology

is sensitive to the specification of the prior variance of the coefficient distribution. Both column

2 and column 3 assume that the pre-truncated normal distribution for βt has standard deviation

equal to 1, which, after truncation, implies that 84% of the distribution mass is below 1.0. We

regard this as a conservative (or skeptical) choice.23 Results in the second column use the same

(independent) prior for all the response coefficients. The third column uses a smaller prior mean

for the lead and lag coefficients.24 Both priors produce posterior means for the sum of the five

response coefficients that are lower than the OLS estimate: -6.3% in column 2 and -4.0% in column

3. Note that the estimation is sharp in both cases in the sense that each posterior mean is several

standard deviations from zero. The calibrations in the next section will adopt the range of these

conservative estimates.

To examine the robustness of the response estimates to the assumptions built into the vaccine

progress index, we repeat the OLS specification estimation with five variants. These results are

shown in Table 3. The first column repeats the original specification from the prior table. The

next two columns vary the assumptions about the effect of news to phase success probabilities.

(Column 2 includes no news adjustments. Column 3 applies the news adjustments to only the

current trial phase, as opposed to all future phases.) The fourth column increases the base copula

correlation from 0.2 to 0.4. The fifth column lowers the assumed probability of successful deploy-

ment following approval. Finally the sixth column includes vaccine candidates whose research

program is based in Russia or China. In all of these cases the sum of the response coefficients is

highly statistically significant and the point estimates are in the same range as those in Table 2.

3.3 Industry Responses

As a validity check for our primary findings, we examine the price impact of vaccine progress

in the cross-section of industries. We first gauge each industry’s exposure to COVID-19 by its

cumulative return from February 1, 2020 to March 22, 2020. This period captures the rapid onset

22Moments of the truncated multivariate normal posterior are computed using the algorithm of Kan and Robotti (2017)
using software provided by Raymond Kan. http://www-2.rotman.utoronto.ca/~kan/research.htm.

23Note that making the prior more diffuse does not, in this case, correspond to making it less informative: the prior
mean increases with the standard deviation.

24Specifically, the assumption is that pre-truncated standard deviations are 0.7 for the first lead and lag and 0.5 for the
second lead and lag.
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Table 2: Stock Market Sensitivity to Vaccine Progress News

(1) (2) (3)
OLS KPSS (Prior 1) KPSS (Prior 2)

γ1 -0.068 -0.088 -0.096
(0.066) (0.035) (0.035)

γ2 0.126 0.158 0.164
(0.091) (0.035) (0.035)

βt−2 1.226 -0.550 -0.384
(1.580) (0.433) (0.292)

βt−1 -4.365 -2.012 -1.327
(3.278) (0.763) (0.599)

βt -0.725 -0.837 -0.881
(0.895) (0.561) (0.577)

βt+1 0.533 -0.561 -0.465
(1.967) (0.438) (0.361)

βt+2 -5.312 -2.344 -0.961
(1.800) (0.773) (0.456)

α 0.199 0.237 0.276
(0.098) (0.080) (0.078)

∑2
h=−2 βt+h -8.643 -6.305 -4.017

(0.653) (1.354) (1.050)

N 206 206 206

Note: Table shows the results from regression (2). The dependent variable is daily excess returns on the
market portfolio in percent. Independent variables include two lags of excess returns on the market port-
folio, a five-day window of changes in vaccine progress indicator in years, and dummy variables for each
jump date from Baker et al. (2020b) unrelated to news about vaccine progress. The return on the value-
weighted CRSP index is used from January 1, 2020 to September 30, 2020, followed by the return on the
S&P 500 index until October 31, 2020. All columns are employ the baseline specification with news ap-
plying to all states, deterministic depreciation, base copula correlation of 0.2, probability of success in the
application state equal to 0.95 and excludes candidates from China and Russia. Column 1 estimates the
regression using OLS. Columns 2 and 3 employ the methodology of Kogan et al. (2017) and assume the
pre-truncated normal distribution for βt has standard deviation equal to 1. Column 2 further uses the same
prior for all response coefficients, while column 3 uses a pre-truncated standard deviation of 0.7 for the first
lead and lag and 0.5 for the second lead and lag. OLS results display Newey-West standard errors with four
lags in parentheses and standard deviation of the F-statistic on ∑2

h=−2 βt+h. KPSS results show posterior
standard deviations in parentheses.

of COVID-19 in the US, with a public health emergency being declared on January 31, 202025

and a national emergency declared on March 13, 2020.26 Importantly, this period precedes the

25https://www.hhs.gov/about/news/2020/01/31/secretary-azar-declares-public-health-emergency-us-2019-novel-
coronavirus.html

26https://www.whitehouse.gov/presidential-actions/proclamation-declaring-national-emergency-concerning-novel-
coronavirus-disease-covid-19-outbreak/
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COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Table 3: Stock Market Sensitivity to Vaccine Progress News – Robustness

(1) (2) (3) (4) (5) (6)

News All states None Current state All states All states All states
Depreciation Y N Y Y Y Y
Cor(n,n′) 0.2 0.2 0.2 0.4 0.2 0.2
πbase

approval 0.95 0.95 0.95 0.95 0.85 0.95
Ex-China and Russia Y Y Y Y Y N

γ1 -0.068 -0.063 -0.065 -0.074 -0.072 -0.083
(-1.04) (-0.95) (-1.00) (-1.10) (-1.09) (-1.54)

γ2 0.126 0.113 0.121 0.133 0.130 0.111
(1.39) (1.31) (1.40) (1.43) (1.43) (1.38)

βt−2 1.226 2.512 1.596 0.964 0.883 1.708
(0.78) (1.16) (1.00) (0.52) (0.56) (1.00)

βt−1 -4.365 -5.260 -3.359 -3.683 -4.100 -5.396∗

(-1.33) (-1.37) (-1.34) (-1.15) (-1.31) (-1.78)

βt -0.725 -0.374 -0.259 -0.893 -0.860 1.108
(-0.81) (-0.41) (-0.27) (-0.99) (-0.96) (0.76)

βt+1 0.533 1.878 0.677 0.827 0.452 -0.454
(0.27) (0.69) (0.37) (0.48) (0.23) (-0.28)

βt+2 -5.312∗∗∗ -7.730∗∗∗ -4.911∗∗∗ -4.430∗∗ -4.866∗∗ -4.201
(-2.95) (-4.93) (-3.54) (-2.36) (-2.56) (-1.61)

α 0.199∗∗ 0.191∗ 0.231∗∗ 0.216∗∗ 0.200∗∗ 0.206∗∗

(2.04) (1.89) (2.33) (2.21) (2.05) (2.08)

Jump dummies Y Y Y Y Y Y

∑2
h=−2 βt+h -8.643 -8.973 -6.256 -7.215 -8.491 -7.234

F-stat 8.13 5.83 5.32 5.48 8.30 3.72
P-value 0.00 0.02 0.02 0.02 0.00 0.06

N 206 206 206 206 206 206

Note: Table shows the results from regression (2). The dependent variable is daily excess returns on the
market portfolio in percent. Independent variables include two lags of excess returns on the market port-
folio, a five-day window of changes in vaccine progress indicator in years, and dummy variables for each
jump date from Baker et al. (2020b) unrelated to news about vaccine progress. The first column is the base-
line specification with news applying to all states, deterministic depreciation, base copula correlation of 0.2,
probability of success in the application state equal to 0.95 and excludes candidates from China and Russia.
Column 2 removes news and depreciation; column 3 restricts news to the current state; column 4 doubles
the base copula correlation to 0.4; column 5 decreases the probability of success to 0.85 in the application
state; and column 6 includes candidates from China and Russia. The return on the value-weighted CRSP
index is used from January 1, 2020 to September 30, 2020, followed by the return on the S&P 500 index
until October 31, 2020. The table uses Newey-West standard errors with 4 lags; t-statistics are shown in
parentheses. Significance levels: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Federal Reserve’s announcement of the Primary Market Corporate Credit Facility and Secondary
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Market Corporate Credit Facility on March 23, 202027 and significant advances in vaccine progress,

helping us pin down industry covariances with COVID-19 itself, separate from covariances with

monetary policy responses and vaccine progress.

We then estimate industry sensitivity to vaccine progress over the non-overlapping sample

from March 23, 2020 to September 30, 2020.28 Specifically, we re-estimate (2) sector-by-sector,

Re
i,t = α +

2

∑
h=−2

βh.i∆VPIt+h + γ1,iRe
i,t−1 + γ2Re

i,t−2 +
28

∑
j=1

δj,i1jump j + εi,t (3)

where Re
i,t denotes value-weighted excess returns on the 49 Fama-French industry portfolios.

Figure 4 presents the results. Each industry’s sensitivity to vaccine progress is plotted against

its exposure to COVID-19. The relationship is negative and statistically significant – industries

that were more exposed to COVID-19 subsequently saw more positive price impact as the vac-

cine was expected to deploy sooner. The industries also exhibit notable variation. Oil, fabricated

products and recreation were among those with higher COVID-19 exposure and vaccine progress

sensitivity, while pharmaceutical products, food products and computer software had lower ex-

posure and sensitivity. The association of industry exposure to COVID-19 with its subsequent

sensitivity to our index lends confidence to the construction and interpretation of the index as,

in fact, measuring vaccine progress. Hence, the results here make it unlikely that our primary

findings on the market’s sensitivity are due to omitted variables.

27https://www.federalreserve.gov/monetarypolicy/pmccf.htm
28At the time of writing, industry return data available from Kenneth French’s Dartmouth website ends September 30,

2020.
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Figure 4: Industry Sensitivity to Vaccine Progress

Note: Figure plots industry sensitivity to vaccine progress against exposure to COVID-19 as measured by
cumulative returns. Cumulative returns are from February 1, 2020 to March 22, 2020. Sensitivity to vaccine
progress is estimated from March 23, 2020 to September 30, 2020 as in (3).

4 Regime-Switching Model of Pandemics

In this section, we introduce a regime-switching model of pandemics in order to derive the value

of a cure in terms of the economy’s primitive objects, such as the ratio of labor supply or marginal

propensity to consume between the pandemic and the non-pandemic states. In order to connect

the theory to our empirical exercise, we need a model with four attributes: a description of pan-

demics; a well-defined notion of the value of ending a pandemic; a depiction of progress towards

that objective; and a stock market that is sensitive to that progress.
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4.1 S-State Model

We consider the state of the economy to be either in “non-pandemic" regime or in “pandemic"

regime.29 Within the pandemic regime, there can be several sub-states that correspond in our

context to different stages in the development of vaccines. We denote the state as s ∈ {0,1, . . . ,S−

1,S}, where for ease of notation both state 0 and state S are the same non-pandemic states, and the

others are pandemic states. We assume that the economy switches between these states based on a

Markov-switching or transition matrix. The transition probabilities are given as follows where η,

the probability of switching from the non-pandemic regime to the pandemic regime, and λd and

λu, the respective probabilities in a pandemic state to move “down" or “up" to the adjacent states,

are assumed to be exogenous:

P(st+dt =1|st = 0 or S) = ηdt (4)

P(st+dt =st|st = 0 or S) = 1− ηdt (5)

P(st+dt =s− 1|st = s ∈ [1,S− 1]) = λd(s)dt (6)

P(st+dt =s + 1|st = s ∈ [1,S− 1]) = λu(s)dt (7)

P(st+dt =st|st = s ∈ [1,S− 1]) = 1− λd(s)dt− λu(s)dt (8)

4.1.1 Agents, Labor and Capital Stock

We assume the economy has a unit mass of identical agents, each with the following production

function that in the non-pandemic state depends on the labor input l and generates a stochastic

output q gross of consumption as:

lαqµdt + σlα/2qdBt (9)

where {Bt, t > 0} is a Brownian Motion process. We can view q as capital stock – physical and

human – or wealth of the agent that is readily convertible into consumption (a form of “buffer

stock" therefore), and α ∈ (0,1) is the elasticity of instantaneous expected output with respect to

labor. The instantaneous expected return is lαµdt and the instantaneous variance in output is

29In the Appendix, we work out in detail the solution to the 2-state regime-switching model in which the pandemic
regime consists of just one state. Besides illustrating the detailed solution to the model (Hamilton-Jacobi-Bellman
(HJB) equations, labor and consumption choices, and system to determine the value function), it also serves as the
benchmark case for developing the model further with parameter uncertainty.
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lασ2dt. We will assume l ∈ [0,`], where ` is an upper bound representing technological or human

constraints on investment into the capital stock.

The production function of agent in the non-pandemic state, net of consumption flow, is there-

fore:

dq = lαqµdt− Cdt + σlα/2qdBt (10)

where C is the endogenous consumption rate.

In the pandemic regime, the production function has all of the above features but it becomes

exposed to the risk of an economic loss when hit by a “health" disaster:

dq = lαqµdt− Cdt + σlα/2qdBt − [lε + k + KL]qdP(t). (11)

Then let

χ(l, L) ≡ [lε + k + KL], (12)

where ε is exposure to the pandemic via private labor, k is exposure to the pandemic unrelated to

labor, L is aggregate labor supply, and K is exposure to the pandemic via aggregate labor. P(t) is

a Poisson process with a parameter ζ and a known jump amplitude ∆∈ (0,1). When the Poisson

process is triggered, a part of the agent’s capital stock is destroyed and falls to q(1− χ∆), e.g., due

to health-induced disruptions to work, the need to work from home with attendant productivity

impact and loss of human capital, filing for bankruptcy with deadweight loss in asset value, and

firing of labor with difficulty to re-match at a future date, etc. We will assume parametric restric-

tions on ε, k and K to be small enough that (1− χ∆) ∈ (0,1). The specification allows for both the

labor supply choice (l) and the pre-existing conditions of the household unrelated to labor supply

(k) to potentially amplify the health shocks. In addition, aggregate labor supply (L) can also am-

plify exposure to the pandemic as a form of externality. The agent takes the aggregate supply of

labor L as given in her optimization problem.
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4.1.2 Agent’s Preferences

We assume that each agent has stochastic differential utility or Epstein-Zin preferences (Duffie and

Epstein, 1992; Duffie and Skiadas, 1994) based on consumption flow rate C, given as

JJJt = Et

[∫ ∞

t
f (Ct′ ,JJJt′)dt′

]
(13)

and aggregator

f (C,JJJ) =
ρ

1− ψ−1

[
C1−ψ−1 − [(1− γ)JJJ]

1
θ

[(1− γ)JJJ]
1
θ−1

]
(14)

where 0 < ρ < 1 is the discount factor, γ≥ 0 is the coefficient of relative risk aversion (RRA), ψ≥ 0

is the elasticity of intertemporal substitution (EIS), and

θ−1 ≡ 1− ψ−1

1− γ
(15)

We also assume that the state of the economy s is known to each agent and so are the transition

probabilities. Later on, we will consider parameter uncertainty for a two-state version of the

model.

4.1.3 Agent’s Optimization Problem and Equilibrium

The representative agent’s problem is to choose in each state s optimal consumption C(s, L∗(s))

and labor l(s, L∗(s)) that maximizes the objective function JJJ(s); in particular, the agent must have

rational expectations about L∗(s), the aggregate labor in equilibrium. In other words, individual

agents’ decisions in the aggregate should lead to a wealth (consumption) dynamic that is con-

firmed in equilibrium. This implies the following for wealth dynamics in the pandemic regime:

dq(s) = [l(s, L∗(s))]αqµdt− C(s, L∗(s))dt + σ[l(s, L∗(s))]α/2qdB− χ(l(s, L∗(s)), L∗(s))qdP(t) (16)

Since L∗(s) is a constant for each s, the above equilibrium dynamics are identical to the dynamics

assumed by the agent for q(s) as long as the agent has rational expectations about L∗(s). Sub-

stituting for the equilibrium fixed point that L∗(s) = l(s, L∗(s)), we can then obtain the rational
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expectations equilibrium outcomes.

4.1.4 Solution

We show in the Appendix how to set up the HJB equation for the optimization problem of the rep-

resentative agent to determine the optimal consumption C(s, L∗(s)) and labor l(s, L∗(s)), making

the natural conjecture that the value function is given by

JJJ(s) ≡ H(s)q1−γ

1− γ
(17)

where H(s) are constants (depending on deeper parameters of the model) to be determined. Given

the transitions across states, H(s) are jointly determined as explained below; however, given the

structure of the problem, the equilibrium labor choices are more simply derived.

Proposition 1. Equilibrium labor in the non-pandemic state is given by

L(0) = L(S) = ` (18)

Equilibrium labor in pandemic states L∗(s) ∀s ∈ {1, . . . ,S− 1} solves30

χ (L(s), L(s)) = k + (ε + K)L(s) =
1
∆

[
1− (L(s))

1−α
γ ν
]

(20)

where

ν ≡
[

α
(
µ− 1

2 γσ2)
ζε∆

]− 1
γ

(21)

Note: All proofs appear in the appendix.

In the non-pandemic state, the agent faces no cost to supplying labor to augment the capital

stock and exerts effort fully. However, in the pandemic states, the agent increases exposure to

health risk by supplying labor, which creates a tradeoff between augmenting the capital stock and

30It can be shown that given α ∈ (0,1), the second order condition for a maximum is satisfied whenever

µ− 1
2

γσ2 > 0 (19)

which also implies ν > 0.
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reducing the loss of capital stock that arises when the pandemic hits. A key property of the model

is that as the exposure to the pandemic is a function of the labor supply, the agent contracts labor

in general relative to the non-pandemic state. We will assume parameter restrictions are such that

this is in fact the case.

Next, the constant H(s) that pins down the agent’s equilibrium objective function in state s

are solved jointly as follows:

Proposition 2. Denote

g(x,y) ≡ (1− γ)ρ

(1− ψ−1)
− xα(1− γ)

(
µ− 1

2
γσ2

)
− y

(
[1− χ(x, x)∆]1−γ − 1

)
(22)

Then {H}’s are given by the system of S recursive equations E(0), . . . , E(S− 1) as follows:

E(0) : g0 ≡ g(`,0) =
(1− γ)

(ψ− 1)
ρψ (H(0))−ψθ−1

+ η

[
H(1)
H(0)

− 1
]

(23)

E(s) : g1 ≡ g(L(s),ζ) =
(1− γ)

(ψ− 1)
ρψ (H(s))−ψθ−1

+ λd(s)
[

H(s− 1)
H(s)

− 1
]
+ λu(s)

[
H(s + 1)

H(s)
− 1
]

(24)

for s ∈ {1, . . . ,S− 1}, and H(S) = H(0).

This captures another key property of the model. The solution to determining the agent’s

objective functions depends crucially on the relative values of g0 and g1, which serve as an impor-

tant statistic for the extent of labor contraction in the economy in pandemic states relative to the

non-pandemic state. The lower is g1 relative to g0, the lower is the objective function in pandemic

states relative to the non-pandemic state, and in turn, the greater is the value that the agent at-

taches to finding a cure that can effect a switch out of the pandemic. This observation will play a

crucial role in using our empirical work to infer the value of a cure.

Next,

Proposition 3. Equilibrium consumption in state s can be determined based on H(s) as

C(s) =
(H(s))−ψθ−1

q
ρ−ψ

(25)
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Marginal propensity to consume, c(s), which is defined as dC/dq, depends on the state (s) and

the elasticity of intertemporal substitution (ψ). Figure 5 illustrates for a 10-state regime-switching

model that c(s) in the pandemic states, s ∈ {1, . . . ,9}, is below (above) that in the non-pandemic

state, s = 0 or s = 10, when ψ is below (above) 1.

Figure 5: Marginal Propensity to Consume in Pandemic and Non-Pandemic States

Note: Figure illustrates for a 10-state regime-switching model that c(s) in the pandemic states, s ∈ {1, . . . ,9},
is below (above) that in the non-pandemic state, s = 0 or s = 10, when ψ is below (above) 1. Parameters
chosen are in Table 4.

Combining Propositions 2 and 3, the equilibrium can also be characterized in terms of labor

and consumption outcomes in different states, s, the solution to the following system of recursive

equations,

Corollary 1. Following Proposition 3, we can write the system of S recursive equations Ê(0), . . . , Ê(S− 1)

that characterize the {H}’s as:

Ê(0) : g0 ≡ g(`,0) =
(1− γ)

(ψ− 1)
c(0) + η

[
H(1)
H(0)

− 1
]

(26)

Ê(s) : g1 ≡ g(L(s),ζ) =
(1− γ)

(ψ− 1)
c(s) + λd(s)

[
H(s− 1)

H(s)
− 1
]
+ λu(s)

[
H(s + 1)

H(s)
− 1
]

(27)

for s ∈ {1, . . . ,S− 1}, and H(S) = H(0).
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4.1.5 Externality and the Central Planner

Before proceeding to the value of a vaccine in this setup, it is worth noting that in our model there

is an externality that the impact of labor on the effect of the pandemic via KL term (where L is the

aggregate labor) is not internalized by each agent. The planner would factor this in the socially

efficient choice of labor for each agent. This is tantamount to replacing ε by (ε + K) in ν above to

obtain νCP:

νCP ≡
[

α
(
µ− 1

2 γσ2)
ζ(ε + K)∆

]− 1
γ

(28)

Socially efficient labor choice LCP(s) in the pandemic states is then given by

χ (L(s), L(s)) = k + (ε + K)L(s) =
1
∆

[
1− (L(s))

1−α
γ νCP

]
(29)

It is then straightforward to show that νCP > ν for K > 0 and γ > 0, and LCP(s) < L(s), i.e., the

socially efficient choice of labor in pandemic states is smaller than the privately optimal one. We

will see later that this insight will help understand the wedge between the values attached to a

cure by the planner and the private agents.

4.1.6 Value of a Cure

We have now all the ingredients to determine the value of a cure. We define it as the certainty

equivalent change in the representative agent’s lifetime value function upon a transition from

state s to state 0 (or to state S):

V(s) = 1−
(

H(s)
H(0)

) 1
1−γ

(30)

This is the percentage of the agent’s stock of wealth q that, if surrendered, would be fully compen-

sated by the utility gain of reverting to the non-pandemic state.31

Using the optimal consumption characterized above, we obtain that

31We acknowledge that this is essentially a comparative static exercise and the economy does not possess the technology
to actually effect this transition. We discuss in the Conclusion ways to enrich our model to introduce the vaccine
technology into the model as an important topic for future research, but one that is beyond the immediate scope of
this paper.
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Proposition 4. The value of a cure in the pandemic state s is determined by the ratio of marginal propensity

to consume (c ≡ dC/dq) in the pandemic state s relative to that in the non-pandemic state, adjusted by the

agent’s elasticity of intertemporal substitution (EIS):

V(s) = 1−
(

c(s)
c(0)

) 1
ψ−1

= 1−
(

C(s)
C(0)

) 1
ψ−1

(31)

Note from Proposition 3 that the ratio of marginal propensities to consume for a given q is

simply the ratio of consumptions. Furthermore, when EIS (ψ) is less than one, the value of a cure

is higher the greater is the contraction of consumption in the pandemic states relative to the non-

pandemic state. Indeed, it can be shown that consumption is lower in the pandemic states relative

to the non-pandemic state (for a given q) if and only if ψ < 1.

Our next step is to derive this value. To this end, we will derive asset prices in the framework

above to show that the value of claim to the economy’s output (“stock market") changes in relation

to the expected time to switching out of a pandemic (“expected time to deployment of a vaccine") –

which we empirically estimated – is crucially determined by the contraction of labor in pandemic

state relative to the non-pandemic state, as described by g1
g0

. This then allows us to back out the

labor contraction implied by our empirical estimate, and in turn, helps us to estimate the value of

a cure under assumptions of standard preference parameters.

4.2 Connection to the Data

We introduced the model in order to first define and study determinants of welfare and the value

of a vaccine. The second reason to introduce the model is to allow us to bring financial claims

into the picture, and, in particular, to examine the model’s counterpart to the sensitivity that we

estimated in Section 2.2.

As is standard in the asset pricing literature, we begin by interpreting “the market portfolio”

within the model as a claim to the economy’s output.32 Output is the net new resources per unit

time, which is implicitly defined by two endogenous quantities: the change in the cumulative

physical capital plus consumption, or dq+Cdt. (Note that the value of a claim to this flow is not

equal to the value of a claim to the capital stock, which is q.) Denote the price of the output claim

as P = P(s,q). By the fundamental theorem of asset pricing, the instantaneous expected excess
32We defer for now explicitly modeling the dividend share of output or incorporating leverage in the equity claim.
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return to holding this claim is equal to minus the covariance of its returns with the pricing kernel.

From this, we derive the value of the claim and some key properties in the following proposition.

Proposition 5. The price of the output claim is P = p(s)q where the the constants p(s) solve a matrix

system Y = Xp where X is an S+1-by-S+1 matrix and Y is an S+1 vector both of whose elements are

given in the appendix. The system depends on the pandemic parameters through only two quantities, which

may be taken to be the risk-neutral expected growth of output and g1, defined in the preceding section.

Henceforth we assume the model parameters are such that the matrix X defined in the propo-

sition is of full rank. The behavior of the price-capital ratio, p(s), accords with economic intuition:

it declines sharply on a move from state s = 0 to s = 1, and then gradually (and approximately

linearly) recovers as s advances. Thus, the quantity ∆log P = log p(s+1)− log p(s) is positive for

s > 0 and, in practice, varies little with s.

Next, define T? as the time at which the state S is attained and the pandemic is terminated.

Assuming the progression and regression intensities λu and λd are constant, it is straightforward

to show that its time t expectation, Et[T?] is again given by a linear system, which we omit for

brevity. Moreover, for large S, the difference

∆E[T?] = E[T?|s+1]−E[T?|s] ∼ 1
λu

(32)

is effectively constant as well. (The expression is exact for s = 1.)

Combining the above two results, we can readily define the model’s analogue of the sensitivity

that we empirically estimated as

∆log P
∆E[T?]

. (33)

For our purposes the crucial property of this quantity is that it allows us to approximately pin

down the pandemic parameters that determine the value of a cure. Specifically, it depends impor-

tantly on g1, modulated by the other pandemic parameters. This is illustrated in Figure 6, which

plots the sensitivity for a wide range of model solutions. The horizontal axis is g1 and each model

version corresponds to a single point. Here we allow all of the pandemic parameters to vary, as

well as the intensities η and λu. From the proposition above, g1 alone does not suffice to determine

32

Co
vi

d 
Ec

on
om

ic
s 6

1, 
11

 D
ec

em
be

r 2
02

0:
 1-

72



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

the pricing function p. However, the second variable that the proposition identifies as mattering

– the risk neutral expected growth of output – is codetermined in equilibrium with g1, and as a

practical matter, its residual variation is small. That is, given g1, the expected growth rate varies

only marginally with the remaining parameters.

Figure 6: Stock Market Sensitivity to Vaccine Progress

Note: Figure shows the sensitivity −∆log P/∆E[T?] as a function of g1 for model solutions varying the pandemic
intensity parameters η and λ and the risk neutral expected growth rate of output as described in the text. Each star
corresponds to a single model solution.

Hence, although the identification is not exact, we can infer from the figure that our empirical

estimates in the range of 5.0 are consistent with a value of g1 in range of approximately -0.39 to

-0.37, given the non-pandemic parameters used to compute the model solutions shown.

4.3 Calibrating the Value of a Cure

In this section and in Section 5 we present comparative static results exploring the determinants of

the value of a cure, V as defined in Section 4.1. In doing this, unless otherwise stated, we will fix

the non-pandemic parameters to be the values shown in Table 4. The preference parameters are
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broadly consistent with the asset pricing literature under stochastic differential utility, although

we use a relatively low level of risk aversion because higher values of γ can lead to violations

of regularity conditions. The growth rate and volatility parameters are chosen as a compromise

between two interpretations of the model. On the one hand, we are viewing the output process

as representing national income (or GDP), which would suggest smaller mean and volatility. On

the other hand, our asset pricing exercise views the same process as depicting dividends, which

would suggest higher values for both.33 In addition, the solutions in this section will set the

number of states to be S = 10, which is arbitrary but without loss of generality. Our results are not

too sensitive to the specific choice of the number of states as it is to the other pandemic parameters.

We also set the intensity of regress to be λd = 0, which limits vaccine related volatility. This choice

accords with recent experience: the research setbacks through the Fall of 2020 were few and had

little impact on our measure of progress.

Table 4: Parameter Values

Parameter Symbol Value

Coefficient of relative risk aversion γ 4.0
Elasticity of intertemporal substitution ψ 1.5
Rate of time preference ρ 0.04
Non-pandemic expected output growth µ 0.055
Non-pandemic output volatility σ 0.05

Note: Table shows parameter values used in estimating the value of a cure.

Figure 7 plots the value of the cure as a function of the remaining timing parameters, η and λu

(hereafter we will denote λu/(S+1) as λ without a subscript). The left panel plots V against 1/λ

the expected duration of the pandemic, while the right panel uses the pandemic frequency η on

the horizontal axis. (The left panel sets η = 0.02 and the right panel sets λ = 0.5. Both panels take

the current state as s = 1.) From the left plot, agents in the economy would be willing to give up

five percent of their wealth for an immediate transition to state 0 even when the pandemic is only

expected to last one year. This value rises to approximately 15% when the expected duration is 4

years. The right panel shows that the value of a cure is actually lower when pandemics are more

33An additional consideration is that a relatively high growth rate is needed to obtain a solution when varying the
elasticity of intertemporal substitution, which we will do in Section 4.
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frequent. Recall that a “cure” here only applies to the current pandemic. A one-time cure is less

valuable when a new one will be needed sooner.

Figure 7: Value of a Cure

Note: Figure shows the value V as a function of the pandemic intensity parameters η and λ. The left panel plots V
against 1/λ. The right panel plots V against η. The left panel sets η = 0.02 and the right panel sets λ = 0.5. Both panels
take the current state as s = 1.

Given the parameters used in the calibration, the (endogenous) expected decline in wealth

due to pandemic shocks is approximately 5% per year. Our estimation of the value of a cure is

quite close to this expected loss, which is intuitively sensible. Also, while the two quantities are

conceptually distinct, the value we are computing here is similar (on a per year basis) to the stock

market valuation of a year of pandemic experience as estimated in Section 3.

Table 5 shows the effect on V of the labor market externality, for a range of λ and η. Here the

right panel shows the benchmark case while the left panel shows what happens when the labor

market response to the pandemic is determined by a welfare maximizing central planner. The

result shows a small but not insignificant increase in the value of the vaccine in the presence of the

externality. In effect, the extra degree of lock-down that the planner would impose and the vaccine

are substitutes as countermeasures. We acknowledge though that if the arrival of the pandemic

were to result in social costs that are outside the capital stock dynamics for the agent, then this

result could reverse and the planner might value the vaccine more than the representative agent.
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Table 5: Value of a Cure: The Effect of Externality

Central Planner Benchmark
λ λ

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.197 0.094 0.048 0.01 0.242 0.116 0.058
η η0.05 0.154 0.084 0.045 0.05 0.185 0.102 0.055

Note: Table shows the fraction of wealth that the representative would be willing to surrender for a one-time transition
out of the pandemic state. The right panel shows the results when the labor supply decision is made by individual
agents acting atomistically. The left panel shows the case where the labor policy is determined by a central planner. All
cases use γ = 4,ψ = 1.5,ρ = 0.04,α = 0.5,σ = 0.05,µ = 0.055,∆ = 0.06,ε = 0.4,k = 0.1,K = 0.4 and ζ = 1.

5 Learning and Uncertainty

We have used the S-state version of our model to study the reaction of markets to vaccine news

within a pandemic. Relating its predictions to the empirical evidence in Section 3 has provided

evidence on plausible parameters affecting the value of a vaccine. Now we return to the two-

state version of our model in order to examine the role of vaccine news from a different angle.

Specifically, we are interested in the accumulation of information over longer horizons about the

frequency and duration of pandemics. We study the effect upon the value of a vaccine of uncer-

tainty about these quantities and of differing attitudes towards uncertainty.

5.1 Information Structure

Recall that in the two-state model η is the intensity of switching from state 0 (“off”) to state 1

(“on”) and λ is the intensity of switching from 1 to 0. In this section, we assume that agents have

imperfect information about these intensities.

Let us stipulate that at time zero the agent has beliefs about the two parameters that are de-

scribed by gamma distributions, which are independent of each other. Each gamma distribution

has a pair of non-negative hyperparameters, aη ,bη and aλ,bλ, that are related to the first and sec-

ond moments via

E[η] =
aη

bη
, Std[η] =

√
aη

bη
, (34)

and likewise for λ.
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By Bayes’ rule, under this specification, as the agent observes the switches from one regime to

the next, her beliefs remain in the gamma class with the hyperparameters updating as follows

aη
t = aη

0 + Nη
t

bη
t = bη

0 + tη

where tη represents the cumulative time spent in state 0 and Nη
t represents the total number of

observed switches from 0 to 1. Analogous expressions apply for λ. Thus, during the “off” regime,

the only information that arrives (on a given day, say) is whether or not we have switched to “on”

on that day. If that has occurred, the counter Nη increments by one and the clock tη turns off

(and tλ turns on). In this version of the model, that is the entirety of the information revelation.

In contrast to the previous section, no good or bad news arrives about progress during a regime.

Although this setting lessens the model’s ability to speak to high-frequency dynamics, it allows

us to study the role of uncertainty in the econmy’s longer term evolution.

Under the above information structure, the economy is characterized by a six-dimensional

state vector consisting of the stock of wealth, q, aη ,bη , aλ,bλ and the regime indicator S. However

this six-dimensional space can actually be reduced to three.

Since the switches between states alternate, let us define an integer index Mt to be the total

number of switches Nη
t + Nλ

t and then (assuming we are in state 0 at time 0) Nη
t = Mt/2 when M

is even, and Nλ
t = (Mt + 1)/2 when M is odd. Knowing M (along with the priors aη

0 and aλ
0 ) is

equivalent to knowing aη
t and aλ

t . Given these values, specifying the current estimates

η̂t ≡ Et[η] and λ̂t ≡ Et[λ] (35)

is equivalent to specifying the remaining hyperparameters bη
t and bλ

t . Thus, solutions to the model

can be described as a sequence of functions HM(η̂, λ̂) for the agent’s value function at step M.

Compared to the full-information model in Section 4, within each regime the only new changes

to the state come through variation in the estimates η̂t and λ̂t which change deterministically with
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the respective clocks tη and tλ. Holding M fixed, the dynamics of η̂t are given by

dη̂t = d
aη

t

bη
t
= aη

t d
1
bη

t
(36)

= − aη
t

(bη
t )

2
dt (37)

= − (η̂t)2

aη
t

dt. (38)

Under partial information, we proceed as in Section 4 to write-out the HJB equation with the

state variables following the dynamics determined by the representative agent’s information set.

As before, we can conjecture a form of the value function

V =
q1−γ

1− γ
H(η̂, λ̂, M;C,`). (39)

And, as before the first order condition for consumption yields C = q (ρψ) He
1 (where e1 is defined

in Section 4.1). This follows because consumption does not enter into any of the new terms in-

volving the information variables. Also fortunately, none of the information variables appears in

terms affected by labor supply, `, and the function H drops out of the first-order condition for `.

(Intuitively, nothing about the likelihood of changing regimes affects the optimal choice of labor

within a regime.) This means that the solutions for `? can be computed independent of the rest of

the system.

Using these the results, the HJB system can be written as the infinite-dimensional linked PDEs:

g0 = ρψ

(
θ

ψ

)
H−ψ/θ

M + η̂

(
HM+1

HM
− 1
)
− (η̂)2

aη HM

∂HM

∂η̂
(40)

g1 = ρψ

(
θ

ψ

)
H−ψ/θ

M+1 + λ̂

(
HM+2

HM+1
− 1
)
− (λ̂)2

aλHM+1

∂HM+1

∂λ̂
(41)

where M runs over the even integers.34

For large M, the estimation errors for both η and λ, expressed as a fraction of the posterior

34The constants g0 and g1 are as defined in Section 4.
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estimates, go to zero:

Std[η]
E[η]

=
1√
aη

=
1√

aη
0 + Mt

. (42)

Hence the system always converges to the full-information solution. This provides a bound-

ary condition, which, together with the single-regime solutions on the edges of the (η̂, λ̂) plane,

enables computation of all the individual H functions.35 It can be shown that, as in the full-

information case, a necessary and sufficient condition for existence of a solution is g0 > g1.

As in the previous section, once the value function is obtained, we can characterize the cer-

tainty equivalent value of a vaccine that produces an immediate transition from the pandemic

state to the non-pandemic state. The next section performs this calculation and analyzes the

drivers of variation in that value.

5.2 Results

Table 6 shows numerical solutions for the value of a vaccine using the benchmark parameters from

Section 4 but varying the elasticity of intertemporal substitution (EIS). The upper two panels show

the full-information solution, with the upper right case corresponding to the benchmark ψ = 1.5,

whereas the left panel lower the EIS to ψ = 0.15. There is almost no difference between the two

solutions (which verifies the robustness of the conclusions in Section 4 on this dimension). The

bottom two panels show the results under partial information. Specifically, results are computed

under the assumption that agents’ standard deviation of beliefs about the two parameters are

equal to their mean beliefs. Comparing the right-hand panels, we see that this degree of parame-

ters uncertainty has the effect of raising the level of wealth agents in the economy would be willing

to surrender for a cure in the baseline case of a high EIS by between 7 and 15 percentage points,

or up to a factor of three times the full information value. The left hand panels show the same

effect, but amplified to an extreme level. With a low intertemporal elasticity, the representative

agent would be willing to sacrifice on the order of 50 to 60 percent of accumulated wealth.

An additional computation that our framework can address is the value of a permanent cure.

35Knowing the solution for higher M enables direct evaluation of the jump-terms in (40)-(41). Knowing the solution on
the inner edges enables explicit approximation of the first partial derivatives.

39

Co
vi

d 
Ec

on
om

ic
s 6

1, 
11

 D
ec

em
be

r 2
02

0:
 1-

72



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Table 6: Value of a Cure under Parameter Uncertainty

Low Uncertainty / Low EIS Low Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.242 0.114 0.058 0.01 0.242 0.116 0.058
η̂ η̂0.05 0.192 0.102 0.055 0.05 0.185 0.102 0.055

High Uncertainty / Low EIS High Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.633 0.613 0.558 0.01 0.379 0.302 0.222
η̂ η̂0.05 0.456 0.479 0.477 0.05 0.256 0.222 0.186

Note: Table shows the fraction of wealth that the representative agent would be willing to surrender for a one-time
transition out of the pandemic state. The cases labeled High EIS set ψ = 1.5. Cases labeled Low EIS set ψ = 0.15.
Cases labeled Low Uncertainty correspond to agents knowing the parameters λ and η. Cases labeled High Uncertainty
correspond to agents having a posterior standard deviation for those parameters that is equal to their point estimates
of them. All cases use γ = 4,ρ = 0.04,α = 0.5,σ = 0.05,µ = 0.05,∆ = 0.06,ε = 0.4,k = 0.1,K = 0.4 and ζ = 1.

Table 7 shows the fraction of wealth agents in the economy would exchange to live in a world with

no pandemics. (Formally, this is equivalent to letting λ go to infinity.) As expected, the values

now show the same pattern as in Table 6, but exaggerated still further. In this case, eliminating the

threat and resolving the parameter uncertainty can lead to valuation of 25 to 50 percent for high

EIS agents and 60 to 80 percent for low EIS agents.

The latter finding may be counterintuitive based on the common understanding of Epstein-

Zin preferences under which agents with ψ < 1/γ can be viewed as having a preference for “later

resolution of uncertainty.” In the current model, agents facing a pandemic are much worse off

with parameter uncertainty. This is verified in Table 8 where we compute the value that agents

would pay to resolve parameter uncertainty without ending the on-going pandemic.

For both values of the EIS the numbers are again extremely high, and for the low EIS case

they are even higher than in the previous table. Apparently, in this economy, low-EIS agents

would pay dearly for early resolution of uncertainty. The source of the extreme welfare loss in this

case is the endogenous consumption response. Recall that low-EIS agents cut their consumption
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Table 7: Value of a Permanent Cure

Low Uncertainty / Low EIS Low Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.308 0.136 0.068 0.01 0.327 0.148 0.074
η̂ η̂0.05 0.430 0.214 0.111 0.05 0.429 0.239 0.130

High Uncertainty / Low EIS High Uncertainty / High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.813 0.720 0.613 0.01 0.503 0.378 0.265
η̂ η̂0.05 0.831 0.751 0.658 0.05 0.538 0.435 0.335

Note: Table shows the fraction of wealth that the representative agent would exchange to live in a world with no
pandemics. High uncertainty denotes agents having a posterior standard deviation for the regime parameters λ and η

that is equal to their point estimates of them. Low uncertainty denotes full information. The cases labeled High EIS set
ψ = 1.5. Cases labeled Low EIS set ψ = 0.15. All cases use γ = 4,ρ = 0.04,α = 0.5,σ = 0.05,µ = 0.05,∆= 0.06,ε = 0.4,k =
0.1,K = 0.4 and ζ = 1.

during a pandemic. With parameter uncertainty this response becomes extreme because agents

cannot rule out the worst case scenario that λ ∼ 0, i.e., that there will never be a cure and the

pandemic effectively lasts forever. This possibility leads to extreme savings and, consequently,

very little utility flow from consumption.

Even with high EIS however, the effect of parameter uncertainty is economically large, and

is again due to agents being unable to rule out worst-case scenarios. From a policy perspective,

the implication of this finding is that, while working to end the current pandemic is enormously

valuable, equally and perhaps even more valuable is anything that resolves uncertainty about the

frequency and, especially, the duration of current and future pandemics. In addition to devel-

oping cures and vaccines, understanding the fundamental science behind the fight against viral

pathogens and investing in the infrastructure for future responses can provide crucial gains to

welfare.
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Table 8: Value of Information

Low EIS High EIS
λ̂ λ̂

0.2 0.5 1.0 0.2 0.5 1.0

0.01 0.733 0.675 0.587 0.01 0.270 0.273 0.209
η̂ η̂0.05 0.708 0.682 0.617 0.05 0.200 0.255 0.236

Note: Table shows the fraction of wealth that the representative would be willing to surrender for a one-time transition
from high parameter uncertainty to low parameter uncertainty. High uncertainty denotes agents having a posterior
standard deviation for the regime parameters λ and η that is equal to their point estimates of them. Low uncertainty
denotes full information. The cases labeled High EIS set ψ = 1.5. Cases labeled Low EIS set ψ = 0.15. All cases use
γ = 4,ρ = 0.04,α = 0.5,σ = 0.05,µ = 0.05,∆ = 0.06,ε = 0.4,k = 0.1,K = 0.4 and ζ = 1.

6 Conclusion

In this paper, we estimated the value of a “cure" – vaccine for a pandemic – using the joint behavior

of stock prices and a novel vaccine progress indicator based on the chronology of stage-by-stage

progress of individual vaccine candidates and related news. We developed a general equilib-

rium regime-switching model of repeated pandemics and stages of vaccine progress, wherein the

representative agent withdraws labor and alters consumption endogenously to mitigate the eco-

nomic consequences of health risk arising from pandemics. We showed that the value of cure is

pinned down by the ratio of marginal propensity to consume in the pandemic state to the marginal

propensity to consume in the non-pandemic state augmented by the elasticity of intertemporal

substitution. In the resulting asset-pricing framework, we showed that the covariance of stock

prices with the vaccine progress indicator gives an indirect estimate of labor contraction during

the pandemic relative to the non-pandemic states; in turn, the empirical estimate of the covariance

helps pin down the labor contraction which is an important statistic for the value attached by the

representative agent to finding a cure.

With standard preferences parameters, the value of a cure turns out to be worth 5-15% of

wealth (formally, capital stock in the model). The value of the cure rises sharply when there is un-

certainty about the frequency and duration of pandemics. Indeed, we find that the representative

agent would be willing to pay as much for resolution of this parameter uncertainty as for the cure
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absent such uncertainty. This effect is stronger – not weaker – when agents have a preference for

later resolution of uncertainty. An important policy implication is that understanding the funda-

mental biological and social determinants of future pandemics, for instance, whether pandemics

are related to zoonotic diseases triggered more frequently by climate change, may be as important

to mitigating their economic impact as resolving the immediate pandemic-induced crisis.

An interesting extension of our regime-switching framework could be one where as the pan-

demic evolves through various stages of vaccine progression, it may be simultaneously evolving

in its own characteristics. For instance, the arrival intensity (ζ) of the health shock might decline

due to “herd immunity" building up or its impact on capital stock (∆) be mitigated due to learning-

by-doing in working from home. Such variations across pandemic states would also generate the

realistic implication that labor contraction across pandemic states reduces as the pandemic gets

“weaker." Theoretically, this would add richness to the existing framework we have proposed,

though empirically, it would require substantially greater statistical power to estimate state-by-

state covariance of stock returns with changes in the vaccine progress indicator or progression

across the pandemic states.

Our empirical work could be extended in several directions. First, long-short or “factor mim-

icking" portfolios can be constructed to map into changes in the vaccine progress indicator for use

in future asset-pricing tests. Secondly, changes in the vaccine progress indicator may also be rele-

vant for fixed income markets and expectations of future interest rates; more generally, progress in

finding a cure could affect expectations of monetary and fiscal policies, which we did not consider

in this paper. Thirdly, we can numerically consider regression in progress of the vaccine by al-

lowing λd in our state-transition matrix to be greater than zero, a feature that can have significant

implications for asset price volatility, and in turn, for options markets. Finally, vaccines may be

more readily available for early deployment in some countries (developed, for example) versus

others; this would imply patterns in sensitivity of cross-country returns to the vaccine progress

indicator, which can be teased out in data.

One caveat to our estimate of the value of a cure is that it is essentially a comparative static

exercise. In particular, the economy in our model does not possess the technology to actually effect

the transition out of a pandemic. In reality, there is a “real option" to invest in vaccine technology

that affects the probability of switching out of a pandemic. Indeed, there are many such candidates
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as we empirically exploit in the construction of our vaccine progress indicator. It is an interesting

open question for future research to embed the vaccine production technologies into the model,

allowing policy analysis that can help answer questions such as: How much should the central

planner invest or co-fund the investment in vaccines given their value to the society far exceeds the

value to individual vaccine production companies? Should the central planner cap user fees for

deployment of the vaccine once developed? How do these choices affect competition in the speed

of development of the vaccine and the endogenous probability of switching out of pandemics?

Our asset-pricing perspective on the value of a cure is hopefully a useful first step for further

inquiry along these lines.
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Appendix

A News Articles

This section quotes news articles from the Introduction and includes news articles as cited in

Section 3.

A.1 News Articles from the Introduction

On May 18, 2020 Moderna released positive interim clinical data from their Phase I trials and an-

nounced a Phase III trial.

Federal Reserve chair Jay Powell has warned that a full US economic recovery may

take until the end of next year and require the development of a COVID-19 vaccine:

"For the economy to fully recover, people will have to be fully confident. And that may

have to await the arrival of a vaccine", Mr. Powell told CBS News on Sunday"

Lauren Fedor and James Politi, Financial Times, May 18, 2020

U.S. stocks gained about $1 trillion of market capitalization yesterday, and while there

are lots of reasons why any particular stock may have gone up or down, good news

about a vaccine that might allow reopening of the economy seems like a common fac-

tor for a lot of stocks.

"U.S. Stocks Surge as Hopes for Coronavirus Vaccine Build," was the Wall Street Jour-

nal’s headline, citing the Moderna results... It is almost fair to say that Moderna added

$1 trillion of value to all the other stocks yesterday.

Matt Levine, Money Stuff, May 19, 2020

On July 14, 2020 Moderna publishes positive Phase I data in the New England Journal of Medicine,

highlighted by its vaccine candidate producing antibodies in all patients.

The most interesting correlation in the stock market right now is the one between (1)

the prices of airline stocks and (2) the amount of antibodies produced by coronavirus

vaccine candidates in clinical trials. So far the vaccines are experimental and uncertain.
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If you knew that they’d work really well—protect everyone perfectly, no side effects,

easy to produce, etc.—then you’d know with a pretty high degree of certainty that air-

line stocks (and cruise ships, hotels, casinos, retailers, etc.) would go up. If you knew

that they’d be a disaster then you’d probably be short airlines.

So on Tuesday Moderna announced good news, and yesterday:... Royal Caribbean

Cruises Ltd. was up 21.2%. Norwegian Cruise Line Holdings Ltd. was up 20.7%.

Carnival Corp. was up 16.2%. American Airlines Group Inc. was also up 16.2%.

United Airlines Holdings was up 14.6%. The biggest gainers were the vaccine sensitive

industries, not Moderna itself.

Matt Levine, Money Stuff, July 16, 2020

On November 9, 2020 Pfizer and BioNTech announced positive news regarding interim analysis

from their Phase III Study.

Markets received a shot in the arm Monday from Pfizer Inc. and its encouraging Stage

III tests on a COVID-19 vaccine. As a result, the S&P 500, the MSCI World and the

MSCI All-World indexes all rose to records. But that misses the point of the impact.

The news triggered the biggest single-day market rotation I’ve witnessed in the 30

years since I started covering markets...

In technical terms, the clearest expression of the violence of the turnaround comes from

tracking the performance of stocks that have had the greatest positive momentum,

relative to the market. Bloomberg’s measure of the pure momentum factor in the U.S.

stock market shows that momentum dropped 4% Monday. Since Bloomberg started

tracking daily moves in 2008, it had never before fallen as much as 2%.

John Authers, Bloomberg Opinion, November 10, 2020

Monday’s news that a COVID-19 vaccine being developed by Pfizer and Germany’s

BioNTech was more than 90 per cent effective sent markets soaring. But it also prompted
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an abrupt switch out of sectors that have prospered during the pandemic, such as tech-

nology, and into beaten-down stocks such as real estate and airlines — and triggered

an earthquake in some popular investment “factors” such as value and momentum...

The value factor, which is centred on lowly-priced, unfashionable stocks, enjoyed a

6.4 per cent uplift, its strongest one-day gain since the 1980s, while the momentum

factor — essentially stocks on a hot streak — tumbled 13.7 per cent, its worst ever loss,

according to JPMorgan.

Laurence Fletcher and Robin Wigglesworth, Financial Times, November 14, 2020

A.2 News Articles from Section 3

Our duration estimates are based on projections from the pharmaceutical and financial press dur-

ing 2020. For example, see (1) Damian Garde, STAT News, January 24, 2020, (2) Chelsea Weidman

Burke, BioSpace, February 17, 2020, (3) Hannah Kuchler, Clive Cookson and Sarah Neville, Finan-

cial Times, March 5, 2020, (4) Bill Bostock, Business Insider, April 1, 2020, (5) Derek Lowe, Science

Translational Medicine, April 15, 2020, (6) The Economist, April 16, 2020, (7) Nicoletta Lanese,

Live Science, April 16, 2020, and (8) James Paton, Bloomberg, April 27, 2020.

B Vaccine Progress Indicator

This section describes the simulation procedure, data and parameters for the vaccine progress

indicator.

B.1 Simulation Procedure

Start with N positively correlated vaccine candidates, with correlation matrix R. Each candidate

n is in a state s ∈ S, where

S = {failure, preclinical, phase 1, phase 2, phase 3,

application, approval, deployment}

and each state has known expected duration τs and baseline probability of success πbase
s .
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Next we augment the state-level, baseline probability of successes with candidate-specific

news. Let ωn,t ∈ Ω denote news published at time t about candidate n. For example, Ω could

span positive data releases, negative data releases, next state announcements, etc. Then let ∆π :→

[−1,1] be a mapping from news to changes in probabilities. For each candidate, we cumulate the

changes in probabilities from all news from the beginning of our sample t0 up to time t,

∆πnews
n,t =

t

∑
t′=t0

∆π (ωn,t′) . (A.1)

Finally, we combine it with the baseline probability of success, resulting in a candidate-specific

probability of success that potentially varies overtime, even within the same state,

πtotal
n,s,t =

expΥn,s,t

1 + expΥn,s,t
(A.2)

where Υn,s,t = log πbase
s

1−πbase
s

+ 2∆πnews
n,t .

Figure A.1 outlines the simulation procedure. We simulate stage-by-stage progress of each

candidate and generate the expected time to first vaccine deployment, similar to a first to “de-

fault" model. Specifically, on each day, one run of the simulation repeats steps one to three until

candidates have all failed or deployed:

1. Draw two N-dimensional multivariate Normal random variables

zu
t , zd

t ∼N (0,R) (A.3)

2. For each candidate, transform to exponentially driven time to success and failure,

tu
n,s,t = −

logΦ(zu
n,t)

λu
n,s,t

and td
n,s,t = −

logΦ(zd
n,t)

λd
n,s,t

(A.4)

where

λu
n,s,t =

πtotal
n,s,t

τs
and λd

n,s,t =
1− πtotal

n,s,t

τs
(A.5)

3. If tu
n,s,t > td

n,s,t =⇒ candidate’s run is over
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If tu
n,s,t < td

n,s,t =⇒ candidate advances states, continue run

4. Calculate each candidate’s time to vaccine deployment as

Tn =


∑s tu

n,s,t candidate deploys

∞ candidate fails

5. Then calculate minimum time to vaccine deployment across candidates

T∗m = min
n

Tn (A.6)

That finishes one run of the simulation. Repeat for M = 50,000 runs and then advance to t + 1.

On each day across runs, we calculate the average

E[T∗] = (1− µ)Ts
t + µT f , (A.7)

where some fraction, µ, of simulations will result in all candidates failing, so we incorporate T f ,

an estimate of the expected time to first success by a project other than those currently active.

B.2 Data and Parameters

The simulation takes as input a timeline of COVID-19 vaccine candidates’ stage-by-stage progress

from the London School of Hygiene & Tropical Medicine.1 For each of the 259 candidates, we

observe the start dates of each pre-clinical and clinical trial, along with their vaccine strategy.

Table A.1 breaks down the number of candidates at each state at the end of our sample. Vaccines

typically take years of research and testing, and in an effort to accelerate the timeline, institutes

have combined phases. Following Wong et al. (2018), we adopt each candidate’s most advanced

state. We also observe each candidate’s vaccine strategy. Table A.2 summaries the main strategies

along with the number of candidates following each.

Since candidates share a common virus target, and potentially common institutes or strategies,

1This version of the paper uses the timeline available on November 2, 2020.
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we define pairwise correlations in an additive manner:

ρ(n,n′) =


0.2 baseline

add 0.2 if shared institute

add 0.1 if shared strategy

for two candidates n 6= n′.

Table A.3 lists our parameter choices of state-level durations and baseline probabilities of

success. Table A.4 summarizes the distribution of days spent in each state in our simulation. Fol-

lowing Wong et al. (2018), we adopt each candidate’s most advanced state. We track days spent

in each state until the next state starts, only among candidates that have successfully transitioned

to the next state. The realized outcomes for state durations are reasonably consistent with our

choices of parameters, in particular for Phase I and Phase II. And the standard deviations of du-

rations are less than the mean is consistent with the Gaussian copula assumption of positively

correlated outcomes.

We then augment πbase
s with 233 news articles from FactSet StreetAccount, split into positive

and negative news types. Table A.5 lists the news types along with their changes in probabilities.

Table A.6 shows the number of articles by news type, while Table A.7 shows the top ten candidates

by news count. And finally, we set T f equal to four years.
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Figure A.1: Simulation Flow Chart

Note: Figure sketches the simulation procedure for estimating the expected time until vaccine deployment.
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Table A.1: Vaccine States

State # Candidates Example Candidates

Preclinical 210
Amyris Inc

Baylor College of Medicine
Mount Sinai

Phase I
Safety Trials

20
Clover/GSK/Dynavax

CSL/University of Queensland
Imperial College London

Phase II
Expanded Trials

18
Arcturus/Duke

Osaka/AnGes/Takara Bio
Sanofi Pasteur/GSK

Phase III
Efficacy Trials

11
AstraZeneca/Oxford

BioNTech/Fosun/Pfizer
Moderna

Note: Table describes the number of vaccine candidates in each state, along with example institutes. Data
are from the London School of Hygiene & Tropical Medicine’s COVID-19 Tracker. Data are as of November
2, 2020.
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Table A.2: Vaccine Strategies

Type Description # Candidates

RNA
(genetic)

Consist of messenger RNA molecules which code for parts of
the target pathogen that are recognised by our immune system
(’antigens’). Inside our body’s cells, the RNA molecules are
converted into antigens, which are then detected by our immune cells.

33

DNA
(genetic)

Consist of DNA molecules which are converted into antigens
by our body’s cells (via RNA as an intermediate step). As with RNA
vaccines, the antigens are subsequently detected by our immune cells.

21

Viral
Vector

Consist of harmless viruses that have been modified to contain antigens
from the target pathogen. The modified viruses act as delivery systems
that display antigens to our immune cells. Replicating make extra copies
of themselves in our body’s cells. Non-replicating do not.

56

Protein
Consist of key antigens from the target pathogen that are recognised
by our immune system.

78

Inactivated
Consist of inactivated versions of the target pathogen. These are
detected by our immune cells but cannot cause illness.

16

Attenuated
Consist of living but non-virulent versions of the target pathogen.
These are still capable of infecting our body’s cells and inducing an
immune response, but have been modified to reduce the risk of severe illness.

4

Note: Table describes the number of vaccine candidates in each strategy. 51 candidates have other, virus-
like particle or unknown strategies. Data from the London School of Hygiene & Tropical Medicine’s
COVID-19 Tracker. Data as of November 2, 2020.
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Table A.3: State Durations and Probabilities of Success

State τs (years) πbase
s (%)

Preclinical 0.6 5
Phase I 0.2 70
Phase II 0.2 44
Phase III 0.4 69
Application 0.1 88
Approval 0.5 95

Note: Table shows the duration and probability of success at each state.
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Table A.4: Vaccine States

Days in State

Min Max Mean Median SD

Preclinical 1.0 242.0 105.2 105.5 67.5

Phase I
Safety Trials

17.0 103.0 51.9 27.0 39.8

Phase II
Expanded Trials

6.0 152.0 86.8 89.0 54.5

Phase III
Efficacy Trials

- - - - -

Note: Table shows statistics on the number of days spent in each state before transitioning to the next.
Following Wong et al. (2018), we adopt each candidate’s most advanced state. We track days spent in each
state until the next state starts, among candidates that have successfully transitioned to the next state. Data
are from the London School of Hygiene & Tropical Medicine’s COVID-19 Tracker. Data are as of November
2, 2020.
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Table A.5: News and Changes in Probabilities

Positive Negative
News type ∆π (%) News type ∆π (%)

Announce next state +5 Pause in state -25
State ahead of schedule +2 State behind schedule -15
Release positive data +5 Release negative data -60
Positive regulatory action +3 Negative regulatory action -50
Positive preclinical progress +1 Negative preclinical progress -2
Positive enrollment +1 Negative enrollment -5
Dose starts +1
State resumes after pause +5

Note: Table shows the positive and negative news types, along with their changes in probabilities.
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Table A.6: Number of Articles by News Type

News Type Number of Articles

Release positive data 76
Announce next state 59
Positive regulatory action 22
Positive preclinical progress 20
Announce dosage start 21
Positive enrollment 15
State ahead of schedule 7
State resumed 5
State paused 4
State behind schedule 2
Negative regulatory action 1
Negative enrollment 1

Total 233

Note: Table shows the count of news articles by news type.

61

Co
vi

d 
Ec

on
om

ic
s 6

1, 
11

 D
ec

em
be

r 2
02

0:
 1-

72



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Table A.7: Number of Articles by Top 10 Candidates

Candidate Number of Articles

Moderna 33
Oxford / AstraZeneca 21
Johnson & Johnson / Beth Israel Deaconess Medical Center 20
BioNTech / Fosun Pharma / Pfizer 19
Inovio Pharmaceuticals 17
Novavax 12
Arcturus / Duke 9
Vaxart 8
Medicago / GSK / Dynavax 7
Takis / Applied DNA / Evvivax 7

Note: Table the number of news articles for the top ten candidates by article count.
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C Proofs to Section 4

C.1 Proof of Proposition 1

Proof. From the evolution of capital stock for the representative agent (16), we obtain the Hamilton-

Jacobi-Bellman (HJB) equation as follows for each state s ∈ {1, . . . ,S− 1}

0 = max
C,l

[
f (C,JJJ(s))− ρJJJ(s) + JJJq(s)(lαqµ− C) +

1
2

JJJqq(s)lαq2σ2 + ξ [JJJ(s) (q(1− χ∆))− JJJ(s)(q)]

+ λu(s) [JJJ(s + 1)(q)− JJJ(s)(q)] + λd(s) [JJJ(s− 1)(q)− JJJ(s)(q)]
]

(A.8)

Using the conjecture for the objective function (17) for JJJ(s), calculating the derivatives with respect

to q, JJJq(s) = H(s)q−γ and JJJqq(s) = −γH(s)q−γ−1, and differentiating with respect to labor l, we

obtain the first-order condition as

JJJq(q)αlα−1µq +
1
2

JJJqq(q)αlα−1σ2q2 − JJJq (q(1− χ∆)) ξε∆q = 0 (A.9)

where we have suppressed state s in the notation. This in turn simplifies to

[
α
(
µ− 1

2 γσ2)
ξε∆

]
lα−1 − [1− χ∆]−γ = 0 (A.10)

where χ(l, L) = κ + εl + KL. In rational expectations equilibrium L(s) = l(s), which gives us that

optimal labor in pandemic state L?(s) ∀s ∈ {1, . . . ,S− 1} satisfies (20):

χ (L(s), L(s)) = κ + (ε + K)L(s) =
1
∆

[
1− (L(s))

1−α
α ν
]

(A.11)

where

ν ≡
[

α
(
µ− 1

2 γσ2)
ξε∆

]−1/γ

. (A.12)

The second-order condition with respect to l is satisfied (footnote 7, equation 19) whenever
(
µ− 1

2 γσ2)>
0. For the non-pandemic state s = 0 or s = S, the third term in first-order condition (A.9) is ab-

sent; therefore, we obtain that labor is at the highest possible level L(0) = L(S) = `, whenever
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α
(
µ− 1

2 γσ2) > 0.

C.2 Proof of Propositions 2 and 3

Proof. Taking the first-order condition with respect to C(s) in HJB equation (A.8), we obtain

fc(C,JJJ(s))− JJJq(s) = 0. (A.13)

Using f (C,JJJ) from (14) and taking the derivative with respect to C, we obtain

fc =
ρC−ψ−1

[(1− γ)JJJ(s)]
1
θ−1

, (A.14)

which substituting for conjecture JJJ(s) in equation (16) yields

fc =
ρC−ψ−1

H(s)
γ−ψ−1

1−γ qγ−ψ−1
. (A.15)

Then, for state s ∈ {0, . . . ,S}, we obtain by substituting JJJq(s) in (A.13), and simplifying:

C(s) =
H(s)−θψ−1

q
ρ−ψ

, (A.16)

which proves Proposition 3.

To obtain the solution to state-by-state constants H(s), we

1. substitute the optimal controls {C(s), L(s)} into the HJB equation (A.8) for each s;

2. cancel the terms in q which have the same exponent; and

3. group terms not involving H(s) constants into g(`,0) for state s = 0 and g(L(s),ξ) for state

s ∈ {1, . . . ,S− 1}

to reach equations (22) - (24). This system of recursive equations can then be solved numerically

with the final condition in Proposition 2: H(s) = H(0), that states 0 and S are both non-pandemic

states. �

The detailed derivation of these equations for the two-state case (S = 2) is provided for illus-

tration in the online appendix where we refer to the non-pandemic state 0 and 2 as "Off" state and
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the pandemic state 1 as "On" state.

C.3 Proof of Proposition 4

Proof. The value of a cure (vaccine) V(s) satisfies:

JJJ(0)(q) = JJJ(0) [(1−V(s))q] (A.17)

where JJJ(0) is evaluated at (1−V(s))q. Substituting for JJJ(s) from (17), we obtain

H(0)q1−γ

(1− γ)
=

H(0) [(1−V(s))q]1−γ

(1− γ)
(A.18)

which yields

V(s) = 1−
(

H(s)
H(0)

) 1
1−γ

. (A.19)

Then, substituting for C(s) from (25) and recognizing marginal propensity to consume, c(s),

equals dC
dq = C(s)

q , yields Proposition 4.

D Asset Pricing

Proposition 5. The price of the output claim is P = p(s)q where the constants p(s) solve a matrix sys-

tem whose elements are given below. The system depends on the pandemic parameters through only two

quantities, which may be taken to be the risk-neutral expected growth of output and g1, defined in Section

4.

Proof. To begin, we derive the pricing kernel and the risk-free rate. Under stochastic differential

utility, the kernel can be represented as

Λt = e
∫ t

0 fJJJdu fC (A.20)

where

f (C, J) = ρ
C$

$
((1− γ)JJJ)1− 1

θ − ρθJJJ (A.21)

where $ = 1− 1
ψ ,θ = 1−γ

$ . As shown in Section 4, the value function and the consumption flow
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rates are:

JJJ = q1−γH(s)/(1− γ) and C = ρψH(s)e q(s)q (A.22)

where e = 1−ψ
1−γ . Together these imply

fC = ρC$−1 ((1− γ)JJJ)1− 1
θ (A.23)

or

fC = ρ
(
ρψH(s)eq

)$−1
(
(1− γ)

(
q1−γH(s)/(1− γ)

))1− 1
θ

. (A.24)

Simplifying, we get:

fC = ρ1+ψ($−1)H(s)e($−1)+ θ−1
θ q($−1)+ (1−γ)(θ−1)

θ . (A.25)

The exponent of ρ is: 1 + ψ($ − 1) = 1 + ψ(− 1
ψ ) = 0. The exponent of q is: ($ − 1) + (1−γ)(θ−1)

θ .

Substitute θ = 1−γ
$ to get: ($− 1) + $( 1−γ

$ − 1) = −γ. The exponent of H(s) is

e($− 1) +
θ − 1

θ
⇒ 1− ψ

1− γ

(
− 1

ψ

)
+

1− γψ

ψ(1− γ)
= 1 (A.26)

Hence, fC = H(s)q−γ. Next, to evaluate fJJJ, note that

fJJJ = ρ
C$

$

(
1− 1

θ

)
[(1− γ)JJJ]−

1
θ (1− γ)− ρθ (A.27)

Plugging in for C and JJJ we get:

fJJJ = ρ

(
ρψH(s)eq

)$

$

(
1− 1

θ

)[
(1− γ)

(
q1−γH(s)/(1− γ)

)]− 1
θ
(1− γ)− ρθ (A.28)

or

fJJJ = ρ

(
ρψH(s)eq

)$

$

(
θ − 1

θ

)[(
q1−γH(s)

)]− 1
θ
(1− γ)− ρθ. (A.29)
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This can be expressed as:

fJJJ =
1
$

ρ1+ψ$H(s)e$q$

(
θ − 1

θ

)
(1− γ)q

γ−1
θ H(s)−

1
θ − ρθ. (A.30)

Collecting terms:

fJJJ =
1
$

ρ1+ψ$H(s)e$− 1
θ q$+ γ−1

θ

(
θ − 1

θ

)
(1− γ)− ρθ. (A.31)

Here the exponent of ρ is : 1+ ψ$ = ψ, and the exponent of H(s) is: e$− 1
θ = e$− $

1−γ = e, and the

exponent of q is: $ + γ−1
θ = 0. Hence,

fJJJ =
1
$

ρψH(s)e
(

θ − 1
θ

)
(1− γ)− ρθ = ρψH(s)e(θ − 1)− ρθ = c(s)(θ − 1)− ρθ. (A.32)

So, we conclude that

Λt = e
∫ t

0 fJJJdu fC = q−γH(s)e
∫ t

0 [c(s)(θ−1)−ρθ]du. (A.33)

The riskless interest rate, r(s) is minus the expected change of dΛ/Λ per unit time. Applying Itô’s

lemma to the above expression yields drift (or dt terms)

c (θ − 1)− ρθ − γ(`αµ− c) + γ(γ + 1)`ασ2 (A.34)

where `(0) = ¯̀ = 1 and `(s) = `? for s > 0. Note that the term (`αµ− c) is the drift of dq/q. To

these terms we add the expected change from the jumps in the state s for s = 0:

η

(
H(1)
H(0)

− 1
)
≡ η̃ − η (A.35)

which serves to define the risk-neutral jump intenstity η̃. For s > 0 the expected jumps include

both up and down changes in s as well as jumps in q−γ:

λu

(
H(s + 1)

H(s)
− 1
)
+ λd

(
H(s− 1)

H(s)
− 1
)
+ ζ((1− χ∆)−γ − 1) ≡ (λ̃u − λu) + (λ̃d − λd) + (ζ̃ − ζ)

(A.36)
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where the risk neutral intensities are defined as for η. The full expression for r(0) is then

−
{

c(0) (θ − 1)− ρθ − γ(µ− c(0)) + γ(γ + 1)σ2 + (η̃ − η)
}

. (A.37)

For s > 0 we have r(s) as

−
{

c(s)(θ − 1)− ρθ − γ((`?)αµ− c(s)) +
1
2

γ(γ + 1)(`?)ασ2 + (λ̃u − λu) + (λ̃d − λd) + (ζ̃ − ζ))

}
.

(A.38)

We return to these expressions after deriving the pricing equation for the output claim.

By the fundamental theorem of asset pricing, the instantaneous expected excess return to the claim

P(q, s) must equal minus covariance of the returns to P with the pricing kernel. Deriving these two

quantities and setting them equal yields the pricing system, to which the proof will construct the

solution.

The expected excess return to the claim P(q, s) is the sum of its expected capital gain and its ex-

pected payout, minus rP. In the nonpandemic state, this is

1
2

σ2q2Pqq(q,0) + (µ− c(0))qPq(q,0) + η(P(q,1)− P(q,0)) + µq− r(0)P(q,0) (A.39)

whereas in the pandemic states it is

1
2
(`?)ασ2q2Pqq(q, s) + ((`?)αµ− c(s))qPq(q, s)

+λu(P(q, s + 1)− P(q, s)) + λd(P(q, s− 1)− P(q, s)) + ζ(P((1− χ∆)q, s)− P(q, s))

+µ(`?)αq− ζχ∆q− r(s)P(q, s). (A.40)

Next, we need to derive the covariance of the returns to P with dΛ/Λ. As mentioned in the text, in

addition to the usual contribution of covariance from the capital gains dP/P, the covariance also

includes the contribution from the dividends themselves, which are risky in this model. There
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are also contributions from both Brownian comovement and co-jumps in q and s. The Brownian

terms are

−γ(`?)ασ2[qP(q, s)− q] (A.41)

for s > 0, or just −γσ2[qP− q] for s = 0. The co-jump terms for s > 0 are

ζ[P((1− χ∆)q, s)− P(q, s)− χ∆q] [(1− χ∆)−γ − 1]

+λu[P(q, s + 1)− P(q, s)]
[

H(s + 1)
H(s)

− 1
]
+ λd[P(q, s− 1)− P(q, s)]

[
H(s− 1)

H(s)
− 1
]

(A.42)

or

[P((1− χ∆)q, s)− P(q, s)− χ∆q] [ζ̃ − ζ]

+[P(q, s + 1)− P(q, s)][λ̃u − λu] + [P(q, s− 1)− P(q, s)][λ̃d − λd]. (A.43)

For s = 0 the corresponding expression is just

[P(q,1)− P(q,0)][η̃ − η]. (A.44)

We now equate the expected excess return to minus the above covariance to obtain the differ-

ence/differential equation system that P must solve. Rather than repeating the general expres-

sions, we instead conjecture that the the solutions are linear in q and deduce the resulting system.

Under linearity Pqq = 0 and Pq = p, a constant that depends on s.

Plugging in the conjectured form, and cancelling a q, in states s > 0 the pricing equation says

((`?)αµ− c(s))p(s) + λu(p(s + 1)− p(s)) + λd(p(s− 1)− p(s))− χ∆ζ p(s) + µ(`?)α − ζχ∆− r(s)p(s)

−γ(`?)ασ2[p(s) + 1]− χ∆[p(s) + 1] [ζ̃ − ζ] + [p(s + 1)− p(s)][λ̃u − λu] + [p(s− 1)− p(s)][λ̃d − λd]

=0. (A.45)
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Leaving the constant terms on the left, the right side consists of

p(s+1) terms: − λu − [λ̃u − λu] = −λ̃u, (A.46)

p(s−1) terms: − λd − [λ̃d − λd] = −λ̃d, (A.47)

and p(s) terms:

−((`?)αµ− c(s)) + λu + λd + χ∆ζ + r(s) + γ(`?)ασ2 + χ∆[ζ̃ − ζ] + [λ̃u − λu] + [λ̃d − λd] (A.48)

or

r(s) + c(s)− (`?)α(µ− γσ2) + λ̃u + λ̃d + χ∆ζ̃. (A.49)

The remaining constants on the left are

µ(`?)α − ζχ∆− γ(`?)ασ2 − χ∆[ζ̃ − ζ]. (A.50)

or

(`?)α(µ− γσ2)− χ∆ζ̃. (A.51)

The above equations define a linear system for p(1) to p(S− 1). The pricing equation for s = 0

says

(µ− c(s))p(0) + η(p(1)− p(0)) + µ− r(0)p(0)− γσ2[p(0) + 1] + [p(1)− p(0)][η̃ − η] = 0,

(A.52)

or

µ− γσ2 = p(0)[r(0) + c(0)− (µ− γσ2) + η̃]− p(1) η̃. (A.53)

This equation closes the system on the low end. At the high end, the system is closed via p(S) =

p(0).
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Altogether the system may be written in matrix form,


r(0) + c(0)− (µ− γσ2) + η̃ −η̃ 0 · · ·

−λ̃d r(s) + c(s)− (`∗)α(µ− γσ2) + χ∆ζ̃ + λ̃d + λ̃u −λ̃u 0

0
. . .

. . .
. . .

.

.

.
. . .

. . .
. . .

−λ̃u 0 · · ·

 p =


(µ− γσ2)

(`?)α(µ− γσ2)− χ∆ζ̃

.

.

.

.

.

.

.

.

.

 .

Assuming the parameters are such that the right-hand matrix is of full rank, the system has a

unique, finite solution. Since the output flow being priced is not guaranteed to be positive, it need

not be the case that the price of the claim is positive either.

Finally, the proposition also identifies a minimal set of parameters that characterize the system.

It has been shown that the value function solution functions H(s) and consumption propensities

c(s) depend only on the pandemic parameters α,k,K,ε,ζ,∆,χ, and `? (the latter two of which are

endogenous) via the important variable we have called g1. The pricing system explicitly references

α,ζ,∆,χ, and `?. We now show that the equations can be written in terms of g1 and one additional

combination of these variables.

In fact, the second combination of parameters is the constant term on the right hand side,

(`?)α(µ− γσ2)− χ∆ζ̃, which may be seen to be the risk-neutral expected outpu per unit time in

the pandemic. So it suffices to show that the diagonal term can be written solely in terms of g1.

To do this, it is necessary to unpack the dependence of the riskless rate on the parameters.

From above, the diagonal coefficient for s > 0 is

r(s) + c(s)− (`?)α(µ− γσ2) + χ∆ζ̃ + (λ̃u − λu) + (λ̃d − λd) + (λu + λd) (A.54)

And r(s) is

−[c(s) (θ − 1)− ρθ − γ((`?)αµ− c(s)) +
1
2

γ(1 + γ)(`?)ασ2 + (λ̃u − λu) + (λ̃d − λd) + (ζ̃ − ζ)].

(A.55)
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Collecting terms, we have

ρθ + [(1− θ) + (1− γ)]c(s) + [λu + λd]− (ζ̃ − ζ) + χ∆ζ̃ − (`?)α(1− γ)µ + (`?)α(γ− 1
2

γ(1 + γ)).

(A.56)

Recall that we defined

g1 = ρθ − (`?)α(1− γ)(µ− 1
2

γσ2)− ζ((1− χ∆)1−γ − 1). (A.57)

Then note that γ− 1
2 γ(1 + γ) = − 1

2 γ(1− γ), and that

ζ((1− χ∆)1−γ − 1) = ζ((1− χ∆)(1− χ∆)−γ − 1) (A.58)

= ζ((1− χ∆)−γ − 1) + ζχ∆(1− χ∆)−γ (A.59)

= ζ̃ − ζ − χ∆ζ̃. (A.60)

Using these, the expression for the coefficient becomes

g1 + [(1− θ) + (1− γ)]c(s) + [λu + λd]. (A.61)

This establishes the claim.
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We exploit geographic variation in the exposure of US banks to COVID-19 
and lockdown policies to document the impact of the pandemic and 
consequent economic crisis on banks. Combining county-level data 
on COVID-19 and lockdown policies with bank-level data on loan 
performance and lending growth, and syndicated loan data, we 
document that banks geographically more exposed to the pandemic and 
lockdown policies show (i) an increase in loan loss provisions and non-
performing loans, (ii) an increase in lending to small businesses, but not 
in other lending categories, and (iii) an increase in interest spreads and 
decrease in loan maturities. These findings show that banks have already 
seen the negative impact of the pandemic and have reacted to higher 
lending risk with an adjustment in loan conditionality, but have also 
responded to higher loan demand and government support programmes.
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I. Introduction

The COVID-19 pandemic has hit the U.S. economy fast and hard. Unemployment

claims spiked up in the first half of 2020 at an unprecedented speed. While

such a shock is unlikely to leave banks una↵ected, equity bu↵ers have improved sig-

nificantly since the 2007 financial crisis and fiscal, monetary and regulatory policy

responses were swift and radical. In this paper we examine if and how banks’ health is

a↵ected and if there have been changes in lending growth and loan conditionality. Our

results can shed light on how deep and long the trough and how speedy the economic

recovery will be after the shockwave, both of which depend crucially on liquidity pro-

vision by financial intermediaries.

While negative economic shocks have often quick e↵ects on loan performance and

should thus be reflected in non-performing loans (NPL) and loan loss provisions, reg-

ulatory easing might counter these negative e↵ects, at least to a certain extent. And

while economic recessions and crises often result in a drop in demand for and supply

of loans, the COVID-19 crisis shows unique characteristics in its e↵ect on both real

economy and financial system. Drops in aggregate demand have been swift but tem-

porary, related to both the fear of contagion and to lockdown restrictions, resulting in

an increase rather than decrease in corporate loan demand, as companies in a↵ected

sectors require liquidity for survival. Similar, while higher uncertainty and lower risk

appetite tends to reduce loan supply during such a crisis, aggressive monetary and

regulatory policy measures, combined with loan guarantees by government counter

some of these e↵ects. It is thus an empirical question how bank lending has reacted to

the pandemic.

This paper combines county-, bank-, and loan-level data from several sources to

provide a first assessment of the e↵ect of COVID-19 and lockdown policies on the

banking system, exploiting variation in pandemic outbreaks and lockdown policies
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across U.S. counties. Our results suggest that both COVID outbreaks and lockdowns

are associated with increases in unemployment and worse loan performance. COVID

outbreaks and lockdown policies are also associated with higher small business lend-

ing growth but not growth in other lending types. Finally, we find that COVID out-

breaks are associated with higher interest spreads and shorter maturities in syndicated

lending, suggesting a higher risk premium and tighter conditionality.

The U.S. o↵ers a unique laboratory to test the impact of the pandemic and policy

reactions. COVID-19 outbreaks were initially concentrated in urban centers on both

coasts before the pandemic moved Mid-West and ultimately into the South and South-

west. Given the variation in regional exposure of banks, di↵erent banks were a↵ected

to a di↵erent degree by the pandemic as well as at di↵erent points in time. Simi-

larly, state and county governments across the U.S. have shown quite some variation

in lockdown policies. Over the course of 2020 there has been thus a wide variation

across di↵erent parts of the country in terms of pandemic impact, which we can use

to look beyond general trends to link COVID-19 to bank- and loan-level outcomes. As

in many other advanced countries, fiscal, monetary and regulatory authorities have

reacted swiftly and resolutely to the crisis, including one-time tax rebates, extended

unemployment benefits, loan (guarantees), some of them specifically targeted at small

businesses, lowering the federal funds rate to 0-0.25%, a variety of funding facilities

targeted at commercial paper and corporate credit issuers and dealers and issuers

of small business loans, among others, lowering of regulatory capital and liquidity

bu↵ers and easing of loan classification requirements.1

Theory and evidence from previous crises provide contradictory evidence onwhether

macroeconomic shocks result in lending retrenchment or not. On the one hand, the-

ory and evidence suggests lending retrenchment, due to dropping collateral values

and thus increasing agency conflicts (Gertler & Bernanke, 1989) or due to losses re-

1For more detail, see this cross-country compilation by the IMF on Policy Responses to COVID-19.
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ducing bank capital and banks’ limited ability to raise additional capital (see Ivashina

& Scharfstein, 2010; Cornett, McNutt, Strahan & Tehranian, 2011). However, Kahle

& Stulz (2013) find no evidence for a credit supply shock during the Global Financial

Crisis, but rather evidence for a demand reduction. And while Ivashina & Scharfstein

(2010) show a sharp downturn in syndicated lending from mid-2007 onwards, they

also show an increase in C&I loans on the aggregate balance sheet of the U.S. banking

sector between September and October 2008, due to drawdown of credit lines. Simi-

larly, initial evidence from the current shock suggests that loan demand has increased

substantially, with many firms drawing down credit lines or tapping capital markets

(Acharya & Ste↵en, 2020). At the same time and as described above, there have been

aggressive measures by central banks to encourage banks to keep lending to the real

economy, while they also mitigated to an extent an immediate deterioration of loan

performance. It is thus a-priori not clear whether the reaction of banks will be the

same during the current as during previous crises. While the evidence on lending

growth is thus ambiguous, it points more clearly to an increase in interest spreads,

related to reduced net worth of borrowers (and thus collateral value), higher funding

costs for banks, and increased uncertainty (see Santos (2010) for evidence from the

Global Financial Crisis). A similar e↵ect can be expected in the context of the current

crisis, related to lower asset prices and lower revenue streams reducing net worth of

borrowers, while increasing demand for liquidity by firms.

Our first set of results shows that unemployment rates (the most accurate and most

rapidly available indicator of economic activity) co-varies significantly across counties

in the US in the first three quarters of 2020 with COVID outbreaks and lockdown

policies. While not a focus of our work, our results thus also speak to the discussion

on whether it is COVID outbreaks and/or lockdown policies that are responsible for

the drop in economic activity we have observed. Taking unemployment as the most

accurate regularly and quickly published economic activity gauge, we find that both
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COVID outbreaks and lockdown policies have dampened economic activity.

Our second set of results show that the increase in loan loss provisions over 2020

can be related to banks’ exposure to COVID-19 outbreaks and lockdown policies, while

the results are somewhat less robust for non-performing loans (NPLs). This increase

in loan loss provisions and NPLs is primarily driven by household loans. At the same

time, banks have been expanding lending in response to COVID-19, though primarily

to small businesses.

Our third set of results shows that banks more a↵ected by the COVID increased

interest spreads on syndicated loans; interestingly, this is driven by exposure to COVID

outbreaks rather than to lockdown policies. Similarly, we find that such banks grant

shorter maturity loans, although this finding is somewhat less robust.

Our paper is related to a small literature on the e↵ect of COVID-19 on the banking

system. Specifically, using bank regulatory filings Li, Strahan & Zhang (2020) doc-

ument the largest ever liquidity demand by firms drawing down preexisting credit

lines; banks were able to accommodate the liquidity demand due to cash inflows from

the Fed and from depositors. Using loan-level data, Greenwald, Krainer & Paul (2020)

show that bank lending increased following the March 2020 U.S. COVID-19 outbreak,

concentrated on C&I lending, and in the form of credit line draw-downs. Halling,

Yu & Zechner (2020) gauge U.S. firms’ access to public capital markets and show that

particularly highly rated firms issued public debt after the onset of the pandemic,

but substantially less equity. Focusing on the firm-side, Acharya & Ste↵en (2020)

show that while AAA-A-rated firms raised cash through bond and equity issuances

(in addition to credit line drawdowns), BBB-rated firms mainly increased cash hold-

ings through credit line drawdowns and term loan issuances; non-investment grade

and unrated firms had to rely fully on credit-line drawdowns and term loans from

banks. Chodorow-Reich, Darmouni, Luck & Plosser (2020) show that the increase in

bank credit in the first two quarters of 2020 are almost completely due to drawdowns
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by large firms of lines of credit.2 Our paper adds to this literature by considering a

larger time horizon, through 30 September 2020, exploiting cross-bank exposure to

the pandemic and lockdown measures and gauging the impact on loan performance,

lending growth and loan conditionality.3

Our paper is also related to a more established literature on the transmission of

macroeconomic shocks through credit markets. Gertler & Gilchrist (1993) show a rise

in credit following contractionary monetary shocks, and also argue that this increase

is biased toward larger firms. Using loan-level data and a structural model Greenwald

et al. (2020) do not only look at the COVID-19 shock but also identified monetary pol-

icy shock based on the approach of Romer & Romer (2004) and show an increase in

overall lending after shocks, due to a credit line draw-downs, while term lending to

smaller firms drops. We add to this literature by focusing specifically on the COVID

shock but looking both at bank-level lending and loan-level conditionality and exploit-

ing cross-bank exposure to the pandemic.

While our results are for the U.S., they o↵er important lessons for other advanced

countries in terms of the impact of the pandemic and lockdown policies on banking

systems. Before proceeding, we would like to stress the tentative nature of our exercise.

Rather than testing di↵erent contrasting hypotheses, our analysis is mostly descriptive

in documenting the impact of the pandemic on the banking system. And while we can

di↵erentiate across banks according to their exposure to the pandemic and – separately

– to lockdown policies, we cannot separate out the e↵ect of federal support policies.

The remainder of the paper is organised as follows. The next section introduces

2Duchin &Hackney (2020) show that firms with prior lending relationships or personal connections
to bank executives are more likely to obtain Paycheck Protection Program loans. Darmouni & Siani
(2020) show that corporate bond issuance is used to increase holdings of liquid assets rather than for
real investment and that most issuers, including many riskier “high-yield” firms, prefer issuing bonds
to borrowing from their bank.

3Hasan, Politsidis & Sharma (2020) also focus on the pricing of syndicated loans, but in a cross-
country setting and using a text-based approach based on transcripts of quarterly conference calls held
by companies. Similar to us, they find an increase in interest spreads for higher firm and lender exposure
to the pandemic.
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the di↵erent data sources and variables we use in our analysis. Section III provides

evidence on the relationship between COVID-19 and unemployment across U.S. coun-

ties. Section IV presents bank-level regressions on the e↵ect of COVID-19 on loan

performance and lending, while Section V uses loan-level data to assess the impact

of COVID-19 on interest spreads and maturities of syndicated loans. Section VI con-

cludes.

II. Data and Variables

We combine data from a number of data sources to assess the impact of COVID-19 and

lockdown policies on real economy and banking system in the US. Descriptive statistics

for all the variables used in county, bank, and loan level analyses are in tables A1,

A2, and table A3 in the appendix, respectively, while we present the most important

variables in Table 1.

A. COVID-19 and lockdown policies

In our first set of tests we gauge the impact of the pandemic and policy responses on

unemployment across 3,142 counties in the US. We capture exposure to the pandemic

by COVID-19 related deaths per 100,000, based on data from the New York Times,

except for the 5 counties that are part of New York City, which the New York Times

sums up into one metropolitan aggregate. For consistency we use CDC data for these

counties. Population data come from the U.S. Census. Observations are per county

and either 2020 cumulative deaths or the number of new deaths in a quarter. In county

regressions we use the logarithm of 1 + the number of deaths per 100,000 inhabitants.

The descriptive statistics in Table 1 shows an increase in the average COVID-19 deaths

from 0.5 per 100,000 in the first quarter to 17 in the second quarter to 26.8 in the third

quarter, but with significant variation across counties.
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To capture lockdown policies, we use the non-pharmaceutical intervention (NPI)

index from Olivier Lejeune. The NPI index is defined on the state level (there is little

to no variation within states), ranging from 0 (no or few containment measures in

place) to 6 (harsh lockdown where citizens are not allowed to come out of their home).

The descriptive statistics in Table 1 shows an increase in the average NPI from 0.7 in

the first quarter to 3.2 in the second quarter and a decline to 1.7 in the third quarter,

but again with significant variation across states and thus counties.

Not surprisingly, there is a high correlation between COVID-deaths and NPI of

0.624 (see Appendix Table A4) and we therefore run regressions where we introduce

the two variables separately and regressions where we include them together.

We rely on unemployment data comes from BLS Local Area Unemployment Statis-

tics. While the average over the three quarters is 5.5%, it ranges from a 10th percentile

of 2.7% to a 90th percentile of 10%.

Other county level controls are from Jie Ying Wu’s COVID-19 database and from

2019. We include the number of ICU beds, persons older than 65, the share of African-

American and hispanics (all weighted by total county population), median income,

population density, 2-digit NAICS and government employment shares.

B. Bank-level data

In our second set of regressions, we focus on a sample 1,293 banks and their loan losses

and lending growth. We construct a measure of bank exposure to deaths and NPIs

from bank branch deposit distributions, and thus only use banks with a “significant

branch network”. This excludes, for example, de-facto investment banks like Goldman

Sachs, or any bank with $10 billion or more in assets but less than 10 branches, banks

with $5 billion or more and less than 5 branches, $3 billion or more and less than 3

branches, or $1 billion or more and only 1 branch. Observations are excluded if zero

or missing values are reported for total bank assets, equity capital, deposits, income,
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total loans and leases, loan loss provisions, or unused commitments outstanding.

For bank level exposure to COVID-19 deaths, we compute the “average exposure”

to areas in which the bank is physically present, using 2019 bank branch deposit shares

in total bank deposits as weights for each county, using data from the Federal Deposit

Insurance Corporation’s Summary of Deposits. We illustrate this idea visually with the

examples of Citibank and Zions Bancorp in Q2 2020 in Figure 5. Citi branches (red

dots) are concentrated in city centers, with a particularly heavy exposure to the New

York City metropolitan area – the early epicenter of the U.S. pandemic. Zions (blue

circles) is a counter example, operating a relatively dispersed network of locations

across the western U.S. with presence in rural areas and cities less a↵ected by COVID

in the first half of 2020.4 Computed on the bases of new Q2 deaths, this exposure

amounts to 67 for Citibank and 13 for Zions. Table A5 in the appendix lists the 35

largest U.S. banks in the sample with their respective COVID exposures. Appendix

Figure A1 shows the branch and deposit intensity across the US.

Other bank level variables are from the Federal Financial Institutions Examination

Council’s Call Reports. To increase observation counts in the loan level analysis, total

assets and deposits come from Summary of Deposits and not Call Reports.

We use a number of variables as dependent variables. First, we use growth in loan

loss provisions and NPLs, both relative to total loans and leases and measured for each

quarter to gauge the e↵ect of the crisis and policy responses on banks’ loan losses.

Growth in loan loss provisions relative to the corresponding pre-year quarter varies

between -100% (10th percentile) and 137% (90th percentile), with a mean of 13.6%,

while growth in NPLs varies between -88% and 103%, with a mean of 3.6%. Second,

we use the growth in loans and leases to test the e↵ect of the pandemic and policy

responses on banks’ lending activities. Over our sample period, loan growth varied

between -1.2% (10th percentile) and 19.5% (90th percentile), with a mean of 8.3%.

4Notable overlaps are only in California and Las Vegas.
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We also consider growth in three categories of lending: commercial and industrial

loans including loans secured by commercial real estate (all C&I loans are included

irrespectively of their size); household loans including loans secured by real estate and

not assigned to C&I or agricultural loans; finally, small business loans, defined as in

Call Reports filings and including small C&I and small agricultural loans (with an

original amount of 1 million or less).

Bank controls in tables 3-4 are the logarithm of total assets, income, equity, de-

posits, liquidity, unused commitments, and loans and leases in percent of total assets.

All bank controls are from the respective pre-year quarter.

C. Loan-level data

In our final set, we focus on syndicated loan data to gauge the e↵ect of the pandemic

and policy reactions on loan conditionality. Loan level data come from the Thomp-

son Reuters LPC’s DealScan database and company level data are from DealScan and

Standard & Poor’s Compustat. We use the DealScan-Compustat linking table used in

Chava & Roberts (2008) and made available on Michael Robert’s homepage to match

borrowers in both databases. We also use an updated version of the link extension for

their table from Keil (2018) to match DealScan borrowers to Compustat firms for years

after 2016. To match banks from DealScan to their financial information from Call Re-

ports and Summary of Deposits we created a linking table where we fuzzy-matched via

name similarity scores, location, year, and other information contained in both files (ta-

ble, algorithm, and additional technical details are available upon request). Following

Bharath, Dahiya, Saunders & Srinivasan (2011); Schwert (2018, 2020) a “loan” refers

to a “facility” in DealScan. Our broadest estimation sample contains 13,150 loans over

the period 2017 Q1 to 2020 Q2.5

We focus on maturity in months and interest rate spread over LIBOR, defined as

5Unlike for county and bank-regressions, third quarter 2020 data were not available yet.
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the all-in-spread, which is the amount paid by borrowers in basis points for each dollar

that is actually drawn-down. The interest rate spread varies from 113 (10th percentile)

to 400 (90th percentile), with a mean of 233 basis points. The maturity varies from 19

(10th percentile) to 69 months (90th percentile), with a mean of 51 months.

Basic bank controls come from Summary of Deposits as they are available for a con-

siderably larger number of banks than the Call Reports and are matched to DealScan

in loan level estimations. They include the logarithm of total assets and deposits over

total assets. Loan type fixed e↵ects are for term loans, revolving credit lines, and other

(or loans classified as both). Detailed loan controls comprise of the respectively left

out loan term, the logarithm of loan volume, fixed e↵ects for loan purpose, collateral,

and refinanced loans.

III. Economic Impact of COVID-19 across U.S. Counties

The pandemic has had adverse a↵ects on the U.S. economy. In our first empirical anal-

ysis, we assess the impact of COVID-19 on local economies across the US. We also dif-

ferentiate between the impact of national trends, geographic variation in COVID out-

breaks and non-pharmaceutical interventions (NPI) on local economies. As a graphic

illustration of the regional variation, Figures 1, 2, and 3 chart quarterly county level

exposures to new COVID-19 related deaths (per 100,000 inhabitants), state level NPIs,

and county level unemployment rates in the first three quarters of 2020 across con-

tiguous U.S. counties (Panels A, B, and C, respectively). Figure 1 illustrates the spread

of COVID-19 and shows that COVID deaths were initially concentrated around popu-

lation centers, especially along coastal areas and the Great Lakes in Q2, before moving

increasingly South and Southwest in Q3.6 Figure 2 shows that NPIs have been tougher

in the North and Northeast and were dramatically higher in Q2 than before or after.

6Appendix Figure A4 shows a similar pattern of COVID-19 infections.
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Similarly, Figure 3 shows that unemployment rates were the highest in Q2 and elevated

especially along costal areas and the Northeast.

Figure 4 Panel A confirms the positive correlation between unemployment and

COVID-19 death suggested by the geospatial plots, charting the median monthly un-

employment rates over the period March 2019 to September 2020 for U.S. counties

with zero deaths and in counties with cumulative Q3 2020 COVID-19 related deaths

per 100,000 inhabitants above the median of counties with more than zero deaths.

While there is no clear di↵erence in unemployment rates between these two groups

until March 2020, counties hit hard by COVID death rates experience much steeper

and more persistent increases in unemployment rates than counties without COVID-

19 deaths. Panel B shows similar adverse e↵ects of NPIs on economic activities, split-

ting counties into those below and above the median NPIs in the first three quarters of

2020.

As these results may be driven by other factors, such as population density, infras-

tructure (travel hubs vs. remote and isolated areas), or clustering of economic sectors

(sectors with di↵erent cyclicality or import dependence) that correlate with COVID-

19 deaths and economic losses, we next turn to regression analysis. Specifically, we

run the following regression to assess the impact of COVID-19 deaths and NPIs on

unemployment across counties and over the period Q1 2019 to Q3 2020:

Unempl. Ratec,t =�1Q1 2020t + �2Q2 2020t + �3Q3 2020t + �4COV ID Deathsc,t

+ �5NPI Indexc,t +�Xc + ⌘t + �c + ✏c,t .
(1)

where subscripts c and t indicate counties and quarters. In some specifications, we

control for pre-crisis population density, employment shares in di↵erent sectors, de-

mographic characteristics, income, ICU bed density (inXc), while in others we absorb

local factors in county fixed e↵ects, �c. We include quarter-fixed e↵ects ⌘t , but fo-
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cus our attention on the estimates for the Q1, Q2 and Q3 2020 fixed e↵ects (included

separately for emphasis in regression 1), with Q4 2019 being the omitted period. We

include COVID related death rates and an NPI index jointly or separately, as the two

variables are highly correlated (Appendix Table A4). Standard errors ✏c,t are clustered

on the county level.

Table 2 suggests that it is both COVID-19 outbreaks andNPIs that can explain time

and regional variation in unemployment rates. Here we present eight di↵erent models,

four with county-level controls and four with county-fixed e↵ects, including (i) quar-

ter dummies only, (ii) adding COVID deaths per 100,000, (iii) adding NPIs, and (iv)

including both. The results in columns (1) and (2) show a significant increase in unem-

ployment in 2020 compared to the last quarter of 2019, with unemployment rates in-

creasing by almost one percentage point in Q1, around 7 percentage points in Q2, and

over 3 percentage points in Q3, compared to a 5.5% sample mean. Beyond this gen-

eral trend, however, there is geographic co-variation in unemployment with COVID

outbreaks and lockdown measures. The results in columns (3) and (4) confirm the

positive relationship between COVID death rates and unemployment rates, while the

three 2020 quarter dummies continue to enter positively and significantly, although

of smaller size. When we include NPIs in columns (5) and (6), on the other hand, the

dummies for Q2 and Q3 of 2020 lose significance and the Q1 dummy turns negative

and significant; the NPI index, on the other hand enters positively and significantly, a

finding confirmed in columns (7) and (8) where we include both COVID-19 deaths and

NPIs. This suggests that unemployment across the US over the course of 2020 was less

driven by national trends, but by exposure to the pandemic and especially by lock-

down policies. Even though COVID-19 deaths and NPIs are highly correlated, they

enter with similar coe�cient sizes and significance across the di↵erent specifications,

suggesting that they drive increases in unemployment independently.

The findings are not only statistically but also economically significant. The coe�-
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cient estimates for COVID deaths in column (8) implies that doubling COVID deaths

within a county is associated with increase in the unemployment rate of 0.3 percent-

age points, compared to a mean of 5.5 percent. Coe�cient estimates imply that an

increase in the NPI index by one step (out of six) is associated with an increase in the

unemployment rate of 2.1 percentage points within a state.

IV. Bank Level Evidence

Having shown that both COVID outbreaks and lockdowns can explain geographic

variation in unemployment (and thus economic activity) across the US, we now turn

to the implications of the crisis for the banking sector, gauging first the impact on loan

losses and NPLs and then on loan volumes.

A. E↵ects on Loss Provisions and NPLs

The tremendous economic shock illustrated in the analysis in the previous section sug-

gests that banks may generally start to experience problems in their loan portfolio. On

the other hand, fiscal, monetary and regulatory support measures might either reduce

the impact of these problems on banks’ balance sheet or might delay their recognition

by banks. We first gauge the impact of COVID-19, NPIs and the associated economic

downturn on banks’ loan losses and NPLs. We exploit regional variation in COVID-19

to construct a measure of the exposure of each bank to COVID outbreaks based on

branch locations, as described in section 2.

As in the previous section, we first provide a graphic illustration of the impact of

COVID-19 on loan losses. Specifically, we plot loss provisions and non-performing

loans (NPLs) indexed to 100 in Q4 2019 in panels A and B in Figure 6. The sample

is split into banks below and above the median bank exposure to cumulative Septem-

ber 30th COVID deaths per 100,000. There is a steep increase in loss provisions for all
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banks, but more so for banks with abovemedian COVID exposure – growing by 80% in

Q2 2020 relative to Q4 2019 for highly exposed banks and 50% for less exposed. Sim-

ilarly, Panel B shows that NPLs increase considerably more for highly exposed banks

(9%), while elevating only modestly for banks with below average exposure (less than

5%). Notably, low exposure banks see NPLs decline in Q3 2020, while high exposure

banks maintain elevated NPLs. In the appendix (panels A and B in Figure A1) we show

that time trends for non-performing C&I loans diverge similarly to (presumably more

local) loans to households. When comparing the development of NPLs during 2020

to the development after Q4 2006 during the Global Financial Crisis, we note that the

current increase is relatively muted, while we observe an almost four-time increase in

2007/8 (a considerably longer time period than ours). From a di↵erence-in-di↵erences

perspective, both graphs suggest parallel trends before the start of the COVID shock.7

To test the e↵ect of COVID-19 exposure on banks’ growth in loan loss provisions

and NPLs more formally, we run the following bank-quarter panel regression:

Yb,t =�1Q1 2020t + �2Q2 2020t + �3Q3 2020t + �4COV ID Deathsb,t

+ �5NPI Indexb,t +�Xb,t + ⌘t + �b + ✏b,t .
(2)

where subscripts b and t indicate banks and quarters, respectively. We allow for

clustering of error terms ✏b,t on the bank level. All regressions absorb time-invariant

bank and general quarter-specific e↵ects, ⌘t and �b, respectively. Fixed e↵ects for the

first, second and third quarters of 2020 measure the general e↵ect on all banks (the

omitted fixed e↵ect is again for Q4 2019). Time-variant bank controlsXb,t include cur-

rent percentage changes in deposits and unused credit line commitments and lagged

values of the logarithm of total assets, loan portfolio shares, and income, equity, de-

7Appendix Figure A3 shows parallel trends also for some of the bank-level variables, notably liq-
uidity, equity, unused commitments and deposits. While equity is higher for above-COVID-19 median
exposure banks throughout 2019 and 2020, this gaps closes in 2020. There is a somewhat higher in-
crease in unused commitments for low-exposure banks in 2020.
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posits, liquidity, unused commitments, and loans and leases in percent of total assets.

The results in Panel A of Table 3 show, in line with the visual findings from Figure

6 that exposure to COVID-19 and to NPIs can explain bank variation in loan loss pro-

visions and NPLs over time. Fixed e↵ects for the first three quarters of 2020 are both

highly significant with growth in loan loss provisions as the dependent variable in

panel A columns (1) and (2), while the Q3 dummy turns negative and significant once

we control for banks’ exposure to COVID-19 deaths and/or NPIs in columns (3) to (8).

Bank exposure to both COVID outbreaks and NPIs enter positively and significantly,

though the coe�cient size of NPIs drops by a third once we also include exposure to

COVID-19 deaths.

The results are not only statistically but also economically significant. The Q2 2020

fixed e↵ect in column (2) suggests a 57% increase in loan loss provisions. Bank expo-

sure to COVID deaths has a considerable additional di↵erential e↵ect on loss provi-

sions (columns 3-4 and 7-8 in panel A). The coe�cient in column (8) suggests the

growth rate of loan loss provisions increases by 9 percentage points when bank ex-

posure to the logarithm of COVID deaths doubles. This is sizable given the 13.6%

sample average and the 69% sample average in Q2 2020. Increasing the NPI index

by one notch implies a 27.7 percentage point increase in the growth rate of loan loss

provisions.

The results in Panel B of Table 3 show that there is no significant general increase

in NPLs during the first three quarters of 2020. Across the first two columns, the 2020

quarterly dummies enter mostly insignificantly. Both exposure to COVID-19 deaths

and exposure to NPIs enter positively and significantly in columns (3) to (8), (while

the 2020 quarter fixed e↵ects turn negative). Using the coe�cient in column (8) as

a reference, the percentage change in NPLs is 4.2 percentage points higher when the

logarithm of the exposure to the COVID deaths doubles. An increase in the NPI by one

notch implies an increase of 7.5 percentage points in growth in NPLs. In table A6 in
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the appendix we show that positive e↵ects on NPLs are driven more significantly and

robustly by household loans and less by C&I loans.8

B. E↵ects on Lending Growth

In the previous subsection IV.A we showed that there are general and di↵erential ad-

verse e↵ects of the pandemic on banks’ balance sheets, showing up in loss provisions

and NPLs. In this subsection we explore if exposure to the pandemic and lockdown

measures are associated with any early e↵ects on lending volumes on the bank level. In

addition to total loans and leases, we also gauge the impact of the pandemic on three

sub-categories: small business loans, C&I loans and household loans. As in previous

analyses, we first undertake graphic illustration before proceeding to regression analy-

sis, di↵erentiating between banks above and below the average exposure to COVID-19

outbreaks (Figure 6, volumes are indexed to 100 in Q4, 2019). While there are steep

increases for total loans and leases in Q2, 2020, there is no di↵erence between the two

groups of banks (Panel C). The increase in small business loans is on average consid-

erably larger than the increase in total loans and leases and somewhat larger for banks

more exposed to COVID related deaths (Panel D). As shown in Appendix Figure A1

the increase for C&I loans is similar to those for total loans and leases, with no dif-

ference across the two bank groups, while loans to households remain relatively flat.

Using the same regression set-up as for loan loss provisions and NPLs, we next explore

the relationship between the pandemic and lending volumes more formally.

The regressions in Table 4 show that bank exposure to COVID outbreak and lock-

down policies has had no significant e↵ect on growth in C&I loans and household

loans, but a positive and significant impact on growth in small business loan volume.

Here we run similar regressions as in Table 3, but using percentage changes in total

loan volumes, small business loan volume, C&I loan volume and household loan vol-
8We do not observe a breakdown for small business NPLs separately.
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ume as dependent variables.

The results in Panel A of Table 4 show no consistently significant average change

in growth of total loans and leases in the first three quarters of 2020. Q2 and Q3 dum-

mies enter positively and significantly, as long as we do not control for time-variant

bank characteristics. While bank-level exposures to COVID-19 deaths per 100,000 en-

ters positively and significantly, there is no significant e↵ect from bank-exposure to

lockdown measures. In terms of economic significance, we find that a doubling in

exposure to COVID-19 deaths is associated with a 0.3 percentage point higher loan

growth (compared to an average growth in total loans and leases of 8.3%). These find-

ings are consistent with an increase in loan demand during the COVID-19 pandemic,

which outweighed any possibly negative e↵ect of the crisis on loan supply. Our find-

ings are consistent with Acharya & Ste↵en (2020), Chodorow-Reich et al. (2020) and

Li et al. (2020).

The results in Panel B, on the other hand, show a positive and significant e↵ect

of bank exposure to both COVID outbreaks and lockdown policies on small business

lending. While we find a negative and significant Q1 dummy, suggesting that lending

to small business dropped significantly in the first three months of 2020, the Q2 and

Q3 dummies enter positively and significantly in columns (1) to (4) and as long as we

do not include exposure to NPIs. Bank-level exposures to both COVID-19 deaths per

100,000 and to NPIs enter positively and significantly at the 1% level. While the size of

both coe�cients decreases when we include both exposure measure together (columns

7 and 8), bank exposures to both COVID outbreaks and lockdown policies continue to

enter statistically and economically significantly. The coe�cient in column (8), Panel B

suggests that a doubled exposure to COVID deaths is associated with a 2.2 percentage

point increase in the growth rate of small business loan volumes (which has a mean of

8% in the full estimation sample and 24.5% in Q2 2020), a rather large increase. An

increase of the NPI index by one notch implies an increase of 6 percentage points in
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the growth of small business lending. As the findings in Panel A, these results suggests

a significant increase in loan demand both due to the pandemic and the lockdown

policies, but the substantially larger e↵ects for small business than overall loans is an

indication that loan supply to this specific group was supported by policy measures

(in line with findings by Chodorow-Reich et al. (2020)), while smaller firms also rely

more on banks than larger firms that have access to public capital markets.

The results in Panel C show that there was a positive and significant increase in

C&I loan growth in the second and third quarter of 2020 (compared to the last quarter

of 2019), while the bank-level exposure to COVID outbreaks and lockdown policies do

not enter significantly. While there was thus an increase in C&I loan growth during

the second and third quarter (relative to 2019 Q4), this loan growth did not vary across

banks with exposure to the pandemic or lockdown policies. This can be interpreted in

two di↵erent ways. First, larger corporates are more diversified across di↵erent states

within the US and are thus exposed economically and thus in their loan demand more

to national than to local trends. Second, corporate loans are more likely to be given by

bank headquarters and geographic distribution of corporate loans might mirror banks’

geographic branch distribution less than small business loans.

The results in Panel D, finally, show some evidence for slower loan growth to house-

holds in the second and third quarter of 2020, though the coe�cient do not always en-

ter significantly. We find no significant variation of household loan growth with bank

exposure to COVID outbreaks and lockdown policies.

V. Loan-Level Effects on Terms

We have shown in section IV that banks are adversely a↵ected through their geograph-

ical exposure to the pandemic, while providing increasing loan volumes, especially to

small businesses with loan volumes up to 1 million. In this section we explore if there
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are e↵ects on interest spreads and maturities in the market for medium and large syn-

dicated loans in the U.S. Average loan volumes in our sample are 498 million and

average borrowers have total assets of 66 billion.

Figure 7 provides the graphical illustration. Floating interest quoted as spreads

over LIBOR plotted in panel A increase for all loans, but considerably more so for

loans issued by banks that are more exposed to areas severely hit by the pandemic.

Similarly, maturities on newly granted loans in Panel B drop across the board, but

seem to experience a slightly steeper decline for loans issued by banks more present

where COVID outbreaks are more severe.

To explore the e↵ect of the pandemic on loan conditionality (interest spreads in

percentage points and of maturities in months), we adjust the regression model used

in the previous section as follows:

Yl,i,b,t =�1Q1 2020t + �2Q2 2020t + �3COV ID Deathsb,t

+ �4NPI Indexb,t +�Xb,t + ⌧Zl + ⌘t + �b + ✏l ,
(3)

where the subscripts l, i b, and t refer to loan facilities, industries, banks and quarters,

respectively. Compared to the previous bank level analysis, this estimation includes

not only bank controls, but also loan controls Zl and higher dimensionality fixed ef-

fects, including bank-fixed e↵ects, loan type fixed e↵ects, industry ⇥ state and industry

⇥ quarter fixed e↵ects (similar to Berg, Saunders, Schäfer & Ste↵en, 2019).9 Standard

errors are clustered at the bank level to control for any unobservable bank-specific

pricing di↵erences.

The results in columns (1) and (2) of Table 5 show that, in line with the graphical

evidence, interest spreads experienced a significant uptick in the second quarter of

2020. Using the coe�cient in column 2 as reference they increased by about 55 basis

9Note that the latter set of fixed e↵ects absorbs simple quarter fixed e↵ects.
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points in Q2 2020 relative to Q4 2019, corresponding to 23.7% of the sample mean

(233 basis points). Columns (3), (4), (7) and (8), however, show that this increase

is entirely driven by bank exposure to COVID-19 deaths, which enters positively and

significantly while the Q2 dummy turns insignificant. Themagnitude of the coe�cient

in column (8) implies that the interest spread on a new loan increases by 30 basis points

for a doubled exposure to COVID-19 deaths. While this result is similar to findings

by Hasan et al. (2020), the economic e↵ect seems significantly larger, though we work

with very di↵erent samples (US vs. cross-country). The results in columns (5) to (8), on

the other hand, show that bank-level exposure to NPIs has no significant measurable

e↵ect on interest spreads. The coe�cient varies sign is mostly positive. The inclusion

of NPI in the regression does not a↵ect the coe�cient estimates of the COVID exposure

variables.

The results in Table 6 show similar though weaker results for maturities. The coef-

ficient of the Q2 2020 fixed e↵ect enters negatively and highly significant in columns

(1) and (2), with the coe�cient sizes suggesting 15 months shorter loans, a 29% drop

compared to the mean of 51 months. However, the Q2 dummy turns insignificant

once we control for bank exposure to COVID-19 deaths and/or NPIs. Bank exposure

to COVID outbreaks enters negatively throughout, but significantly at the 5%-level

only in columns (3) and (7). In terms of economic e↵ects, the result suggest a four

month drop in maturity for a doubled exposure to COVID-19 deaths. As in the inter-

est spread regressions, the coe�cient on the NPI exposure does not enter significantly.

In summary, the loan-level results suggest that there was a tightening of loan con-

ditionality due to COVID-exposures of banks, both in terms of interest spreads and

loan maturity. Variation across banks in this tightening is related to their exposure

to the pandemic, but not to exposure to lockdown measures. Comparing these find-

ings to the earlier results on C&I lending growth, there was thus a national trend in

lending, but not related to banks’ exposure to COVID-19, while the tightening of loan
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conditionality varies with banks’ exposure to COVID-19. Lockdown measures do not

explain either lending growth or loan conditionality.

VI. Conclusion

This paper has documented the impact of the COVID-19 pandemic and lockdown

measures on the performance and behavior of the US banking system. We find that

counties and states more exposed to COVID-19 deaths and (independently) lockdown

measures experience higher increases in unemployment. Both the pandemic and the

public-health response also explain variation in loan performance across banks. While

overall lending growth increases with bank exposure in COVID-19 deaths, C&I lend-

ing growth sees a general increase in the second and third quarter of 2020, but no

variation across banks with exposure to the pandemic or lockdown measures, while

we find strong growth in small business lending, which varies with banks’ exposure

to the pandemic and lockdown policies. Finally, we find that banks more exposed to

the pandemic increase interest spreads and reduce the maturity more for syndicated

loans.

Our findings are consistent with previous papers showing an increase in corporate

and small business lending and with work that shows an increase in interest spreads.

More generally, our findings are consistent with Gertler & Gilchrist (1993) and Green-

wald et al. (2020) of a positive e↵ect of macroeconomic shocks on lending, but also

consistent with evidence of an increased risk premium following such a shock.
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Figure 1: COVID-19 Related Deaths

Panel A: Q1 2020

Panel B: Q2 2020

Panel C: Q3 2020

Coloring of contiguous U.S. counties follows a heat map scheme with identical thresholds across all
panels. The darker the red, the higher the number of new quarterly COVID-19 related deaths per
100,000 inhabitants.
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Figure 2: Non-pharmaceutical Interventions

Panel A: Q1 2020

Panel B: Q2 2020

Panel C: Q3 2020

Coloring of contiguous U.S. counties follows a heat map scheme with identical thresholds across all
panels. The darker the red, more restrictive the NPIs as measured by a state level index from Olivier
Lejeune.
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Figure 3: Unemployment Rates

Panel A: Q1 2020

Panel B: Q2 2020

Panel C: Q3 2020

Coloring of contiguous U.S. counties follows a heat map scheme with identical thresholds across all
panels. The darker the red, the higher the unemployment rate
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Figure 4: Unemployment in Counties with Different Exposures

Panel A: Exposure to COVID Deaths

Panel B: Exposure to NPIs

This figure displays median monthly unemployment rates for U.S. counties. Panel A divides them into
groups with zero deaths and cumulative Q3 2020 COVID-19 related deaths / 100,000 inhabitants above
the median of counties with more than 0 deaths. Panel B separates counties into those with below and
above median NPIs in the first three quarters of 2020.
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Figure 5: Examples for Differential Exposures – Citibank and Zions Bankcorp

Red dots (blue circles) represent June 2019 Citibank (Zions Bancorp) branches. Citibank (Zions) is an
example for a commercial bank with a relatively high (low) geographical exposure to COVID deaths.
Coloring of contiguous U.S. counties follows a heat map scheme, corresponding to the number of cu-
mulative Q3 2020 COVID-19 related deaths per 100,000 inhabitants. The darker the gray, the higher
the death rate.
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Figure 6: Health and Lending by Banks with Differential Geographical Exposures to COVID

(a) Loan Loss Provisions (b) NPLs

(c) Loan & Lease Volume (d) Small Business Loan Volume

This figure shows U.S. banks’ median quarterly loan loss provisions in panel A, non-performing loans in panel B, total and small business lending
volumes in panels C-D (all indexed to 100 in Q4 2019). The figure di↵erentiates according to banks’ geographical exposure to COVID. The latter is
the deposit weighted number of cumulative COVID-19 related deaths / 100,000 inhabitants during the three quarters of 2020. The black (red) line
represents the group of banks below (above) the median exposure. The vertical black dashed line indicates the pre-COVID quarter Q4 2019.
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Figure 7: Syndicated Loans and Exposure to COVID
Panel A: Loan Spreads

Panel B: Maturities

This figure shows quarterly basis point spreads over LIBOR for syndicated loans (panel A) and maturi-
ties in months (B). It di↵erentiates according to banks’ geographical exposure to COVID. The latter is
the deposit weighted number of cumulative COVID-19 related deaths / 100,000 inhabitants during the
first half of 2020. The black (red) line represents the group of banks below (above) the mean exposure.
The vertical black dashed line indicates the pre-COVID quarter Q4 2019.
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Table 1: Descriptive Statistics

Variable N 10th Perc. Median 90th Perc. Mean SD

Panel A: County-Level
Covid Deaths/100,000 21,987 0 0 17 6.3 21.5
Q1 2020 Covid Deaths/100,000 21,987 0 0 .869 .464 2.259
Q2 2020 Covid Deaths/100,000 21,987 0 4.4 47.3 17 34.2
Q3 2020 Covid Deaths/100,000 21,987 0 13.8 66.6 26.3 37
NPI Index 21,987 0 0 2.923 .802 1.16
Q1 2020 NPI Index 21,987 .464 .71 1 .713 .221
Q2 2020 NPI Index 21,987 2.44 3.055 4.011 3.197 .564
Q3 2020 NPI Index 21,987 1.674 1.674 2 1.738 .285
Unemployment Rate 21,987 2.7 4.3 9.8 5.4 3.2

Panel B: Bank-Level
Covid Deaths/100,000 19,388 0 0 5.8 3.44 15.47
Q1 2020 Covid Deaths/100,000 1,293 0 .04 1.39 .65 1.87
Q2 2020 Covid Deaths/100,000 1,293 0 10.49 78.66 27.34 41.27
Q3 2020 Covid Deaths/100,000 1,293 2.99 15.25 53 23.57 27.57
NPI Index 19,388 0 0 1.67 .39 .92
Q1 2020 NPI Index 1,293 .46 .73 1.04 .73 .24
Q2 2020 NPI Index 1,293 2.6 3.09 3.95 3.27 .53
Q3 2020 NPI Index 1,293 1.67 1.67 2 1.78 .32
Growth in Loss Provisions 19,388 -100 1.72 137.5 13.64 132.63
Growth in NPLs 18,949 -88.29 0 102.86 3.61 77.85
Growth in Loans and Leases 19,388 -1.2 6.48 19.46 8.29 9.9
Growth in Small Bus Loans 13,329 -7.5 4.24 30.89 7.98 17.96
Growth in C&I Loans 19,388 -4.82 8.29 28.23 10.36 14.48
Growth in Household Loans 19,388 -5.89 4.88 20.66 6.56 12.33

Panel C: Loan-Level
Covid Deaths/100,000 10,789 0 0 .62 2.81 12.76
Q1 2020 Covid Deaths/100,000 707 .62 1.36 4.16 1.86 1.38
Q2 2020 Covid Deaths/100,000 521 28.1 49.2 83.1 55.6 20.9
NPI Index 10,789 2.067 2.34 2.551 2.317 .203
Q1 2020 NPI Index 707 .77 .869 .923 .858 .087
Q2 2020 NPI Index 521 3.126 3.639 3.915 3.613 .343
Spread over LIBOR (BPS) 10,789 113 200 400 233 132
Maturity (Months) 10,765 19 60 69 52 19

This table contains summary statistics for main variables of interest used in the county-, bank-,
and loan-level analyses (panels A, B, and C, respectively). Observations are those used in re-
gressions 2, table 2, regression 1, table 3, and regression 1, table 5. “COVID Deaths/100,000”
variables and “NPI Index” in panels B and C refer to the bank level exposures to COVID, com-
puted as the deposit weighted number of new COVID-19 related deaths/100,000 inhabitants (or
the NPI index value) during a quarter in a U.S. county.
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Table 2: County Unemployment Rates and Exposure to COVID

(1) (2) (3) (4) (5) (6) (7) (8)

Q1 2019 – Q3 2019 FE Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes
County Controls Yes – Yes – Yes – Yes –

Q1 2020 FE 0.909*** 0.907*** 0.835*** 0.846*** -1.214*** -0.661* -1.200*** -0.608*
(0.000) (0.000) (0.000) (0.000) (0.003) (0.074) (0.003) (0.098)

Q2 2020 FE 7.391*** 6.724*** 6.650*** 6.090*** -1.918 -0.230 -2.182 -0.292
(0.000) (0.000) (0.000) (0.000) (0.182) (0.871) (0.123) (0.834)

Q3 2020 FE 3.419*** 3.111*** 2.416*** 2.192*** -1.661* -0.710 -2.271** -1.210
(0.000) (0.000) (0.000) (0.000) (0.057) (0.416) (0.011) (0.164)

Covid Deaths/100,000 0.395*** 0.377*** 0.307*** 0.308***
(0.000) (0.000) (0.000) (0.000)

NPI Index 2.883*** 2.199*** 2.786*** 2.054***
(0.000) (0.000) (0.000) (0.000)

Adj. R2 0.64 0.77 0.65 0.77 0.68 0.79 0.69 0.79
Observations 15,589 21,987 15,589 21,987 15,589 21,987 15,589 21,987

This table contains county panel regressions from Q1 2019 to Q3 2020. The dependent variable is the average quarterly unemploy-
ment rate. Independent variables of interest are the logarithm of 1 + the number of COVID-19 related deaths / 100,000 inhabitants
and a state level NPIs index. Controls are from 2019 and include the number of ICU beds, persons older than 65, blacks and his-
panics weighted by total county population, median income, population density, 2-digit NAICS and government employment shares.
Standard errors are clustered by state. ***, **, and * indicate statistical significance at 1%, 5%, and 10%. P-values are in parenthesis.
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Table 3: Bank Health and the COVID Shock

(1) (2) (3) (4) (5) (6) (7) (8)

Q1 2017 – Q3 2019 FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank Controls Yes Yes Yes Yes

Panel A: Loss Provisions

Q1 2020 FE 47.092*** 74.549*** 43.587*** 70.177*** 20.329*** 48.757*** 21.251*** 50.414***
(0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001) (0.000)

Q2 2020 FE 69.598*** 56.512*** 41.282*** 27.139*** -50.096*** -56.092*** -56.112*** -56.527***
(0.000) (0.000) (0.000) (0.000) (0.009) (0.005) (0.003) (0.005)

Q3 2020 FE 46.584*** 36.346*** 15.426** 4.937 -18.399* -26.177** -34.328*** -37.673***
(0.000) (0.000) (0.040) (0.622) (0.100) (0.044) (0.003) (0.004)

Covid Deaths/100,000 11.456*** 11.984*** 9.191*** 8.932***
(0.000) (0.000) (0.000) (0.000)

NPI Index 36.585*** 34.344*** 31.480*** 27.799***
(0.000) (0.000) (0.000) (0.000)

Adj. R2 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.03
Observations 19,388 14,932 19,388 14,932 19,388 14,932 19,388 14,932
Banks

Panel B: Non-Performing Loans

Q1 2020 FE 3.285 3.266 1.941 1.406 -4.839 -4.665 -4.499 -3.939
(0.113) (0.261) (0.370) (0.636) (0.184) (0.261) (0.216) (0.343)

Q2 2020 FE 6.753** -2.063 -4.050 -14.413*** -29.513** -36.614*** -32.089** -37.013***
(0.012) (0.507) (0.382) (0.007) (0.025) (0.009) (0.015) (0.008)

Q3 2020 FE 0.908 -3.427 -10.950** -16.631*** -18.754** -22.599*** -25.271*** -28.145***
(0.767) (0.412) (0.029) (0.005) (0.013) (0.007) (0.002) (0.001)

Covid Deaths/100,000 4.361*** 5.033*** 3.720*** 4.220**
(0.002) (0.002) (0.009) (0.012)

NPI Index 11.072*** 10.525*** 9.045** 7.492*
(0.004) (0.010) (0.021) (0.074)

Adj. R2 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06
Observations 18,954 14,635 18,954 14,635 18,954 14,635 18,954 14,635
Banks 1,285 1,263 1,285 1,263 1,285 1,263 1,285 1,263

This table contains bank panel regressions from Q1 2017 to Q3 2020. Dependent variables are %-changes in loan loss provisions (panel A) and
total non-performing loans and leases relative to the pre-year quarter (B). Independent variables of interest are fixed e↵ects for 2020 quarters, the
logarithm of 1 + the bank level exposure to COVID related deaths, and an NPI index. Exposure to COVID deaths is the deposit weighted number
of new COVID-19 related deaths / 100,000 inhabitants during a quarter in a U.S. county. The state level NPI index is linked to banks equiva-
lently. Controls include current %-changes in deposits and unused credit line commitments and lagged values of the logarithm of total assets, loan
portfolio shares, and income, equity, deposits, liquidity, unused commitments, and loans and leases in percent of total assets. Standard errors are
clustered by bank. ***, **, and * indicate statistical significance at 1%, 5%, and 10%. P-values are in parenthesis.
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Table 4: Outstanding Loan Volumes and the COVID Shock

(1) (2) (3) (4) (5) (6) (7) (8)

Q1 2017 – Q3 2019 FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank Controls Yes Yes Yes Yes

Panel A: Loans & Leases

Q1 2020 FE 0.222 -0.119 0.094 -0.234 0.082 -0.422 0.125 -0.368
(0.126) (0.524) (0.532) (0.221) (0.839) (0.211) (0.759) (0.274)

Q2 2020 FE 5.682*** 0.176 4.648*** -0.598 5.056*** -1.150 4.780*** -1.164
(0.000) (0.541) (0.000) (0.169) (0.003) (0.373) (0.005) (0.366)

Q3 2020 FE 5.252*** -1.173*** 4.114*** -1.999*** 4.912*** -1.908** 4.182*** -2.288***
(0.000) (0.002) (0.000) (0.000) (0.000) (0.015) (0.000) (0.005)

Covid Deaths/100,000 0.418** 0.315** 0.421** 0.295**
(0.010) (0.022) (0.010) (0.034)

NPI Index 0.191 0.404 -0.043 0.188
(0.706) (0.291) (0.934) (0.627)

Adj. R2 0.40 0.77 0.40 0.77 0.40 0.77 0.40 0.77
Observations 19,395 14,937 19,395 14,937 19,395 14,937 19,395 14,937
Banks 1,293 1,272 1,293 1,272 1,293 1,272 1,293 1,272

Panel B: Small Business Loans

Q1 2020 FE -0.591 -1.113** -1.796*** -2.216*** -5.561*** -6.927*** -5.183*** -6.547***
(0.271) (0.017) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000)

Q2 2020 FE 20.647*** 14.271*** 13.160*** 7.171*** -1.082 -11.156*** -1.249 -11.231***
(0.000) (0.000) (0.000) (0.000) (0.790) (0.003) (0.758) (0.003)

Q3 2020 FE 24.168*** 17.575*** 16.090*** 9.967*** 12.062*** 3.415 8.763*** 0.583
(0.000) (0.000) (0.000) (0.000) (0.000) (0.117) (0.000) (0.792)

Covid Deaths/100,000 3.005*** 2.896*** 2.466*** 2.211***
(0.000) (0.000) (0.000) (0.000)

NPI Index 6.633*** 7.755*** 4.809*** 6.125***
(0.000) (0.000) (0.000) (0.000)

Adj. R2 0.31 0.53 0.31 0.54 0.31 0.54 0.31 0.54
Observations 13,330 13,330 13,330 13,330 13,330 13,330 13,330 13,330
Banks 1,293 1,272 1,293 1,272 1,293 1,272 1,293 1,272
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(1) (2) (3) (4) (5) (6) (7) (8)

Q1 2017 – Q3 2019 FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank Controls Yes Yes Yes Yes

Panel A: Commercial & Industrial Loans

Q1 2020 FE 0.450** 0.702** 0.372 0.681* 0.513 0.639 0.541 0.649
(0.049) (0.038) (0.131) (0.056) (0.428) (0.312) (0.404) (0.304)

Q2 2020 FE 14.916*** 9.739*** 14.286*** 9.596*** 15.197*** 9.462*** 15.019*** 9.459***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Q3 2020 FE 14.883*** 7.979*** 14.189*** 7.827*** 15.036*** 7.825*** 14.564*** 7.757***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Covid Deaths/100,000 0.255 0.058 0.272 0.053
(0.367) (0.834) (0.345) (0.853)

NPI Index -0.086 0.084 -0.237 0.046
(0.914) (0.901) (0.769) (0.948)

Adj. R2 0.38 0.61 0.38 0.61 0.38 0.61 0.38 0.61
Observations 19,395 14,937 19,395 14,937 19,395 14,937 19,395 14,937
Banks 1,293 1,272 1,293 1,272 1,293 1,272 1,293 1,272

Panel B: Loans to Households

Q1 2020 FE 0.086 -0.693** 0.150 -0.607* 0.292 -0.637 0.272 -0.683
(0.692) (0.024) (0.503) (0.052) (0.583) (0.259) (0.609) (0.226)

Q2 2020 FE -1.143*** -6.559*** -0.624 -5.978*** -0.220 -6.312*** -0.090 -6.300***
(0.000) (0.000) (0.254) (0.000) (0.920) (0.004) (0.967) (0.004)

Q3 2020 FE -1.742*** -8.567*** -1.171* -7.946*** -1.241 -8.430*** -0.899 -8.110***
(0.000) (0.000) (0.063) (0.000) (0.317) (0.000) (0.488) (0.000)

Covid Deaths/100,000 -0.210 -0.237 -0.198 -0.249
(0.262) (0.257) (0.286) (0.230)

NPI Index -0.282 -0.075 -0.172 0.107
(0.667) (0.907) (0.793) (0.869)

Adj. R2 0.32 0.58 0.32 0.58 0.32 0.58 0.32 0.58
Observations 19,395 14,937 19,395 14,937 19,395 14,937 19,395 14,937
Banks 1,268 1,268 1,268 1,268 1,268 1,268 1,268 1,268

This table contains bank panel regressions from Q1 2017 to Q3 2020. Dependent variables are %-changes in loan volumes outstanding (rel-
ative to the pre-year quarter) – total loans and leases (panel A), small businesses loans (B), commercial & industrial loans (C), and private
household loans (D). Independent variables of interest are fixed e↵ects for 2020 quarters, the logarithm of 1 + the bank level exposure to
COVID related deaths, and an NPI index. Exposure to COVID deaths is the deposit weighted number of new COVID-19 related deaths /
100,000 inhabitants during a quarter in a U.S. county. The state level NPI index is linked to banks equivalently. Controls include current
%-changes in deposits and unused credit line commitments and lagged values of the logarithm of total assets, loan portfolio shares, and in-
come, equity, deposits, liquidity, unused commitments, and loans and leases in percent of total assets. Standard errors are clustered by bank.
***, **, and * indicate statistical significance at 1%, 5%, and 10%. P-values are in parenthesis.
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Table 5: Interest Spreads of Syndicated Loans and the COVID Shock

(1) (2) (3) (4) (5) (6) (7) (8)

Q1-Q3 2019 FE Yes Yes Yes – Yes – Yes –
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Loan Type FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry * State FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry * Quarter FE Yes Yes Yes
Loan Controls Yes Yes Yes Yes
Bank Controls Yes Yes Yes Yes

Q1 2020 FE 1.629 -0.827 -15.083 -6.056 -11.432
(0.806) (0.921) (0.189) (0.668) (0.318)

Q2 2020 FE 41.192*** 55.228*** -28.837 8.895 -13.478
(0.000) (0.000) (0.407) (0.863) (0.734)

Covid Deaths/100,000 17.394** 30.180** 18.667** 30.137**
(0.032) (0.017) (0.039) (0.025)

NPI Index 8.952 22.775 -5.678 0.132
(0.530) (0.181) (0.639) (0.994)

Adj. R2 0.36 0.45 0.36 0.47 0.36 0.47 0.36 0.47
Observations 10,904 10,879 10,904 10,757 10,904 10,757 10,904 10,757
Borrowers 4,696 4,679 4,696 4,631 4,696 4,631 4,696 4,631
Banks 32 30 32 30 32 30 32 30

This table contains syndicated loan-level regressions from Q1 2017 to Q2 2020. The dependent variable is the interest spread over
LIBOR (BPS). Independent variables of interest are fixed e↵ects for the first two quarters of 2020, the logarithm of 1 + the bank level
exposure to COVID related deaths, and an NPI index. Exposure to COVID deaths is the deposit weighted number of new COVID-19
related deaths / 100,000 inhabitants during a quarter in a U.S. county. The state level NPI index is linked to banks equivalently. Loan
type fixed e↵ects are for term loans, revolving credit lines, and other or both. Loan controls comprise of maturity, loan volume, fixed
e↵ects for loan purpose, collateral, and refinanced loans. Bank controls include current %-changes in deposits and unused credit line
commitments and lagged values of the logarithm of total assets, loan portfolio shares, and income, equity, deposits, liquidity, unused
commitments, and loans and leases in percent of total assets. Standard errors are clustered by the bank’s headquarter state. ***, **,
and * indicate statistical significance at 1%, 5%, and 10%. P-values are in parenthesis.
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Table 6: Maturities of Syndicated Loans and the COVID Shock

(1) (2) (3) (4) (5) (6) (7) (8)

Q1-Q3 2019 FE Yes Yes Yes – Yes – Yes –
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Loan Type FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry * State FE Yes Yes Yes Yes Yes Yes Yes Yes
Industry * Quarter FE Yes Yes Yes
Loan Controls Yes Yes Yes Yes
Bank Controls Yes Yes Yes Yes

Q1 2020 FE -2.228** -3.061* 1.984 1.456 2.454
(0.032) (0.055) (0.503) (0.792) (0.658)

Q2 2020 FE -15.465*** -15.035*** 2.587 -0.038 4.541
(0.000) (0.000) (0.792) (0.998) (0.816)

Covid Deaths/100,000 -4.548** -4.316* -4.390** -5.428
(0.044) (0.067) (0.045) (0.107)

NPI Index -4.269 -0.700 -0.714 3.579
(0.448) (0.859) (0.893) (0.523)

Adj. R2 0.25 0.29 0.25 0.30 0.25 0.30 0.25 0.30
Observations 13,162 12,912 13,162 12,805 13,162 12,805 13,162 12,805
Borrowers 5,800 5,624 5,800 5,585 5,800 5,585 5,800 5,585
Banks 34 31 34 31 34 31 34 31

This table contains syndicated loan-level regressions from Q1 2017 to Q2 2020. The dependent variable is maturity in months.
Independent variables of interest are fixed e↵ects for the first two quarters of 2020, the logarithm of 1 + the bank level exposure
to COVID related deaths, and an NPI index. Exposure to COVID deaths is the deposit weighted number of new COVID-19 re-
lated deaths / 100,000 inhabitants during a quarter in a U.S. county. The state level NPI index is linked to banks equivalently.
Loan type fixed e↵ects are for term loans, revolving credit lines, and other or both. Loan controls comprise of interest spread, loan
volume, fixed e↵ects for loan purpose, collateral, and refinanced loans. Bank controls include current %-changes in deposits and
unused credit line commitments and lagged values of the logarithm of total assets, loan portfolio shares, and income, equity, de-
posits, liquidity, unused commitments, and loans and leases in percent of total assets. Standard errors are clustered by the bank’s
headquarter state. ***, **, and * indicate statistical significance at 1%, 5%, and 10%. P-values are in parenthesis.
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Appendix

Table A1: County-Level Descriptive Statistics

Variable N 10th Perc. Median 90th Perc. Mean SD

Covid Deaths/100,000 21,987 0 0 17 6.3 21.5
Q1 2020 Covid Deaths/100,000 21,987 0 0 .869 .464 2.259
Q2 2020 Covid Deaths/100,000 21,987 0 4.4 47.3 17 34.2
Q3 2020 Covid Deaths/100,000 21,987 0 13.8 66.6 26.3 37
NPI Index 21,987 0 0 2.923 .802 1.16
Q1 2020 NPI Index 21,987 .464 .71 1 .713 .221
Q2 2020 NPI Index 21,987 2.44 3.055 4.011 3.197 .564
Q3 2020 NPI Index 21,987 1.674 1.674 2 1.738 .285
Unemployment Rate 21,987 2.7 4.3 9.8 5.4 3.2
ICU Beds 21,987 0 0 32.9 13.4 53.5
Share of Elderly (above 65) 21,987 .137 .189 .253 .192 .045
Median Income 21,987 10.5 10.8 11.1 10.8 .2
Population Density 21,973 4.2 45.2 379.4 259.4 1,725
Share of Black and Hispanic 21,980 .013 .044 .318 .107 .141
Emp Share Primary Sector 20,041 .003 .029 .176 .063 .085
Emp Share Construction 19,782 .028 .056 .11 .064 .037
Emp Share Manufacturing 19,341 .035 .138 .335 .164 .119
Emp Share Trade, Transp, Util 21,861 .169 .236 .327 .245 .066
Emp Share Information 16,723 .004 .01 .023 .012 .009
Emp Share FIRE 20,874 .025 .042 .075 .047 .022
Emp Share Professional Services 20,811 .031 .072 .157 .085 .052
Emp Share Education + Health 21,203 .078 .165 .268 .17 .075
Emp Share Leisure Hospitality 21,399 .064 .118 .2 .13 .067
Emp Share Other Services 19,390 .017 .031 .05 .033 .014
Emp Share Government 21,903 .119 .206 .368 .228 .101

This table contains summary statistics for variables used in county-level regressions, in figures, or for
bank exposure calculations. Observations are those used in regression 2, table 2.
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Table A2: Bank-Level Descriptive Statistics

Variable N 10th Perc. Median 90th Perc. Mean SD

Covid Deaths/100,000 19,388 0 0 5.8 3.44 15.47
Q1 2020 Covid Deaths/100,000 1,293 0 .04 1.39 .65 1.87
Q2 2020 Covid Deaths/100,000 1,293 0 10.49 78.66 27.34 41.27
Q3 2020 Covid Deaths/100,000 1,293 2.99 15.25 53 23.57 27.57
NPI Index 19,388 0 0 1.67 .39 .92
Q1 2020 NPI Index 1,293 .46 .73 1.04 .73 .24
Q2 2020 NPI Index 1,293 2.6 3.09 3.95 3.27 .53
Q3 2020 NPI Index 1,293 1.67 1.67 2 1.78 .32
Growth in Loss Provisions 19,388 -100 1.72 137.5 13.64 132.63
Growth in NPLs 18,949 -88.29 0 102.86 3.61 77.85
Growth in NPLs (C&I) 17,298 -159.3 -4.1 168.1 1.1 107.3
Growth in NPLs (Households) 18,489 -102.19 -2.65 107.33 -.36 84.42
Growth in Loans and Leases 19,388 -1.2 6.48 19.46 8.29 9.9
Growth in Small Bus Loans 13,329 -7.5 4.24 30.89 7.98 17.96
Growth in C&I Loans 19,388 -4.82 8.29 28.23 10.36 14.48
Growth in Household Loans 19,388 -5.89 4.88 20.66 6.56 12.33
Income/Assets 14,212 .12 .28 .46 .28 .14
Equity/Assets 14,212 8.68 10.73 14.25 11.22 2.46
Liquidity/Assets 14,212 10.18 20.97 42.39 23.68 12.78
Deposits/Assets 14,212 75.53 84.37 89.45 83.29 5.57
Loans and Leases/Assets 14,212 51.45 72.59 84.56 70.14 12.93
Undrawn Commitments/Assets 14,212 4.47 11.93 23 13.3 8.42
Assets (Bn) 14,212 .1 .4 4.4 9.9 102.8
Growth in Deposits 19,388 -1.64 5.81 20.07 8.11 11.16
Growth in Undrawn Commitm 19,388 -15.51 7.75 34.85 8.87 23.95
C&I/Tot Loans & Leases 14,212 4.41 12.04 27.54 14.31 9.85
Agricul/Tot Loans & Leases 14,212 0 .9 21.46 6.19 10.46
Househ/Tot Loans & Leases 14,212 .46 3.41 15.04 6.29 8.4
Real Est/Tot Loans & Leases 14,212 47.01 75.74 92.09 72.58 17.42
Small Bus/Tot Loans & Leases 9,892 5.98 21.96 43.84 23.73 14.46

This table contains summary statistics for variables used in bank-level regressions or figures. Observa-
tions are those used in regression 1, table 3. “COVID Deaths/100,000” variables and “NPI Index” refer to
the bank level exposures to COVID, computed as the deposit weighted number of new COVID-19 related
deaths / 100,000 inhabitants (or the NPI index value) during a quarter in a U.S. county.
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Table A3: Loan-Level Descriptive Statistics

Variable N 10th Perc. Median 90th Perc. Mean SD

Covid Deaths/100,000 10,789 0 0 .62 2.81 12.76
Q1 2020 Covid Deaths/100,000 707 .62 1.36 4.16 1.86 1.38
Q2 2020 Covid Deaths/100,000 521 28.1 49.2 83.1 55.6 20.9
NPI Index 10,789 2.067 2.34 2.551 2.317 .203
Q1 2020 NPI Index 707 .77 .869 .923 .858 .087
Q2 2020 NPI Index 521 3.126 3.639 3.915 3.613 .343
Spread over LIBOR (BPS) 10,789 113 200 400 233 132
Maturity (Months) 10,765 19 60 69 52 19
Facility Amount (M) 10,789 25 200 1,200 498 973
Term Loan (1/0) 10,789 0 0 1 .4 .5
Revolving Loan (1/0) 10,789 0 1 1 .56 .496
Purpose CAPX (1/0) 10,789 0 0 0 .048 .213
Purpose Working Cap (1/0) 10,789 0 0 0 .009 .096
Purpose Corporate (1/0) 10,789 0 0 1 .156 .362
Purpose M&A (1/0) 10,789 0 1 1 .7 .5
Purpose Debt Repaym (1/0) 10,789 0 0 0 .025 .158
Purpose Other (1/0) 10,789 0 0 0 .051 .22
Secured Loan (1/0) 10,789 0 0 1 .351 .477
Refinancing Loan (1/0) 10,789 0 1 1 .654 .476
Assets (Bn) 10,780 143 1,758 2,338 1,463 835
Deposit Growth 10,777 .24 3.25 14.94 5.53 8.9
Unused Commitm Growth 10,777 -1.62 3.58 9.28 4.34 13.06
Deposits/Assets 10,777 56 72 77 68 11
Liquity/Assets 10,777 18 27 31 26 5
Equity/Assets 10,777 9.5 10.8 12.7 11.1 2.1
Income/Assets 10,777 .217 .295 .411 .297 .087
Loans & Leases/Assets 10,777 36 48 66 50 12
Unused Commitm/Assets 10,777 39 51 57 50 12
C&I/Tot Loans & Leases 10,769 19 29 38 27 8
Agricult/Tot Loans & Leases 10,769 .048 .078 .544 .192 .239
Househ/Tot Loans & Leases 10,769 9.1 20.2 23.9 18.6 8
Real Est/Tot Loans & Leases 10,769 35.9 42.8 52.8 43.5 7.2
Sm Bus/Tot Loans & Leases 10,766 2.97 4.06 4.65 3.91 1.21

This table contains summary statistics for variables used in loan-level regressions or figures. Observa-
tions are those used in regression 1, table 5. “COVID Deaths/100,000” refers to the bank level exposure
to COVID, computed as the deposit weighted number of new COVID-19 related deaths / 100,000 inhab-
itants during a quarter in a U.S. county.
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Table A4: Pairwise Correlations of COVID Related Variables

Variables Q1 2020 Q2 2020 Q3 2020 Covid Deaths NPI Index

Q1 2020 1.000

Q2 2020 -0.167 1.000
(0.000)

Q3 2020 -0.167 -0.167 1.000
(0.000) (0.000)

Covid Deaths -0.145 0.346 0.590 1.000
(0.000) (0.000) (0.000)

NPI Index -0.031 0.831 0.329 0.624 1.000
(0.000) (0.000) (0.000) (0.000)

This table contains pairwise correlations of all independent variables of interest defined
on the county level. COVID deaths refer to the logarithm of 1 plus the number COVID
Deaths/100,000. Significance levels are in brackets.
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Table A5: Exposure of the Largest U.S. Banks to COVID in the First Half of 2020

Covid Deaths/100,000

Bank Headquarters Assets Branches New Q1 New Q2 New Q3

Signature Bank New York, NY 51 31 8 190 13
New York Community Bank Westbury, NY 54 241 6 175 19
HSBC Bank USA Tysons, VA 173 225 7 160 16
Santander Bank Wilmington, DE 85 613 3 139 16
People’s United Bank Bridgeport, CT 58 414 3 116 9
JPMorgan Chase Bank Columbus, OH 2,338 5,024 4 102 22
TD Bank Wilmington, DE 320 1,244 2 92 16
Citizens Bank Providence, RI 166 1,105 1 84 15
The Northern Trust Company Chicago, IL 136 56 1 68 24
Capital One McLean, VA 329 488 3 74 16
City National Bank Los Angeles, CA 61 71 2 62 26
Comerica Bank Dallas, TX 73 436 3 67 21
Citibank Sioux Falls, SD 1,454 709 2 67 16
Manufacturers & Traders Trust Company Bu↵alo, NY 119 788 1 71 10
BMO Harris Bank Chicago, IL 138 590 1 61 15
TCF National Bank Sioux Falls, SD 47 330 1 60 13
Bank of America Charlotte, NC 1,853 4,335 1 50 23
PNC Bank Wilmington, DE 398 2,398 1 52 17
Synovus Bank Columbus, GA 48 296 1 21 47
First Republic Bank San Francisco, CA 116 81 2 55 13
East West Bank Pasadena, CA 44 111 1 35 28
CIT Bank Pasadena, CA 45 66 1 31 32
Regions Bank Birmingham, AL 126 1,460 1 23 37
BBVA USA Birmingham, AL 93 642 0 13 42
Fifth Third Bank Cincinnati, OH 168 1,224 1 36 17
Wells Fargo Bank Sioux Falls, SD 1,713 5,570 1 33 21
The Huntington National Bank Columbus, OH 109 909 1 38 15
KeyBank Cleveland, OH 143 1,125 1 38 12
MUFG Union Bank San Francisco, CA 133 350 1 21 28
Branch Banking & Trust Company Charlotte, NC 461 1,791 0 22 25
TIAA, FSB Jacksonville, FL 42 13 0 8 37
U.S. Bank Cincinnati, OH 486 2,979 1 28 17
First Tennessee Bank Memphis, TN 43 291 0 13 27
Zions Bancorporation Salt Lake City, UT 69 435 0 13 26
Bank of the West San Francisco, CA 93 554 1 15 18

This table contains information on the 35 largest U.S. banks. Total assets (in billion USD) and numbers of branches are from 2019.
The exposure to COVID is based on the county-level death rates in new quarterly deaths (COVID-19 related deaths / 100,000 in-
habitants). The bank level exposure variables in this table bank’s weighted averages using the county-level branch deposit share
in the bank’s total deposits as weights. The list (and all tables and plits) exclude institutes that are formally commercial banks
but do not operate a significant branch network (excluding those banks with $ 10 Bn or more in assets but less than 10 branches,
those with at least 5 Bn and less than 5 branches, 3 Bn and less than 3 branches, or 1 Bn and only 1 branch).
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Table A6: Bank Health and the COVID Shock

(1) (2) (3) (4) (5) (6) (7) (8)

Q1 2017 – Q3 2019 FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank FE Yes Yes Yes Yes Yes Yes Yes Yes
Bank Controls Yes Yes Yes Yes

Panel C: Non-Performing C&I Loans

Q1 2020 FE 5.951* 7.428* 4.536 5.692 -0.254 1.583 -0.056 2.109
(0.061) (0.099) (0.164) (0.213) (0.963) (0.808) (0.992) (0.747)

Q2 2020 FE 8.399** 0.014 -3.094 -11.695 -19.186 -25.311 -23.027 -26.763
(0.025) (0.997) (0.653) (0.136) (0.352) (0.234) (0.265) (0.209)

Q3 2020 FE 4.578 0.406 -7.889 -11.959 -10.402 -13.673 -18.141 -19.697
(0.297) (0.946) (0.289) (0.172) (0.381) (0.294) (0.146) (0.146)

Covid Deaths/100,000 4.553** 4.677* 4.135* 4.166*
(0.034) (0.055) (0.060) (0.096)

NPI Index 8.408 7.699 6.397 4.970
(0.169) (0.217) (0.304) (0.438)

Adj. R2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
Observations 17,296 13,484 17,296 13,484 17,296 13,484 17,296 13,484
Banks 1,255 1,227 1,255 1,227 1,255 1,227 1,255 1,227

Panel D: Non-Performing Loans to Households

Q1 2020 FE 0.193 1.999 -1.168 0.291 -14.117*** -11.770** -13.835*** -11.264**
(0.934) (0.522) (0.630) (0.928) (0.000) (0.010) (0.001) (0.014)

Q2 2020 FE 1.354 -7.790** -9.574* -19.214*** -62.522*** -67.816*** -64.724*** -68.067***
(0.648) (0.025) (0.073) (0.001) (0.000) (0.000) (0.000) (0.000)

Q3 2020 FE -5.213 -8.528* -17.169*** -20.653*** -39.801*** -41.830*** -45.299*** -45.542***
(0.110) (0.064) (0.003) (0.002) (0.000) (0.000) (0.000) (0.000)

Covid Deaths/100,000 4.385*** 4.626** 3.126* 2.856
(0.006) (0.011) (0.051) (0.121)

NPI Index 19.483*** 18.267*** 17.778*** 16.197***
(0.000) (0.000) (0.000) (0.000)

Adj. R2 0.05 0.06 0.05 0.06 0.05 0.06 0.05 0.06
Observations 18,493 14,308 18,493 14,308 18,493 14,308 18,493 14,308
Banks 1,273 1,246 1,273 1,246 1,273 1,246 1,273 1,246

This table contains bank panel regressions from Q1 2017 to Q3 2020. Dependent variables are %-changes in non-performing C&I loans (panel
A) and loans to private households (B) relative to the respective pre-year quarter. Independent variables of interest are fixed e↵ects for 2020
quarters, the logarithm of 1 + the bank level exposure to COVID related deaths, and an NPI index. Exposure to COVID deaths is the deposit
weighted number of new COVID-19 related deaths / 100,000 inhabitants during a quarter in a U.S. county. The state level NPI index is linked to
banks equivalently. Controls include current %-changes in deposits and unused credit line commitments and lagged values of the logarithm of
total assets, loan portfolio shares, and income, equity, deposits, liquidity, unused commitments, and loans and leases in percent of total assets.
Standard errors are clustered by bank. ***, **, and * indicate statistical significance at 1%, 5%, and 10%. P-values are in parenthesis.
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Figure A1: Health and Lending by Banks with Differential Geographical Exposures to COVID

(a) Commercial & Industrial NPLs (b) Household NPLs

(c) Commercial & Industrial Loan Volumes (d) Household Loan Volumes

This figure shows U.S. banks’ median quarterly loan loss provisions (in % of total loans & leases) in panel A and non-performing loans (indexed to
100 in Q4 2019) in panels B-D. The figure di↵erentiates according to banks’ geographical exposure to COVID. The latter is the deposit weighted
number of cumulative COVID-19 related deaths / 100,000 inhabitants during the first half of 2020. The black (red) line represents the group of
banks below (above) the median exposure. The vertical black dashed line indicates the pre-COVID quarter Q4 2019.
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Figure A2: Geographical Footprint of Banks

Panel A: Bank Branches

Panel B: Deposit Distribution

Every dot in panel A represents a bank branch in June 2019 in the contiguous states of the U.S. Coloring
of counties in panel B follows a heat map scheme, corresponding to 2019 deposits at bank branches in
a county. A darker red means more deposits.
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Figure A3: Other Variables of Banks with Differential Exposures to COVID

(a) Liquidity (b) Equity

(c) Unused Commitments Outstanding (d) Deposits

Panels A, C, and D shows U.S. banks’ mean quarterly liquidity, unused commitments outstanding, and deposits indexed to 100 in Q4 2019 respec-
tively. Panel B shows U.S. banks’ mean equity / total assets. The figure di↵erentiates according to banks’ geographical exposure to COVID. The
latter is the deposit weighted number of cumulative COVID-19 related deaths / 100,000 inhabitants during the first half of 2020. The black (red)
line represents the group of banks below (above) the median exposure. The vertical black dashed line indicates the pre-COVID quarter Q4 2019.
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Figure A4: COVID-19 Infections

Panel A: Q1 2020

Panel B: Q2 2020

Panel C: Q3 2020

Coloring of contiguous U.S. counties follows a heat map scheme with identical thresholds across all
panels. The darker the red, the higher the number of new quarterly COVID-19 infections per 100,000
inhabitants.
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This study investigates U.S. churches' response to the SARS-CoV-2 
pandemic by looking at their public Facebook posts. For religious 
organizations, in-person gatherings are at the heart of their activities. Yet 
religious in-person gatherings have been identified as some of the early 
hot spots of the pandemic, but there has also been controversy over the 
legitimacy of public restrictions on such gatherings. Our sample contains 
information on church characteristics and Facebook posts for nearly 
4000 churches that posted at least once in 2020. The share of churches 
that offer an online church activity on a given Sunday more than doubled 
within two weeks at the beginning of the pandemic (the first half of March 
2020) and stayed well above baseline levels. Online church activities are 
positively correlated with the local pandemic situation at the beginning, 
but uncorrelated with most state interventions. After the peak of the first 
wave (mid April), we observe a slight decrease in online activities. We 
investigate heterogeneity in the church responses and find that church 
size and worship style explain differences consistent with churches facing 
different demand and cost structures. Local political voting behavior, 
on the other hand, explains little of the variation. Descriptive analysis 
suggests that overall online activities, and the patterns of heterogeneity, 
remain unchanged through end-November 2020.
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1 Introduction

For religious organisations, in-person gatherings are at the heart of their activities. They are

where members of the organisation interact, a platform for prayer and religious rituals, and ex-

change with the religious leaders. Unfortunately, religious in-person gatherings have been identified

as some of the early hot spots of the novel coronavirus (SARS-CoV-2).1 Religious gatherings usu-

ally take place indoors, with large groups, and often involve singing and close contact between the

members. These points have been identified as key features that facilitate the spread of SARS-

CoV-2.2 At the same time, in-persons gatherings are the way in which members’ commitment to

fellow members and to the organisation is strengthened, in a way that often translates directly

into revenues for the organisation. This obviously creates important conflicts of interest for such

organisations - how have they responded?

We investigate the response of US Christian churches to the coronavirus pandemic and to the

interventions imposed by the governments to limit the virus propagation. Specifically, we ask to

what extent churches have responded to the pandemic by moving their gatherings online, and which

types of churches have done so most. We use a data set of nearly 4000 Christian churches in the

United States that have a public Facebook profile, and that are registered at usachurches.org. With

the support of CrowdTangle, a Facebook-owned tool that tracks interactions on public content from

Facebook pages and groups, we obtained all public Facebook posts of those churches from January

2020 to October 2020 (CrowdTangle Team [2020]).

To identify church online activities, we hand coded 1600 church posts and then use a random

forest algorithm to predict the advertisement of an online church activity in a Sunday post for the

rest of the sample. The prediction algorithm evaluates the type of the post (video, link, live stream,

etc), as well as the post text. We then observe the extent to which the churches’ online activities are

correlated with state and county regulations and numbers of Covid-19 cases in the period between

1For example an annual prayer meeting at an evangelical megachurch in France https://www.washingtonpost.

com/world/europe/how-a-prayer-meeting-at-a-french-megachurch-may-have-led-to-scores-of-coronavirus-deaths/

2020/04/01/fe478ca0-7396-11ea-ad9b-254ec99993bc_story.html and a Muslim gathering in India
https://www.washingtonpost.com/world/asia_pacific/india-coronavirus-tablighi-jamaat-delhi/2020/

04/02/abdc5af0-7386-11ea-ad9b-254ec99993bc_story.html. See also James et al. [2020].
2World Health Organization [2020], July 2020 version.
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January and June 2020. We verify the results using the share of churches that post at least one

video on a given Sunday as another proxy for online activity. We investigate heterogeneity in the

reaction according to the size and the worship style of the church, as well as voting behavior at the

county level in the 2016 presidential election.

Stories of religious organisations that held in-person gatherings despite the coronavirus pan-

demic and despite governmental orders are easy to find in the media.3 Indeed, many religious

organisations and denominations were presented as responding irresponsibly to the crisis.4 Yet sto-

ries of churches defying public health guidance are undeniably more newsworthy and perhaps more

relevant for enforcement of public health measures, which suggests they may not be representative

of the behavior of churches overall. The issue of in-person religious gatherings has again become

central to the political debate on the legitimacy of public health measures, in the wake of the US

Supreme Court decision on 25th November 2020 striking down restrictions on religious services im-

posed in New York by Governor Andrew M. Cuomo.5 We try to provide a more objective measure

of the response of US churches in moving their gatherings online, to the extent that is possible from

the limited available data. This may help formulate public health policies that may be necessary

due to the continuation of the pandemic, as well as to future crises arising from other types of

infectious disease.

In a pandemic, it seems likely that individuals turn to figures of authority for guidance on how

to behave. Those figures of authority may be in government or in other components of civil society,

and may include church leaders. The role of other sources is likely to be particularly important

where the message from government is either not clear or not trusted by the people. The United

States is especially suitable for this study because it is a country with a federal structure as well

as high level of religious participation. There are multiple sources of advice and authority for indi-

viduals to listen to even within the government, and they are likely to have given particular weight

3For example, https://www.bbc.com/news/world-us-canada-52232384, accessed 2020-09-18.
4Forexample, https://www.nytimes.com/2020/03/30/us/coronavirus-pastor-arrested-tampa-florida.

html?auth=login-facebook, accessed 2020-06-18, and https://www.independent.co.uk/news/world/americas/

kenneth-copeland-blow-coronavirus-pray-sermon-trump-televangelist-a9448561.html, accessed 2020-06-18.
5See “Splitting 5 to 4, Supreme Court Backs Religious Challenge to Cuomo’s Virus Shut-

down Order”, New York Times, 26th November 2020, https://www.nytimes.com/2020/11/26/us/

supreme-court-coronavirus-religion-new-york.html?action=click&module=Top%20Stories&pgtype=Homepage.
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to decisions by churches on how to respond to the pandemic.

We find that the proportion of churches offering an online activity more than doubled between

February and April 2020. While around 28 percent of churches in our sample already posted an

online alternative in February, around another 16 percent of churches responded very quickly and

already posted an online alternative in the weekend after the international travel ban (March 11)

and another 16 percent the weekend after. We also find a positive association between positive

Covid cases or Covid deaths on the county level and churches online activity, even when controlling

for governmental regulations, in the introduction period, defined as between January 1 and April

15, 2020.

Looking at the period between April 15 and June 30, the relaxation period, we find that the

proportion of churches offering an online alternative slowly goes down over time. Yet the decrease

is not correlated with the number of Covid cases or deaths. There is a correlation with lifting

governmental regulations, yet it becomes insignificant once a trend is included. We thus cannot

distinguish a relationship between lifting restrictions and online activities from a general fatigue

effect. In the end, though, the proportion does not go down to the baseline levels but stays at

a much higher level than before. Furthermore, we confirm that this high level of online activity

continues through to the end of October.

We do not expect that churches would all react in the same way. For example, large churches

that already have a significant online presence might find the cost of moving their activities en-

tirely online is smaller than for smaller churches. If true, this might apply not only to their direct

costs of moving online , but also to their opportunity costs: small churches may rely on appeals to

funds delivered in person to their physical congregations, whereas larger churches may have more

sophisticated online fundraising skills. The demand that churches face according to their size and

worship style might also be different. Larger churches may be more attractive to a different type

of population. Also, a contemporary church event might be easier to broadcast online and might

have a higher take-up than a traditional church service.
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Investigating heterogeneity in the church responses, we find that mega and large churches were

indeed very fast in their response. The share of mega churches offering an online alternative on

Sunday was already high before the pandemic (around 50%) but still increased significantly after

the first weekend (after the international travel ban came into place). Relatedly, 36% of churches

who have a contemporary worship style already offered an online alternative before the pandemic

and the proportion increased strongly in the first two weekends of the pandemic. Large and mega

churches also do not seem to decrease their online offer in the relaxation period as much, suggesting

a more permanent shift to a hybrid model.

Medium and small churches, which started from a lower baseline level, were slower to respond.

Yet the proportion of medium and small churches offering an online activity on a Sunday in the

week after the federal guidelines on the coronavirus were issued (March 16) increased by 20 - 26

percentage points. This implies that the number offering an online alternative also doubled within

the first weeks of the pandemic. However, there is a stronger decreasing trend for small churches in

the relaxation period, suggesting that some might go back to solely in-person gatherings. Similarly,

churches with a traditional worship style started with a lower baseline proportion but more than

doubled the share offering an online activity on Sundays. Yet their decrease is the strongest in the

relaxation period.

The ruling of the Supreme Court in favor of religious gatherings seems likely to entrench a view

of the behavior of churches in the pandemic as reflecting primarily ideological or political beliefs,

and as motivated by the political convictions of their leaders rather than the well-being or safety

of their members. Yet when we interact churches’ responses with the share of Republican votes

in the county at the 2016 Presidential election we find almost no effect. A slight dampening of

the move online can be observed in states with religious exemptions to stay-home orders, which

tend to lean Republican. However, controlling for the nature of the stay-home orders, churches in

Republican counties show a slightly greater tendency to move online, and the two effects more or

less offset each other. In short, if their is a political effect of Republican support on online activity

it appears to operate through a political channel (the type of state-level health measures imposed)

rather than a religious channel (the decisions of church leaders).
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It is hardly surprising that churches should become a focus of attention in a pandemic. A now

substantial literature has shown that religious activities can help individuals to deal with stress,

uncertainty, and negative shocks. Recent studies show that people become more religious if they

recently experienced an earthquake close by (Bentzen [2019]) and that church members in Ghana

made less charitable donations when they were enrolled in a formal insurance policy (Auriol et al.

[2020]).6 This phenomenon is likely to be particularly important in societies lacking comprehensive

mechanisms of insurance against various risks including health risks.

The coronavirus pandemic is therefore likely to change the demand for religion. Indeed, Bentzen

[2020] describes how the pandemic lead to a global increase in the demand for prayers measured

by an increase in relative Googles searches. A survey conducted by Pew Research Center survey at

the end of March 2020 finds that 55% of U.S. adults state that they have prayed for an end of the

pandemic (Pew Research Center [2020]). Yet among those who usually attend religious services at

least once or twice a month, 59% scaled back on attendance of religious gatherings. The coronavirus

pandemic thus combines a change in the cost of holding in-person gatherings (due to regulations

but also due to the health risk for members) with a shift in the demand for religious activities.

This economic view of the activities of religious organizations - that they primarily act to supply

services for which they perceive a demand on the part of their actual and potential members

- contrasts with a more ideological or political view, according to which church leaders have a

significant ability to persuade church members to adopt the leaders’ narrowly political or more

broadly ideological beliefs. In our heterogeneity analysis, we find no evidence that supply-driven

ideological factors have played a substantial part in shaping the churches’ responses. Size and

worship style are important sources of heterogeneity, while political orientation is not. Of course,

we cannot rule out that churches are using their persuasive power to advance political messages

in ways that escape our analysis. But if the majority of churches were opposing public health

measures on a large scale we would expect to see evidence of this in our data, and we do not.

6See also Chen [2010] and Ager and Ciccone [2016].
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2 Covid-19 in the US: Cases and regulations

The first case of Covid-19 in the US was confirmed on 20 January 2020 and from the beginning

of March cases began to increase exponentially (see figure 10 in the Appendix). On March 11, the

federal government banned foreign travel, trying to avoid infected travellers from abroad spreading

the virus in the US. Just a few days later, on Monday March 16, the federal government pub-

lished guidelines that should be implemented to mitigate the spread of the virus. It urged citizens

to stay at home if they were sick, lived with someone who was tested positive, or were in an at-

risk group. It also encouraged working from home and avoiding gatherings of more than 10 people.7

At around the same time, state governments reacted to the increase of cases in their states.

We use regulation data from Killeen et al. [2020] which summarizes and groups state and district

orders. Public schools in all states were closed with state orders being released between March 15

and April 2. Restaurants and entertainment establishments were told to close at around the same

time in all states (except South Dakota). Most states also banned gatherings of more than 500

people or of more than 50 people. The different state regulations were often released within the

same week, yet there are some states that had a one or two-week time lag between the regulations,

and some regulations were implemented at the county level. Between March 21 and April 6, most

states issued a stay-at-home order. Some states defined religious organisations as essential busi-

nesses and/or allowed small religious gatherings, while others did not.

The number of daily deaths due to Covid-19 reached its peak in the middle of April 2020.

Confirmed Covid-19 cases decreased slightly after April. They stayed at a high level also due to

more extensive testing with the number of tests doubling between mid-May and the end of June.

The number of positive Covid-19 cases increased again from the middle of June onward with an

increase of death from July onward which was less pronounced than the surge observed in April.

As a reaction to the decreasing number of deaths and hospitalization, states rolled back their stay-

home orders between April 24 and June 15. Similarly, restaurants and entertainment establishments

were allowed to reopen between April 24 and June 22. At the end of June, several states still had

7https://www.whitehouse.gov/wp-content/uploads/2020/03/03.16.20_coronavirus-guidance_8.5x11_

315PM.pdf, accessed 2020-09-16.
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restrictions on the number of people being allowed to gather in one place.

3 Church Data

3.1 Church characteristics and Facebook pages from usachurches.org

On May 29, 2020, we collected information on churches from the usachurches.org website.

usachurches.org is an online platform offering information for people searching for a church in

the United States. It contains relevant information regarding the main characteristics of churches,

such as denominations, location, size and the programs and services they offer. The platform was

first established in 2000 in Columbus, Ohio and expanded to other states in 2005. Any website

user can register their church and indicate their information. This implies that any member of the

church, not only the church leaders, can register their church. The information is then reviewed

and approved by the platform.

The website contains rich information on 10,190 churches in nearly all states. Estimating the

total number of churches in the US at 350,0008, the registry includes around 3% of all US churches.

However, the website does not report when the information was registered nor when it was last

updated. Also, because the information can be registered by any church member, it might omit

certain programs and services or miscalculate the size of their church. Self-registration also implies

that more technology-friendly churches, as well as those that are publicly advertising their con-

gregation as a place to join, are more likely to be in our data set. Potential selection bias should

therefore be borne in mind in interpreting our results.

Importantly, the registry includes information about the social media presence of the church, as

well as some characteristics of interest. First, the church size is defined according to the church’s

average weekly attendance. Small churches are defined as receiving up to 50 people, medium

churches between 51 and 300 people; large churches correspond to between 301 and 2000 people,

and mega-churches receive on average over 2000 people a week. According to these definitions,

8Estimate by the Hartfort institute: http://hirr.hartsem.edu/research/fastfacts/fast_facts.html#

numcong.
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32.7% of the churches are small, 49% are medium, 12.5% are large, and the remaining 5.8% are

mega-churches. Additionally, 3.6% of churches declare that they have more than one worship site.

Comparing these numbers to the results of the National Congregation Study (Chaves [2019]) there

are proportionately fewer small churches in our data set than in the National Congregation Study

where they make up 42.7%. We also have proportionately more megachurches present in our data

set than on average in the US.9

Secondly, churches declare their denomination. The raw data contains 159 different denomi-

nations; we categorize them into 18 broader Christian denominations according to the definitions

presented in the USA Churches Directory. 27% of the churches are either non-denominational or

independent churches. The most important denominations in the sample are Baptist (22.7%), Pen-

tecostal (15.8%), and Methodist (5.3%). Thirdly, the directory contains information on the worship

style which is either contemporary, traditional, or a blend of the two.

Finally, churches can provide links to their social media profiles. 43.4% provide a link to their

public Facebook profile, 20.6% indicate a Twitter profile, and 5.9% provide a YouTube link. As

Facebook is the most widespread social media platform, we decide to focus on their online Facebook

presence.

Table 3 in the Appendix shows the difference between churches that provide a public Facebook

link and those that do not. Not surprisingly, in the sample that provides a Facebook link there

are more large and mega churches and fewer small churches. More churches with a Facebook link

describe themselves as having a contemporary worship style. The two samples are similar in their

denominational structure, with more Methodist and slightly fewer Baptist churches providing a

Facebook link. Finally, churches that provide a Facebook link also more often provide a YouTube

or Twitter link.

9The definitions for medium and large churches are unfortunately not the same in the two data sets.
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3.2 Public posts on Facebook

To study the churches’ social media response to the coronavirus pandemic, we use Facebook as

a proxy for online activity. Facebook is the social media platform that has the highest prevalence

of the three in the church data set. Furthermore, Facebook still has one of the highest numbers

of users in the US among all social media. According to the Pew Research Center (Perrin and

Anderson [2019]), 69% say they have ever used the platform. Only usage of YouTube is higher,

and this can be easily connected with Facebook. Among users, 74% visit Facebook at least once

per day, which is much higher than usage of YouTube or Twitter. Furthermore, Facebook usage

is more evenly distributed across most age and socio-economic categories, compared to most other

social platforms. Finally, compared to social media such as WhatApp, information posted on public

websites can be accessed and readily collected.

Nearly half (43%) of the 10,190 churches from the usachurches.org provide a link to a public

Facebook page. Of those 91% were active on September 1st, 2020. To access the posts on Facebook,

we partnered with CrowdTangle, a Facebook-owned tool that tracks interactions on public content

from Facebook pages and groups.10 We retrieved all posts that were posted by one of the churches

in our data base, that were still online on July 1st, and that were posted between January 1st, 2020

and June 30th, 2020. The data set contains 644,752 posts of 3,897 churches that had made at least

one publication in this period. The posts can be connected to the church characteristics via their

Facebook Id. The information about the posts includes the date and time, the message (the text

of the post, link text or picture text), the type of posts (different types of video, photo, link or just

text “status”), the number of reactions, the number of comments and the number of shares.

10https://www.CrowdTangle.com/
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Fig. 1. Total number of Facebook posts per day between January 1 and June 30, 2020

Note: Total number of posts made by public U.S. church profiles between January 2020 and June 30 2020

on Facebook. Facebook IDs were obtained from usachurch.org and Facebook posts by CrowdTangle.

4 Empirical Strategy

4.1 Church posting behavior

Figure 1 illustrates the number of posts made by the churches in our data set from January to

June 2020. We can see regular spikes in the number of posts. Zooming in on January in Figure

11 in the Appendix, we see that churches post most on Sunday, the day of worship. As we focus

on the question whether churches moved their in-person gatherings online, we restrict our study

to their posting behavior on Sundays. In particular, the same weekday pattern can be observed in

Figure 2 for posts that contain a video (live videos, videos directly posted to Facebook or YouTube

videos). Even before the pandemic, churches primarily posted videos on Sundays. On weekdays,

they are more likely to post a photo. Links and statuses are not as common.

Even before the coronavirus pandemic (defined as before March 2020), 47% of churches in our

sample posted on a given Sunday, as illustrated in Figure 3. Also, 30% posted at least one video on

a given Sunday before the pandemic and 4% a link. Overall in April, at the height of the pandemic,

82% of churches posted on a given Sunday, 81% if Easter Sunday is excluded. 70% of churches
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Fig. 2. Total number of Facebook posts per day between January 1 and June 30, 2020 by type of
post

Note: Number of posts made by public U.S. church profiles between January 2020 and June 30 2020 on

Facebook by type of post. Video includes live videos (including scheduled and completed live videos),

native videos (video files posted directly to Facebook) and YouTube videos. Status describes posts that

only contain text. Facebook IDs were obtained from usachurch.org and Facebook posts by CrowdTangle.
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Fig. 3. Proportion of churches that post at least once on Sunday between January 1 and June 30,
2020 overall and by type of post

Note: Proportion of U.S. churches posting at least once on Sunday between January 2020 and June 30

2020 on Facebook overall and by type of post. Video includes live videos (including scheduled and

completed live videos), native videos (video files posted directly to Facebook) and YouTube videos. Status

describes posts that only contain text. Facebook IDs were obtained from usachurch.org and Facebook

posts by CrowdTangle.

posted at least one video (69% excluding Easter Sunday) and 11% a link (10.7% excluding Easter

Sunday). Therefore, nearly twice as many churches posted on a given Sunday in April than did

before March 2020. The proportion of churches posting a video more than doubled, as did the

number of links.

4.2 Proxying online gatherings

The first proxy for making online worship attendance possible is whether churches post a video.

Videos include videos posted directly to Facebook, embedded YouTube videos, and live videos (in-

cluding completed or scheduled). Table 4 shows 9 randomly selected Sunday posts with a message

that are marked as video and 9 that are not. Most video posts seem to be connected to Sunday

worship, yet there are some which are not directly related to Sunday worship (in this case a pastor
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offering health advice). Some posts that are not marked as videos are connected to Sunday online

service. For example, one post clearly announces a live Facebook video. In this case, we still

record this church as posting at least one video on this Sunday because the follow-up post would

be captured. Yet we do not capture whether churches announce an online service on Facebook but

then stream the video via a different platform without linking it through Facebook. This would be

the case, for example, if churches stream the video directly to their website or via WhatsApp.

In order to improve the online activity proxy we hand-coded 1600 posts11 and identified those

describing a “church activity that was clearly online” using the message text and the post type.

Church activities include Sunday services, but also smaller group activities. 49% of all posts are

related to a church activity in our training sample, and 74% of Sunday posts. 7% of all posts

refer to a social event, 6% give information about the church, and 25% are defined are purely

“motivational” (an inspiring quote or psalm). The rest is either unclear (5%), are congratulatory

posts (celebrating for example the anniversary of the church - around 2%), talk about a charitable

activity (3%) or include some political message (less than 1%). 4% of posts after March 01 2020

have a clear reference to Covid.

We use the hand-coded posts as the training sample for a random forest algorithm predicting

online church activities.12 As predictors, we use the type of the post and the 200 most commonly

used words in the post texts. Figure 12 summarizes the most frequently used words churches

use, both overall and on Sundays. The text analysis excludes stop words such as ‘and’ or ‘or’,

as well as words that only consist of a number.13 Figure 13 summarizes the most frequent words

before March 2020 and after March 2020. We can see that “https” (also captured in the post type),

“live”, “online” and “watch” either improve in the ranking or enter the top 20 most frequent words.

The random forest prediction algorithm reaches an average 15% error rate.14 Figure 14 in the

11We randomly selected 100 posts for each month from January to September 2020, as well as for March and April
2019. To this we added a random selection of 500 posts drawn from January to September 2020.

12We use the randomForest R package with 500 trees. The number of predictors used at each node minimizes the
out-of-bag error rate.

13Covid-19 is therefore not excluded but if the message includes for example ‘John 1:33’, then only ‘John’ is
counted as a word.

148% for wrong zeros and 27% for wrong 1.
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Appendix illustrates the most important predictors for the random forest prediction. Not surpris-

ingly, the type of the post is the most informative characteristic. However, we can also see expected

keywords such as “online”, “live”, but also “facebook”, “join” and “youtube”. We use the prediction

algorithm to predict online church activity for the whole sample. In 93% of the posts, the random

forest based online indicator and the indicator for posting at least one video give the same result.

In 3% of the cases, the algorithm predicts an online activity but there is no video posted, and in

4% of the cases a video is posted, but the algorithm does not predict the post as an online activity.

Figure 4 illustrates the time trends in the two online activity proxies. Though the trend before the

pandemics are quite similar, there seem to be some differences during the pandemic and afterwards.

In what follows we use the predicted online measure as our variable of interest, as we suggest that

it is an improvement over the “naive” proxy that only uses the fact of posting a video. We report in

the Appendix some robustness tests using the share of churches posting a video on a given Sunday.15

4.3 Intervention data, Introduction and Relaxation Period

To estimate the churches’ responses to governmental regulations, we use the county-level in-

formation about government intervention collected by Killeen et al. [2020]. We supplement the

intervention database with information about religious exemptions to the stay home order. First,

we define states that either define religious organisations as essential businesses and allow individ-

uals to go there, or who allow small gatherings for religious purpose while they implemented their

stay home order as having an religious exemption. States that do neither of those in their execu-

tive orders are defined as not having a religious exemption. Second, we use the definition used by

the Pew Research Center that differentiates between 4 categories: religious gatherings forbidden,

limited to 10 people or less, limited in other ways, or exempt from the stay home order.

We also use county level information on the number of confirmed positive cases, deaths and

15In the multivariate analysis we find that coefficients on regressors of interest under the first proxy are generally
smaller and somewhat less statistically significant than their counterpart coefficients under the second. This sug-
gests the presence of attenuation bias due to measurement error, and that the first proxy might suffer more from
measurement error than the second.
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Fig. 4. Churches’ online behavior over time

(a) At least one video post on a Sunday

(b) At least one post predicted as online activity on a Sunday

Note: Share of churches with a predicted online church activity on a Sunday from January to June 2020.

Public Facebook posts obtained via CrowdTangle, Facebook IDs from usachurches.org. The dashed line

separates the introduction and relaxation periods. Shaded area indicates the standard deviation.
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hospitalizations from Killeen et al. [2020], based on numbers released by the Johns Hopkins Univer-

sity. We merge this information with the panel set of Facebook posts and the church characteristics

using the FIPS code of the church address. For the heterogeneity analysis, we use information of

county-level voting in the 2016 presidential election from Kirkegaard [2016], based on data from

the New York Times16.

We distinguish two different time periods: the introduction period and the relaxation period.

The introduction period is defined from January 1 to April 15 and covers the time when federal

guidelines were issued and states issued regulations. The relaxation period is defined as the time

after April 15 until the end of June. It covers the time span where stay home orders were lifted,

restaurant and entertainment establishments were allowed to reopen and some states allowed gath-

erings of more than 50 or 500 people. We choose to look at the two periods separately as we expect

that introducing or lifting a governmental restriction would have different effects. The boundary

between the two time periods is illustrated by the dashed line in figure 4.

As the state interventions are highly correlated among each other (given that we use weekly

and not daily information), we merge the following measures: First, gatherings forbidden indicates

if gatherings are limited to at least less than 500 people. Second, a restaurant and entertainment

establishments closed indicator that equals one if both restaurant and entertainment establishments

are order to closed, and 0.5 if only one category of both is ordered to close.

4.4 Empirical Specification

We regress our predicted online indicator on publicly available information about the severity

of the coronavirus pandemic. For this we use the number of confirmed Covid-19 cases and deaths.

Though both of the measures underestimate the true spread of the virus, particularly in the first

quarter of the year, they are pieces of information available to the churches. We also use federal,

state and district interventions as regressors. These include dummy variables for the periods after

the travel ban, after the federal guidelines were issued, after public schools closed, and during state

or district interventions and stay-at-home orders.

16https://www.nytimes.com/elections/2016/results/president
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church activityitc = α.interventionstc + β.Covidtc +Xt + γi + εitc (1)

This regression is described in Equation 1: Church activity of church i at Sunday t in county c

is regressed on the interventions in place in county c on Sunday t, and the Covid-cases in district

c in the week before Sunday t. We also add controls X which include a dummy for Easter Sunday

and a linear week in one specification for the relaxation period. Finally, we always use church fixed

Effects (γi). Standard errors are clustered at the state level.

None of the coefficients should be interpreted in a causal way. Covid-19 cases are potentially

correlated with religious demand factors in many ways: population density and economic activity,

education and trust in science. Religious demand then shapes the religious supply that churches

are offering and is correlated with political opinion. Simultaneously, religious activity can have an

effect on Covid-19 cases. Finally, religious organisations that want to stay open and continue to

gather in person might lobby against strict regulations at the state or county level and so influence

the intervention variable.

5 Results

5.1 Average Effects

Table 1 displays the churches’ online activities on Sundays in the introduction period, defined

as lasting from January 01 to April 15, 2020, in relation to Covid-19 cases, deaths and regulations.

In odd numbered columns we use reported infections as a measure of the spread of the pandemic by

county, while in even numbered columns we use reported deaths. Results are qualitatively similar

with some differences in points of detail. The same regression using the fact of posting a video on

Sunday as proxy for online activity is shown in table 5 in the Appendix.

Online activity is positively correlated with the numbers of confirmed Covid cases and Covid

deaths in previous weeks. To get an idea of the magnitude of the correlation, a 20% rise in infec-
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tions or deaths is associated with a one percentage point increase in online presence (compared to

an average of around 30% in February). The coefficients are smaller but still significantly positive

when we control for governmental interventions (column 3 to 8).

Online activity increased dramatically on the Sunday after international travel was banned (by

between 16 and 18 percentage points) and again after the Federal guidelines were issued (by be-

tween 16 and 18 percentage points according to specification). Apart from this, there is little sign

of an impact from statewide public health orders, except for a negative effect of stay-home orders

(which were typically implemented some time after the Federal orders) in column 3.
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Table 1: Effect of Covid-19 and interventions on churches posting behavior on Sundays: Introduction Period (before April 15)

Dependent variable: Predicted Online Church Activity on Sunday

(1) (2) (3) (4) (5) (6) (7) (8)

Log Infections previous week (county) 0.047∗∗∗ 0.021∗∗∗ 0.022∗∗∗ 0.022∗∗∗

(0.002) (0.008) (0.008) (0.007)
Log deaths previous week (county) 0.052∗∗∗ 0.019∗ 0.019∗ 0.020∗

(0.002) (0.011) (0.011) (0.011)
After International Travel Ban (March 11) 0.156∗∗∗ 0.178∗∗∗ 0.157∗∗∗ 0.179∗∗∗ 0.156∗∗∗ 0.178∗∗∗

(0.013) (0.009) (0.013) (0.009) (0.013) (0.010)
After Federal guidelines issued (March 16) 0.160∗∗∗ 0.181∗∗∗ 0.161∗∗∗ 0.182∗∗∗ 0.158∗∗∗ 0.179∗∗∗

(0.027) (0.026) (0.027) (0.026) (0.027) (0.025)
After Public Schools Closed −0.009 −0.015 −0.008 −0.014 −0.006 −0.012

(0.014) (0.012) (0.014) (0.012) (0.015) (0.012)
Gatherings forbidden −0.011 0.003 −0.012 0.002 −0.011 0.003

(0.014) (0.013) (0.015) (0.014) (0.014) (0.013)
Restaurants/Entertainment closed −0.015 0.007 −0.017 0.006 −0.016 0.006

(0.029) (0.026) (0.029) (0.026) (0.028) (0.025)
During Stay Home Order −0.044∗∗ −0.039

(0.019) (0.024)
Stay Home: with religious exemption −0.054∗∗ −0.045

(0.022) (0.027)
Stay Home: without religious exemption −0.024 −0.028

(0.018) (0.022)
Stay home: Rel. gatherings prohibited −0.047∗ −0.050

(0.025) (0.030)
Stay home: Exempt from limits −0.065∗∗∗ −0.058∗

(0.023) (0.029)
Stay home: Limited to 10 −0.016 −0.010

(0.021) (0.022)
Stay home: Limited otherwise 0.007 −0.003

(0.048) (0.041)

Average in February (Sunday) 0.277 0.277 0.277 0.277 0.277 0.277 0.277 0.277
Number of churches 3893 3893 3893 3893 3893 3893 3893 3893
Observations 58,395 58,395 58,395 58,395 58,395 58,395 58,395 58,395
Adjusted R2 0.570 0.530 0.594 0.590 0.594 0.590 0.594 0.590

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Includes church fixed effects and an Easter Sunday dummy. Standards error clustered on state level. Includes
Sundays between 2020-01-01 and 2020-04-15. Columns 4 and 5: Religious exemptions according to own categorization. Columns 7 and 8:
Categorization from Pew Research Center. Number of states (clusters): 51
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Though the negative coefficient of the stay-home order may be a statistical fluke, we explore

the matter further in columns 5 to 8 by differentiating between different types of stay-home orders

according to whether or not there were exemptions for religious organisations. In columns 5 and

6, we use our own categorization, which differentiates between orders that did and did not have

an exemption for a religious gatherings. In column 7 and 8, we use a categorization from the Pew

research institute, which differentiates between prohibiting religious gatherings, exempting them

from any limit, or limiting them to 10 persons, or limiting otherwise17. When we control for the

number of infections in the previous week (columns 5 and 7), there is a substantially and signif-

icantly negative coefficient on states with complete exemption of religious gatherings from limits.

Controlling for the number of deaths, the coefficient becomes insignificant when using our own

categorization (column 6) and is only significant at 10% for the Pew categorization (column 8).

We cautiously interpret this as being likely due to a relaxation of their previously increased online

presence in states where the stay-home orders allowed this.

Table 2 displays the results for the relaxation period, defined as lasting from April 15 to June 30,

2020.18 There is not much evidence of any responsiveness to reports of deaths or infections in the

county, suggesting that such reports may have played a part in the initial phase in bringing home to

churches the seriousness of the pandemic, but once the pandemic was established such reports made

little difference. Although public health orders are positively correlated with online church activity

in columns 3, 5 and 7, once we control for a time trend that effect disappears. This suggests that

a general effect of fatigue with the restrictions may have been at work, rather the restrictions per se.

Overall, it is possible to be impressed by the speed with which many churches moved activ-

ities online once the pandemic began, while also noting that there remained a substantial share

of churches that did not have any perceptible online activity even at the height of the first wave

of the pandemic. It should be kept in mind however, that other church behavior such as offering

online activities on other platforms or offering drive though prayers, is not captured in these results.

17More than 10 persons, but still limited.
18And table 6 shows the results using posting a video as dependent variable.

141

Co
vi

d 
Ec

on
om

ic
s 6

1, 
11

 D
ec

em
be

r 2
02

0:
 12

1-
17

1



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Table 2: Effect of Covid-19 and interventions on churches posting behavior on Sundays: Relaxation Period (after April 15)

Dependent variable: Predicted Online Church Activity on Sunday

(1) (2) (3) (4) (5) (6) (7) (8)

Log Infections previous week (county) −0.004 −0.002 0.0002 −0.002 0.0003 −0.002 −0.0004
(0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Log deaths previous week (county) 0.001
(0.002)

Gatherings forbidden 0.026∗∗ 0.016 0.026∗∗ 0.017 0.025∗∗ 0.015
(0.010) (0.010) (0.010) (0.010) (0.011) (0.010)

Restaurants/Entertainment closed 0.012 −0.001 0.013∗ −0.0002 0.012 −0.001
(0.008) (0.007) (0.007) (0.007) (0.007) (0.007)

During Stay Home Order 0.017∗∗ −0.002
(0.007) (0.007)

Stay Home: with religious exemption 0.019∗∗ −0.0001
(0.008) (0.008)

Stay Home: without religious exemption 0.010 −0.006
(0.009) (0.010)

Stay home: Rel. gatherings prohibited 0.028∗∗∗ 0.011
(0.010) (0.011)

Stay home: Exempt from limits 0.018∗ −0.001
(0.009) (0.009)

Stay home: Limited to 10 0.005 −0.013
(0.010) (0.010)

Stay home: Limited otherwise 0.033∗ 0.012
(0.017) (0.017)

Linear week trend −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.001) (0.001) (0.001)

Average in April (Sunday) 0.688 0.688 0.688 0.688 0.688 0.688 0.688 0.688
Number of churches 3893 3893 3893 3893 3893 3893 3893 3893
Number of States (clusters) 51 51 51 51 51 51 51 51
Observations 42,823 42,823 42,823 42,823 42,823 42,823 42,823 42,823
Adjusted R2 0.671 0.671 0.671 0.672 0.671 0.672 0.671 0.672

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable: At least one post predicted to offer an online church activity on a given Sunday. Includes
church fixed effects. Standards error clustered on state level. Includes Sundays between 2020-04-15 and 2020-06-30. Columns 4 and 5: Religious
exemptions according to own categorization. Columns 7 and 8: Categorization from Pew Research Center.
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5.2 Heterogeneity

We now look at heterogeneity among churches in their response to the pandemic, concentrating

in particular on the dimensions of church size, worship style and political environment. Figure 5

shows the evolution over time of online activity according to the size of the church. Unsurprisingly,

size matters a lot. Already before the pandemic, half of megachurches were posting online activity

on any given Sunday, and that proportion rose very rapidly to over 80%. More surprisingly, even

medium and small churches, though beginning from lower levels, saw almost equally substantial

rises in their online activity. In the relaxation period all sizes of church saw some decline in their

online activity, though this was more marked among smaller churches.

A similar pattern can be seen comparing churches by worship style, illustrated in Figure 6.

Those that report a contemporary worship style posted more prior to the pandemic and the more

mainline churches that report a traditional worship style posting less. All types see a rapid and

substantial increase, with a subsequent slight decline that is more marked among the traditional

churches.

The comparison by political environment is interesting for what it does not show. Figure 7

compares churches in counties in the highest 40 percentile and the lowest percentile of Republican

vote share in the 2016 presidential election. Given the strong political polarisation surrounding

pandemic management, it might have been expected that churches in strongly Republican areas

would respond less to the pandemic than those in strongly Democrat areas. The evolution of activ-

ity in these two types of county is almost identical. Indeed, even if the curves are slightly different

at the beginning of the pandemic, they converge and are nearly identical from May onward. Of

course this is a pure description of average activity, and it may be that more detailed analysis may

reveal more traces of polarisation. But if polarisation had been as deep as many media commen-

tators appeared to suggest we would have expected to see a difference in the development of these

averages, and we do not.

The multivariate regression analysis in the Appendix tends to corroborate these findings and
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Fig. 5. Churches’ online activity over time by church size.

Note: Share of churches with a predicted online church activity on a Sunday from January to June 2020

according to church size. Public Facebook posts obtained via CrowdTangle, Facebook IDs from

usachurches.org. The dashed line separates the introduction and relaxation periods. Shaded areas indicate

the standard deviation. Small churches are defined as receiving up to 50 people on a regular Sunday,

medium churches between 51 and 300, large churches between 301 and 500 and mega churches over 2000.

Size characterization from usachurches.org.
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Fig. 6. Churches’ online activity over time by church worship style.

Note: Share of churches with a predicted online church activity on a Sunday from January to June 2020

according to church worship style. Public Facebook posts obtained via CrowdTangle, Facebook IDs from

usachurches.org. The dashed line separates the introduction and relaxation periods. Shaded areas indicate

the standard deviation. Worship style characterization from usachurches.org.

adds some points of detail. However, it should be noted that in our regressions we always use church

fixed effects and control for public health measures, so that the coefficients cannot be interpreted

in exactly the same way as the lines in the Figures, which show raw averages by category. Table

7 confirms that Mega and large churches both had higher average postings prior to the pandemic

and reacted faster (after March 11th) than medium and small churches. Nevertheless, the latter

responded almost as fast, with a strong response to the Federal guidelines on the 16th of March.

There is an interesting difference between these two groups in association with the closure of public

schools, which has a positive impact on online activity in the larger churches and a negative impact

on activity in smaller churches. This makes sense since smaller churches probably rely on volunteers

to manage online activity, and these volunteers may have been constrained by childcare responsi-

bilities. Finally, the correlation between the report of infections in the county in the previous week

and small churches’ online behavior is insignificant.

Table 8, for the relaxation period, shows little impact of public health measures, but a negative
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week trend reflecting probably a fatigue effect, that seems faster for smaller churches. Table 9

confirms the impression of Figure 6 with respect to differences of worship style during the intro-

duction period, and Table 10 shows, as for size, no major effect of public health measures, only a

generalized negative weekly trend.

Finally, Tables 11 and 12 confirm that there is no tendency for churches in strongly Republican

counties to respond less to public health measures. If anything there are slightly positive coefficients

on the interaction of Republican vote share with certain of the announced measures. However, as

Table 12 shows, there is a strong negative coefficient on the presence of a religious exemption in

a stay home order. There may well be a tendency for churches in strongly Republican counties

to be located in states that have religious exemptions, and those religious exemptions seem to be

very clearly associated with lower online activity. But given the nature of the stay-home order,

churches in strongly Republican counties do seem to have posted more online. This might indicate

that such orders were perceived as more legitimate in Republican counties - though at this stage

that remains a conjecture.

Overall, though, the absence of any visible negative association of a county’s Republican vote

share on the level of online activity remains striking in the light of the expectations generated by

widespread press reports of political polarisation in churches’ response to the pandemic.
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Fig. 7. Churches’ online activity over time by previous political voting behavior on the county
level.

Note: Share of churches with a predicted online church activity on a Sunday from January to June 2020,

according to if the county the church is located in is within the top of bottom 40 percentile of the vote

share for the Republican party in the 2016 presidential elections. Public Facebook posts obtained via

CrowdTangle, Facebook IDs from usachurches.org. The dashed line separates the introduction and

relaxation periods. Shaded areas indicate the standard deviation.
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5.3 Developments through end-November 2020

In this section we show the equivalents of Figures 4 through 7 on Facebook data until the end

of November 2020. Though we do not perform multivariate analysis for the larger sample (since

updated information about public health measures is not yet available), it is nevertheless possible

to note a number of salient features. First, as we can see from Figure 8, after an initial dip in the

relaxation period from the middle of April until the end of June, average online activity levels off

and shows no tendency to decline further. This may reflect the fact (shown in Figure 10 in the

Appendix), that confirmed cases and deaths from Covid-19 rose in July and August 2020 in the

United States. This contrasts with the European Union where they fell to low levels until they

caught up with and overtook US levels by November 2020. Even if churches relaxed their vigilance

after the April peak, they may quickly have realized the pandemic was not under control.

However, it is also notable that online activity shows no further increase. All the response of

church online activity to the pandemic seems to have happened within the first month of the pan-

demic. One might have expected a significant proportion of churches to develop an online presence

gradually over the following months, but there is no sign of this in our data. Yet it should be noted

that the constant levels of online activities could hide some churches stopping while new churches

offer online activities as the pandemic becomes more important in different parts of the country.

Next, Figure 9 shows that heterogeneity by both church size and worship style remained more

or less constant until the end of November (panels (a) and (b)). Most interestingly of all, panel

(c) shows that activity of churches in strongly Republican and strongly Democrat areas show no

tendency to diverge through to mid-October, even though the period covered the run-up to a very

partisan election with an unprecedentedly high voter turnout. There is a slight divergence during

November though the gap is small. This corroborates our impression, reported above in our dis-

cussion of the content of Facebook posts, that churches overwhelmingly use their posts to advertise

their services and to provide inspirational content for members rather than to communicate polit-

ically partisan messages.
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Fig. 8. Churches’ online activities until November 2020

(a) At least one video post on a Sunday

(b) At least one post predicted as online church activity on a Sunday

Note: Share of churches with a predicted online church activity on a Sunday from January to end-November

2020. Public Facebook posts obtained via CrowdTangle, Facebook IDs from usachurches.org. The dashed

line separates the introduction and relaxation periods. Shaded area indicates the standard deviation.
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Fig. 9. Churches’ online activities until November 2020

(a) Heterogeneity in Church Size

(b) Heterogeneity in Worship Style

(c) Heterogeneity in Voting Behavior

Note: Share of churches with a predicted online church activity on a Sunday from January to end-November

2020 according to (a) church size, (b) worship style, and (c) whether the county in which the church is

located lies within the top or bottom 40 percentile of the vote share for the Republican party in the 2016

presidential elections. Public Facebook posts obtained via CrowdTangle, Facebook IDs, size, worship style

and location from usachurches.org, from usachurches.org. Shaded areas indicate the standard deviation.
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6 Conclusion

In this paper we have examine the way in which US churches responded in their online behavior

to the unexpected challenge of the Covid-19 pandemic. We draw a contrast between two broad

models of churches’ operations. Under the economic model, churches respond to the demand of

their members for ritual and communitarian activities, as well as for some other services that may

be bundled with these. For such churches, the pandemic represents both a shock to demand and

a shock to supply. The shock to demand comes in the form of an unexpected increase in demand

for online services. Larger churches can typically meet this demand at a lower marginal cost, and

the increase might be different according to the service style. The supply shock takes the form of

an increase in the cost of in-person religious gatherings which again might be different according

to the average number of people attending. We find that US churches with Facebook pages re-

sponded rapidly to these two shocks, with two-third of churches showing evidence of online activity

each Sunday from the middle of April compared to less than one-third prior to the beginning of

March. Consistent with the economic model, churches of all sizes and worship styles responded,

but larger churches and those with more contemporary worship styles had higher levels of online

activity throughout the period than smaller and more traditional churches.

An alternative model of churches’ operations, in which they use their ideological influence over

the beliefs of church members to reinforce partisan political divides and resist public health mea-

sures that would diminish their revenues, is one that we cannot rule out but for which we find no

evidence in our data. Churches in strongly Republican and churches in strongly Democrat counties

display very similar behavior. Religious exemptions from stay-home orders are indeed associated

with lower levels of online activity, but such exemptions are the result of political decisions at the

state level. Conditional on exemptions there is no evidence that political factors influence church

responses.

Our sample is drawn from Christian churches that already have a significant online presence

through at least a Facebook page. We decided to focus on Christian churches to compare religious

organisations that are part of the Christian majority. There might be very different dynamics for
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religious organisations that are of a minority religion. Furthermore, this more technology-friendly

sample may overestimate the increase in online activities in the general church population. It would

be of interest to analyse the creation of new public church Facebook pages during the pandemic,

which so far escapes our analysis. This omission also leaves open the possibility that selection

bias, as well as the choice to analyse Facebook posts, may have hidden from us evidence of a more

ideological role for churches’ behavior. This remains an important avenue for future research. Yet

in view of the politically charged nature of controversies during the pandemic it is useful to draw

attention to the apparently bipartisan nature of churches’ general responses to the pandemic.
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7 Appendix

7.1 Additional Figures

Fig. 10. The evolution of confirmed cases and deaths from Covid-19 in the United States and the
European Union from February to December 2020.

(a)

(b)

Source: Our World in Data
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Fig. 11. Total number of Facebook posts per day in January 2020 with information about the
weekday

Note: Number of posts made by public U.S. church profiles in January 2020. The weekday is added to each

day. Facebook IDs were obtained from usachurch.org and Facebook posts by CrowdTangle.
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Fig. 12. 20 most common words in church posts overall and on Sunday

(a) All posts (b) Posts on Sunday

Note: Displays the 20 most common words in the messages of posts including all days (panel a) and on

Sundays (panel b) made by churches from January to June 2020. Stop words and numbers are excluded.

Posts are obtained from Facebook public profiles via CrowdTangle. Facebook IDs obtained via

usachurches.org
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Fig. 13. 20 most common words in church posts before and after March 2020

(a) Before March (b) After March

Note: Displays the 20 most common words in the messages of posts including all days made by churches

before March 2020 (panel a) and after March 2020 (panel b). Stop words and numbers are excluded. Posts

are obtained from Facebook public profiles via CrowdTangle. Facebook IDs obtained via usachurches.org
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Fig. 14. Most important predictors for online activity

Note: Illustrates the “importance” of each predictor in the online forest prediction algorithm that identifies

online church activities, measured as the mean decrease in the GINI. Based on a training set of 1600 hand

coded public Facebook posts. Predictors included the word stem of the 200 most used words and the post

type.
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Fig. 15. Church online Sunday activity according to the Republican vote share in 2016 on the
county level separately for states that eventually had a stay home order with and without a religious
exemption

(a) States that issued a stay home order with an exemption for religious gatherings

(b) States that issued a stay home order without an exemption for religious gatherings

Note: Share of churches with a predicted online church activity on a Sunday according to if the county the

church is located within the top or bottom 40 percentile of Republican vote shares in the 2016 presidential

elections. Panel (a) includes only states that issued a stay home order with an exemption for religious

gatherings, panel (b) includes only states that issued a stay home order without an exemption.
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7.2 Additional Tables

Table 3: Comparing churches with and without Facebook Link Provided on usachurches.org

Variable Without With Difference P-Value
Facebook Link Facebook Link

Church Size: Small 0.440 0.180 0.260 0.000
Church Size: Medium 0.490 0.490 -0.005 0.609
Church Size: Large 0.060 0.210 -0.150 0.000
Church Size: Mega 0.010 0.120 -0.104 0.000
Denomination: Baptist 0.230 0.220 0.019 0.024
Denomination: Catholic 0.010 0.010 0.002 0.377
Denomination: Lutheran 0.030 0.030 -0.006 0.068
Denomination: Methodist 0.040 0.070 -0.024 0.000
Denomination: Pentecostal 0.170 0.140 0.030 0.000
Denomination: Non-denominational 0.270 0.280 -0.005 0.542
or Independent
Traditional worship style 0.260 0.150 0.108 0.000
Blend of traditional and 0.500 0.430 0.067 0.000
and contemporary worship style
Contemporary worship style 0.200 0.310 -0.113 0.000
Twitter Provided 0.030 0.430 -0.399 0.000
YouTube provided 0.010 0.120 -0.113 0.000

N 5763 4427
Note: Information from usachurches.org, accessed in May 2020, according to if the church information
included a Facebook link or not. P-values from a two-sided t-test comparing the means. Small churches are
defined as receiving up to 50 people on a regular Sunday, medium churches between 51 and 300, large
churches between 301 and 500 and mega churches over 2000. Broad denomination according to the entry’s
own definition and church name. Worship style could be selected between traditional, contemporary, blend
of contemporary and traditional, and other.
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Table 4: Examples of posts with text defined as with and without at video

Posts with Video Posts without Video

Sunday is here! Watch live at 9:30 and 11:00 AM. Psalm 139 1-6 God knows you 7-12 God is close to
you 13-18 God made you 19-24 God protects you

Welcome to our Sunday Service Live Streaming -
April 19, 2020 Ptr. Jose Butao Message: ”
SEASONS OF PRAYER.”
#worshipjesusfellowship

What an awesome way to start a new year. 8
baptisms.

On Father’s Day, Worship with your family.
Watch Valley Baptist. Y ouTubeLink

Pastor Danny launches us into Day 1 of 21 Days of
Prayer and Fasting with a devotional message on
Romans 5! Let us know how God is speaking to
you through Romans 5 today!

Join us tomorrow online or in person!!! Service
begins at 10:45 AM. There will be NO Children’s
Church or Nursery, children will remain with their
parents. Hope to see you there!!

Attend Church right from your living room! Join
us live right now as Pastor Josh Surratt shares
how we can become Unshakable, even in scary and
uncertain times.

Today, our #pandemicprayer is to pray for the
parents

teachers.
During the welcome today, Pastor Matt shared
with us some steps that we are taking to stay
healthy, as well as a change in how we are going to
take communion starting next week. Check it out
below!

Its a beautiful day to worship! Join us this
morning as we gather together, virtually! WAYS
TO WATCH: FACEBOOK LIVE (9:30am)
church website (9:30am & 11am) FBCA Mobile
APP (9:30am & 11am)

Live Event $Emoji$ There is no fear in love. But perfect love
drives out fear, because fear has to do with
punishment. The one who fears is not made
perfect in love. 1 John 4:18 $Emoji$

Sunday Livestream JOIN US for our Sunday afternoon online services,
2PM, 4PM & 6PM, where Pastor Corey will be
chatting LIVE at 2PM, Pastor Yolie at 4PM and
Pastor Tammy at 6PM. Each will be offering
prayer and encouragement right here on Facebook
LIVE! Don’t forget to tag a friend or SHARE this
post! See you soon!

Sunday Service: 31 May 20: Sunday Morning
Worship

If you are making disciples, who are not making
disciples, then you are not making disciples

Note: Randomly selected public posts with a message defined as with and without a video. Posts obtained
via CrowdTangle. Facbooks ID from usachurches.org
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7.2.1 Posting at least one video on a given Sunday as dependent variable
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Table 5: Effect of Covid-19 and interventions on churches posting behavior on Sundays: Introduction Period (before April 15)

Dependent variable: Posted at least one video on Sunday

(1) (2) (3) (4) (5) (6) (7) (8)

Log Infections previous week (county) 0.041∗∗∗ 0.016∗∗ 0.016∗∗ 0.016∗∗

(0.002) (0.006) (0.006) (0.006)
Log deaths previous week (county) 0.047∗∗∗ 0.014∗ 0.014∗ 0.015∗

(0.003) (0.008) (0.008) (0.008)
After International Travel Ban (March 11) 0.122∗∗∗ 0.139∗∗∗ 0.123∗∗∗ 0.139∗∗∗ 0.122∗∗∗ 0.138∗∗∗

(0.011) (0.008) (0.011) (0.009) (0.011) (0.009)
After Federal guidelines issued (March 16) 0.165∗∗∗ 0.181∗∗∗ 0.166∗∗∗ 0.181∗∗∗ 0.163∗∗∗ 0.178∗∗∗

(0.026) (0.025) (0.026) (0.025) (0.026) (0.024)
After Public Schools Closed −0.019 −0.023 −0.017 −0.022 −0.016 −0.020

(0.019) (0.016) (0.019) (0.016) (0.020) (0.017)
Gatherings forbidden 0.005 0.015 0.003 0.014 0.004 0.015

(0.014) (0.012) (0.014) (0.013) (0.014) (0.012)
Restaurants/Entertainment closed −0.009 0.007 −0.010 0.006 −0.009 0.007

(0.026) (0.024) (0.026) (0.024) (0.025) (0.023)
During Stay Home Order −0.014 −0.010

(0.017) (0.020)
Stay Home: with religious exemption −0.023 −0.017

(0.019) (0.022)
Stay Home: without religious exemption 0.006 0.003

(0.019) (0.020)
Stay home: Rel. gatherings prohibited −0.012 −0.015

(0.027) (0.028)
Stay home: Exempt from limits −0.033 −0.027

(0.021) (0.024)
Stay home: Limited to 10 0.009 0.013

(0.020) (0.020)
Stay home: Limited otherwise 0.017 0.010

(0.049) (0.042)

Average in February (Sunday) 0.291 0.291 0.291 0.291 0.291 0.291 0.291 0.291
Number of churches 3893 3893 3893 3893 3893 3893 3893 3893
Observations 58,395 58,395 58,395 58,395 58,395 58,395 58,395 58,395
Adjusted R2 0.564 0.533 0.586 0.583 0.586 0.583 0.586 0.584

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable: At least one post includes a video (YouTube video, live video, scheduled and completed,
native video) on a given Sunday. Includes church fixed effects and an Easter Sunday dummy. Standards error clustered on state level. Includes
Sundays between 2020-01-01 and 2020-04-15. Columns 4 and 5: Religious exemptions according to own categorization. Columns 7 and 8:
Categorization from Pew Research Center. Number of states (clusters): 51.
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Table 6: Effect of Covid-19 and interventions on churches posting behavior on Sundays: Relaxation Period (after April 15)

Dependent variable: Posted at least one video on Sunday

(1) (2) (3) (4) (5) (6) (7) (8)

Log Infections previous week (county) −0.004 −0.002 −0.0004 −0.002 −0.0002 −0.003 −0.001
(0.003) (0.003) (0.002) (0.003) (0.002) (0.003) (0.002)

Log deaths previous week (county) 0.003∗∗

(0.002)
Gatherings forbidden 0.022∗∗ 0.012 0.022∗∗ 0.013 0.020∗∗ 0.010

(0.010) (0.010) (0.010) (0.009) (0.009) (0.009)
Restaurants/Entertainment closed 0.011 −0.002 0.012∗ −0.001 0.012 −0.002

(0.007) (0.006) (0.007) (0.006) (0.007) (0.006)
During Stay Home Order 0.014∗ −0.005

(0.007) (0.007)
Stay Home: with religious exemption 0.017∗∗ −0.003

(0.008) (0.006)
Stay Home: without religious exemption 0.008 −0.008

(0.010) (0.011)
Stay home: Rel. gatherings prohibited 0.030∗∗ 0.012

(0.014) (0.015)
Stay home: Exempt from limits 0.014 −0.005

(0.011) (0.008)
Stay home: Limited to 10 0.008 −0.011∗

(0.007) (0.006)
Stay home: Limited otherwise 0.010 −0.011

(0.012) (0.012)
Linear week trend −0.005∗∗∗ −0.005∗∗∗ −0.005∗∗∗

(0.001) (0.001) (0.001)

Average in April (Sunday) 0.694 0.694 0.694 0.694 0.694 0.694 0.694 0.694
Number of churches 3888 3888 3888 3888 3888 3888 3888 3888
Number of States (clusters) 50 50 50 50 50 50 50 50
Observations 42,823 42,823 42,823 42,823 42,823 42,823 42,823 42,823
Adjusted R2 0.706 0.706 0.707 0.707 0.707 0.707 0.707 0.707

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable: At least one post includes a video (YouTube video, live video, scheduled and completed,
native video) on a given Sunday. Includes church fixed effects. Standards error clustered on state level. Includes Sundays between 2020-04-15 and
2020-06-30. Columns 4 and 5: Religious exemptions according to own categorization. Columns 7 and 8: Categorization from Pew Research Center.
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7.2.2 Heterogeneity Analysis

Table 7: Effect of Covid-19 and interventions on churches posting behavior on Sundays according
to size of the church: Introduction Period (before April 15)

Dependent variable:
Predicted Online Church Activity on Sunday
Mega Large Medium Small

churches churches churches churches

(1) (2) (3) (4)

Log Infections previous week (county) 0.027∗∗∗ 0.023∗∗∗ 0.022∗∗ 0.009
(0.005) (0.007) (0.009) (0.007)

After International Travel Ban (March 11) 0.194∗∗∗ 0.223∗∗∗ 0.147∗∗∗ 0.058∗∗∗

(0.022) (0.021) (0.016) (0.019)
After Federal guidelines issued (March 16) 0.022 0.035 0.262∗∗∗ 0.177∗∗∗

(0.058) (0.047) (0.038) (0.063)
After Public Schools Closed 0.069∗∗ 0.086∗∗∗ −0.072∗∗∗ −0.058

(0.032) (0.021) (0.027) (0.064)
Gatherings forbidden 0.027 −0.002 −0.024 −0.002

(0.034) (0.028) (0.017) (0.027)
Restaurants/Entertainment closed −0.094 −0.039 −0.008 0.054

(0.060) (0.052) (0.034) (0.035)
During Stay Home Order −0.054∗∗ −0.051∗∗ −0.052∗∗ −0.003

(0.025) (0.023) (0.026) (0.026)

Average in February (Sunday) 0.488 0.34 0.223 0.177
Number of churches 504 888 1912 589
Number of States (clusters) 43 50 51 48
Observations 7,560 13,320 28,680 8,835
Adjusted R2 0.574 0.589 0.569 0.582

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable: At least one post predicted to offer an online
church activity on a given Sunday. Includes church fixed effects and an Easter Sunday dummy. Standards
error clustered on state level. Includes Sundays between 2020-01-01 and 2020-04-15. Small churches are
defined as receiving up to 50 people on a regular Sunday (column 4), medium churches between 51 and 300
(column 3), large churches between 301 and 500 (column 2) and mega churches over 2000 (column 1).
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Table 8: Effect of Covid-19 and interventions on churches posting behavior on Sundays according to size of the church: Relaxation Period
(after April 15)

Dependent variable:
Predicted Online Church Activity on Sunday

Mega Mega Large Large Medium Medium Small Small
churches churches churches churches churches churches churches churches

(1) (2) (3) (4) (5) (6) (7) (8)

Log Infections previous week (county) 0.007 0.011 −0.008 −0.006 −0.004 −0.002 0.005 0.007
(0.007) (0.008) (0.005) (0.005) (0.004) (0.004) (0.006) (0.006)

Gatherings forbidden 0.022 0.011 0.034∗∗ 0.027∗ 0.030∗∗ 0.021∗ 0.0003 −0.016
(0.021) (0.022) (0.015) (0.015) (0.012) (0.012) (0.023) (0.023)

Restaurants/Entertainment closed −0.004 −0.016 −0.012 −0.021 0.019∗ 0.007 0.034∗∗ 0.012
(0.014) (0.014) (0.012) (0.013) (0.010) (0.010) (0.017) (0.016)

During Stay Home Order 0.046∗∗∗ 0.031∗ 0.009 −0.004 0.012 −0.007 0.023∗ −0.006
(0.016) (0.017) (0.008) (0.011) (0.008) (0.009) (0.013) (0.018)

Linear week trend −0.004∗∗ −0.003∗ −0.005∗∗∗ −0.008∗∗

(0.002) (0.002) (0.001) (0.003)

Average in April (Sunday) 0.859 0.859 0.797 0.797 0.652 0.652 0.496 0.496
Number of churches 504 504 888 888 1912 1912 589 589
Number of States (clusters) 43 43 50 50 51 51 48 48
Observations 5,544 5,544 9,768 9,768 21,032 21,032 6,479 6,479
Adjusted R2 0.594 0.595 0.594 0.594 0.657 0.658 0.709 0.710

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable: At least one post predicted to offer an online church activity on a given Sunday. Includes
church fixed effects and an Easter Sunday dummy. Standards error clustered on state level. Includes Sundays between 2020-04-15 and 2020-06-30.
Small churches are defined as receiving up to 50 people on a regular Sunday, medium churches between 51 and 300, large churches between 301 and
500 and mega churches over 2000.
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Table 9: Effect of Covid-19 and interventions on churches posting behavior on Sundays according
to worship style of the church: Introduction Period (before April 15)

Dependent variable:
Predicted Online Church Activity on Sunday

Contemporary Traditional Blend of the 2
worship style worship style worship styles

(1) (2) (3)

Log Infections previous week (county) 0.025∗∗∗ 0.011 0.019∗∗

(0.006) (0.009) (0.009)
After International Travel Ban (March 11) 0.179∗∗∗ 0.109∗∗∗ 0.128∗∗∗

(0.016) (0.023) (0.019)
After Federal guidelines issued (March 16) 0.155∗∗∗ 0.309∗∗∗ 0.132∗∗∗

(0.044) (0.041) (0.035)
After Public Schools Closed −0.061∗∗ −0.080∗∗∗ 0.030

(0.029) (0.025) (0.019)
Gatherings forbidden −0.013 −0.001 −0.001

(0.019) (0.029) (0.020)
Restaurants/Entertainment closed −0.017 −0.048 0.003

(0.043) (0.042) (0.037)
During Stay Home Order −0.020 −0.028 −0.056∗∗

(0.019) (0.029) (0.026)

Average in February (Sunday) 0.355 0.17 0.26
Number of churches 1222 580 1655
Number of States (clusters) 50 47 51
Observations 18,330 8,700 24,825
R2 0.621 0.593 0.620
Adjusted R2 0.594 0.563 0.593

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable: At least one post predicted to offer an online
church activity on a given Sunday. Includes church fixed effects and an Easter Sunday dummy. Standards
error clustered on state level. Includes Sundays between 2020-01-01 and 2020-04-15. Worship style could
be selected between traditional, contemporary, blend of contemporary and traditional, and other.
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Table 10: Effect of Covid-19 and interventions on churches posting behavior on Sundays according to worship style of the church:
Relaxation Period (after April 15)

Dependent variable:
Predicted Online Church Activity on Sunday

Contemporary Contemporary Traditional Traditional Blend of the 2 Blend of the 2
worship style worship style worship style worship style worship styles worship styles

(1) (2) (3) (4) (5) (6)

Log Infections previous week (county) −0.001 0.001 −0.009 −0.004 −0.001 0.001
(0.004) (0.005) (0.007) (0.006) (0.004) (0.004)

Gatherings forbidden 0.021 0.012 0.046 0.024 0.025 0.016
(0.020) (0.021) (0.031) (0.029) (0.021) (0.020)

Restaurants/Entertainment closed 0.009 −0.002 0.029∗ −0.003 0.011 0.0003
(0.011) (0.012) (0.016) (0.016) (0.012) (0.011)

During Stay Home Order 0.029∗∗∗ 0.013 0.021∗ −0.024 0.010 −0.006
(0.009) (0.010) (0.012) (0.015) (0.011) (0.011)

Linear week trend −0.004∗∗∗ −0.011∗∗∗ −0.004∗∗∗

(0.001) (0.002) (0.001)

Average in April (Sunday) 0.753 0.753 0.561 0.561 0.665 0.665
Number of churches 1222 1222 580 580 1655 1655
Number of States (clusters) 50 50 47 47 51 51
Observations 13,442 13,442 6,380 6,380 18,205 18,205
R2 0.660 0.660 0.717 0.719 0.719 0.719
Adjusted R2 0.626 0.626 0.688 0.691 0.691 0.691

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable: At least one post predicted to offer an online church activity on a given Sunday. Includes
church fixed effects. Standards error clustered on state level. Includes Sundays between 2020-04-15 and 2020-06-30. Worship style could be selected
between traditional, contemporary, blend of contemporary and traditional, and other.
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Table 11: Effect of Covid-19 and interventions on churches posting behavior on Sundays interacted
with the Republic vote share in 2016 (county level): Introduction Period (before April 15)

Dependent variable:
Predicted Online Church Activity on Sunday

(1) (2) (3) (4)

Log Infections previous week (county) 0.054∗∗∗ 0.027∗∗∗

(0.002) (0.006)
Log deaths previous week (county) 0.063∗∗∗ 0.027∗∗∗

(0.003) (0.009)
After International Travel Ban (March 11) −0.041∗∗∗ −0.044∗

(0.015) (0.023)
After Federal guidelines issued (March 16) −0.022∗ −0.002

(0.013) (0.013)
After Public Schools Closed −0.014 0.008

(0.023) (0.026)
Gatherings forbidden 0.141∗∗∗ 0.174∗∗∗

(0.024) (0.028)
Restaurants/Entertainment closed 0.151∗∗∗ 0.181∗∗∗

(0.012) (0.008)
During Stay Home Order −0.009 −0.016

(0.014) (0.012)
Log Infections previous week* Percent Republic Votes 2016 0.001∗∗∗ −0.0002

(0.0001) (0.0002)
Log deaths previous week* Percent Republic Votes 2016 0.0005∗∗∗ 0.00005

(0.0002) (0.0004)
After International Travel Ban* Percent Republic Votes 2016 0.001 0.002∗

(0.001) (0.001)
After Federal guidelines issued * Percent Republic Votes 2016 0.002∗ 0.001

(0.001) (0.001)
After Public Schools Closed* Percent Republic Votes 2016 0.001 0.0003

(0.001) (0.002)
Gatherings forbidden* Percent Republic Votes 2016 0.002 0.002

(0.001) (0.002)
Restaurants/Entertainment closed* Percent Republic Votes 2016 −0.0004 −0.002∗∗∗

(0.001) (0.001)
During Stay Home Order* Percent Republic Votes 2016 −0.0002 −0.0001

(0.001) (0.001)

Average in February (Sunday) 0.277 0.277 0.277 0.277
Number of churches 3888 3888 3888 3888
Number of States (clusters) 50 50 50 50
Observations 58,320 58,320 58,320 58,320
R2 0.603 0.564 0.625 0.619
Adjusted R2 0.575 0.533 0.598 0.592

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable: At least one post predicted to offer an online church
activity on a given Sunday. Includes church fixed effects and an Easter Sunday dummy. Standards error clustered
on state level. Percent Republican Votes 2016 measures the difference between the votes cast for the Republican
party in the 2016 presidential elections on the county level and the national average. The uninteracted coefficients
are thus interpreted as the relationship at the mean, the interaction as one percentage point increase in the vote
share compared to the average. The Includes Sundays between 2020-01-01 and 2020-04-15.
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Table 12: Effect of Covid-19 and interventions on churches posting behavior on Sundays interacted
with the Republic vote share in 2016 (county level): Introduction Period (before April 15)

Dependent variable:
Predicted Online Church Activity on Sunday

(1) (2) (3) (4)

Log Infections previous week (county) 0.028∗∗∗ 0.028∗∗∗

(0.006) (0.005)
Log deaths previous week (county) 0.029∗∗∗ 0.030∗∗∗

(0.009) (0.009)
Stay Home: with religious exemption −0.057∗∗∗ −0.057∗∗

(0.016) (0.025)
Stay Home: no religious exemption −0.010 −0.021

(0.018) (0.022)
Stay home: Rel. gatherings prohibited −0.004 −0.023

(0.023) (0.024)
Stay home: Exempt from limits −0.073∗∗∗ −0.077∗∗∗

(0.017) (0.027)
Stay home: Limited to 10 −0.009 −0.008

(0.017) (0.020)
Stay home: Limited otherwise 0.014 −0.003

(0.046) (0.043)
Log Infections previous week* % Republic Votes 2016 −0.0001 −0.0002

(0.0001) (0.0001)
Log deaths previous week* % Republic Votes 2016 0.0001 −0.00003

(0.0004) (0.0003)
Stay Home: with religious exemption* % Republic Votes 2016 0.001∗∗ 0.002∗

(0.001) (0.001)
Stay Home: no religious exemption* % Republic Votes 2016 0.001 0.002

(0.001) (0.002)
Stay home: Rel. gatherings prohibited* % Republic Votes 2016 0.004∗∗ 0.006∗∗

(0.002) (0.003)
Stay home: Exempt from limits* % Republic Votes 2016 0.002∗∗ 0.003∗∗

(0.001) (0.001)
Stay home: Limited to 10* % Republic Votes 2016 0.001 0.001

(0.001) (0.001)
Stay home: Limited otherwise* % Republic Votes 2016 −0.001 −0.001

(0.002) (0.002)

State Intervention Indicators: Yes Yes Yes Yes
Average in February (Sunday) 0.277 0.277 0.277 0.277
Number of churches 3888 3888 3888 3888
Number of States (clusters) 50 50 50 50
Observations 58,320 58,320 58,320 58,320
Adjusted R2 0.598 0.592 0.598 0.593

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable: At least one post predicted to offer an online church
activity on a given Sunday. Includes church fixed effects and an Easter Sunday dummy. Standards error clustered on
state level. Percent Republican Votes 2016 measures the difference between the votes cast for the Republican party
in the 2016 presidential elections on the county level and the national average. The uninteracted coefficients are
thus interpreted as the relationship at the mean, the interaction as one percentage point increase in the vote share
compared to the average. The Includes Sundays between 2020-01-01 and 2020-04-15. Columns 1 and 2: Religious
exemptions according to own categorization. Columns 3 and 4: Categorization from Pew Research Center.
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Table 13: Effect of Covid-19 and interventions on churches posting behavior on Sundays interacted
with the Republic vote share in 2016 (county level): Relaxation Period (after April 15)

Dependent variable:
Predicted Online Church Activity on Sunday

(1) (2) (3) (4)

Log infections previous week (county) −0.004 −0.002 0.001
(0.003) (0.003) (0.002)

Log deaths previous week (county) 0.001
(0.002)

Gatherings forbidden 0.017∗∗ −0.002
(0.007) (0.007)

Restaurants/Entertainment closed 0.026∗∗ 0.016
(0.011) (0.011)

During Stay Home Order 0.010 −0.003
(0.007) (0.006)

Linear week trend −0.005∗∗∗

(0.001)
Log infections previous week* Percent Republic Votes 2016 0.00000 0.0001 0.0002

(0.0002) (0.0002) (0.0002)
Log deaths previous week* Percent Republic Votes 2016 −0.0001

(0.0001)
Gatherings forbidden* Percent Republic Votes 2016 0.0003 −0.00001

(0.0004) (0.0005)
Restaurants/Entertainment closed* Percent Republic Votes 2016 −0.0003 −0.001

(0.001) (0.0005)
During Stay Home Order* Percent Republic Votes 2016 0.001∗ 0.0004

(0.0004) (0.0004)
Linear week trend* Percent Republic Votes 2016 −0.0001

(0.0001)

Average in April (Sunday) 0.688 0.688 0.688 0.688
Number of churches 3888 3888 3888 3888
Number of States (clusters) 50 50 50 50
Observations 42,768 42,768 42,768 42,768
Adjusted R2 0.671 0.671 0.672 0.672

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Dependent variable: At least one post predicted to offer an online church
activity on a given Sunday. Includes church fixed effects. Standards error clustered on state level. Percent
Republican Votes 2016 measures the difference between the votes cast for the Republican party in the 2016
presidential elections on the county level and the national average. The uninteracted coefficients are thus
interpreted as the relationship at the mean, the interaction as one percentage point increase in the vote share
compared to the average. The Includes Sundays between 2020-04-15 and 2020-06-30.
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If the 2020 surge in working from home became permanent, how 
would the distribution of jobs and residents within and across U.S. 
cities change? To study this question, we build a quantitative spatial 
equilibrium model of job and residence choice with commuting frictions 
between 4,502 sub-metropolitan locations in the contiguous U.S.A novel 
feature of our model is the heterogeneity of workers in the fraction of time 
they work on-site: some workers commute daily, some always work at 
home, while others alternate between working on-site and remotely. In 
a counterfactual where remote work becomes more common, residents 
move from central to peripheral areas within cities, and from large 
coastal to small interior cities, on average. The reallocation of jobs is 
less monotonic, with increases both in peripheral locations and in the 
highest-productivity metropolises. Agglomeration externalities from in-
person interactions are crucial for welfare effects. If telecommuters keep 
contributing to productivity as if they worked on-site, better job market 
access drives considerable welfare gains, even for those who continue to 
commute. But if productivity declines in response to the reduction in face-
to-face interactions, wages fall and most workers are worse off.

1	 We thank seminar participants at USC Marshall brownbag and CSU Fullerton for their comments and 
suggestions. We are grateful to Nate Baum-Snow and Lu Han for sharing local housing supply elasticity 
estimates. We also thank Amanda Ang for excellent research assistance. Finally, we gratefully acknowledge 
financial upport provided by the USC Lusk Center for Real Estate.

2	 The Robert Day School of Economics and Finance, Claremont McKenna College.
3	 Department of Finance and Business Economics, Marshall School of Business, University of Southern 
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1 Introduction

Perhaps no event in recent history has as much potential to utterly transform the urban

landscape as the surge in working from home that has occurred in 2020 following the

Covid-19 pandemic. Years of steady technical progress have increased the feasibility of

remote arrangements.1 Now, in one fell swoop, one-third of the workforce has made a

forced investment in the skills and equipment needed to work out of their homes.2 Survey

after survey of managers and the workers themselves indicate the likelihood that some

of the increase in remote work will become permanent and will have sizable effects on

location choices of workers.3

Howwould the internal structure of American cities change if the tether of commut-

ing is cut loose for a large section of the work force? Will downtown districts be left empty,

as telecommuting office workers decamp for the suburbs? And what shifts might occur

across cities? Is the era of the big cities over?

In this paper we build a quantitative model of job and residence choice to address

these questions. Workers compare wages, property prices, local amenities, and commut-

ing times between 4,502 urban, suburban and rural locations in the contiguous United

States. They choose one place to live and one place to work. Residential and employ-

ment density in each location endogenously determines local amenities and productivity,

respectively, via agglomeration externalities. In addition to on-site workers there are

telecommuters, who are also divided into groups. Some visit the office four times a

week, others three times, and still others two times, or one time, or never. The less they

need to visit the office, the less constrained they are in their choice of the house-job pair.

Zero-time-a-weekers are able to live and work on opposite sides of the country.

Recent research by Barrero, Bloom, and Davis (2020) suggests that the fraction of

workers who come to work daily will fall from 90% pre-Covid to 73% after the pandemic,

1Mas and Pallais (2020) provides an overview of the current state of research into remote work. Bloom,

Liang, Roberts, and Ying (2015) present experimental evidence that telework increases employee work

satisfaction without necessarily reducing their productivity, while another experiment by Mas and Pallais

(2017) finds that, on average, workers are willing to give up 8% of wages for the option to work from home.

2A survey by Brynjolfsson, Horton, Ozimek, Rock, Sharma, and TuYe (2020) finds that in earlyMay 2020,

35.2% of workers who commuted before Covid-19 were working from home.

3A May 2020 survey by Barrero, Bloom, and Davis (2020) finds that 16.6% of paid work days will be

done from home after the pandemic ends, compared to 5.5% in 2019. Results of a survey by Bartik, Cullen,

Glaeser, Luca, and Stanton (2020) also indicate that remote work will be much more common after the

pandemic. These projections are supported by the findings of Dingel and Neiman (2020) who estimate that

as many as 37% of U.S. jobs can feasibly be done at home. Indeed, some companies (e.g., Facebook and

Twitter) announced that many of their employees could keepworking from home after Covid-19. Moreover,

according to a study by Upwork in October 2020, 2% of survey participants had already moved residences

because of the ability to work at home and another 6% planned to do so. Of those who still planned to

migrate, 40% would move more than 4 hours away from their current location (Ozimek, 2020).
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while the fraction of those who commute only a few days a week or not at all will grow.

Ourmodel generates rich patterns of reallocation bothwithin and across cities in response

to this change in commuting frequencies. Residents, led by new telecommuters, move

from denser and more central parts of cities to the periphery. They also move from larger

to smaller, and from more coastal to more interior cities, on average. These trends have

exceptions. Workers actually relocate into a handful of high-amenity locations, and some

metro areas, such as Los Angeles and San Diego, grow very slightly.

The trend in job reallocation is not so monotonic. Peripheral areas with low real

estate costs and central areas in the most productive cities both add jobs. While the

largest percentage increases happen in smaller cities, several large metro areas, including

New York and Washington, D.C., see the number of jobs increase. Even in places where

jobs increase, however, more of them are held by telecommuters who visit the office less

frequently or not at all and often live in differentmetro areas. This leads to a large decrease

in the demand for commercial floorspace and drives a small average decline in real estate

prices. New York and Los Angeles see real estate prices fall by about 1%, while San

Francisco and San Jose see them decline by about 2%.

We find that welfare effects hinge critically on the extent to which telecommuters

contribute to externalities that map local employment density into productivity. In our

baseline scenario the local productivity and amenities of each location do not change in

the counterfactual. Improved market access allows wages to go up, and most workers,

including full time commuters, experience modest welfare gains. We also compute an

alternative scenario in which productivity and amenities are determined endogenously

by agglomeration externalities. Our baseline assumption is that productivity externalities

arise through face-to-face interactions between workers, so teleworkers do not contribute

to themwhen they are not in the office. In this case, the patterns of reallocation of residence

and jobs are nearly the same as before, but the movements are larger due to amplifications

via endogenous amenities and productivity. The welfare implications, however, are now

different. The reduction in face-to-face interactions lowers overall productivity and drives

wages down by over 1%. This makes workers who are still stuck commuting strictly

worse off. There are still aggregate welfare gains, but only because there are now more

remote workers, who can freely choose locations with better amenities and do not suffer

by commuting.

We expand our analysis to explore what would happen if remote workers did make

some contribution to workplace spillovers. In the extreme case where they interact in a

way that is indistinguishable from on-site workers, all the negative results are reversed.

By varying the contribution of telecommuters to spillovers from 0 to 100%, we are able
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to characterize the level of contribution that would be necessary in order for all classes of

workers to be no worse off after the increase in remote work, even if local productivities

adjust fully.

This paper builds on previous work by Delventhal, Kwon, and Parkhomenko (2020)

in which the authors model the impact of remote work on the allocation of jobs and

residence within a single urban area–Los Angeles–modeled as a closed city. Including the

entire system of cities changes the prediction for real estate prices–while they fell by nearly

6% in the study of L.A. as a closed city, they fall by only 1% in the current study, as workers

from other parts of the country move into the L.A. area attracted by high amenities.

Inmodeling style our study is related toMonte, Redding, and Rossi-Hansberg (2018),

who also analyze the U.S. system of cities using a model in which workers may commute

between counties. Our quantitative model contains many small locations within urban

counties and thus can study heterogeneous responses of many areas within metro areas.

Also related are recent paperswhich usemodels of joint job and residence choice at the city

level, such as Ahlfeldt, Redding, Sturm, andWolf (2015) andHeblich, Redding, and Sturm

(2020). Our study contributes to this strand of the literature by extending the toolbox to

include a full-fledgedmodel of working from home and by exploringwhat happens when

the binding tie of the daily commute is cut formanyworkers. In addition, we contribute to

the theoretical literature that studies telecommuting within the urban environment, e.g.,

Safirova (2003), Rhee (2008), and Larson and Zhao (2017). Recent work by Lennox (2020)

explores the effects of working from home in an Australian context using a quantitative

spatial equilibrium model.

The remainder of the paper is organized as follows. Section 2 describes the theoretical

framework and the methodology of counterfactual experiments. Section 3 discusses the

data, as well as estimation and calibration of model parameters. Section 4 reviews the

results of counterfactual experiments in which telecommuting becomes more prevalent.

Section 5 concludes and outlines possible extensions of our work.

2 Model

Consider a national economy which consists of a set I ≡ {1, ..., I} of discrete locations

and is populated by workers, firms and floorspace developers. Total employment in the

economy is fixed and normalized to 1.
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2.1 Workers

2.1.1 Telecommuting

Before choosing where to work and where to live, workers draw their commuter type

θ which has a distribution function F(θ) on support [0, 1]. The associated probability

distribution function is f (θ). Parameter θ is the fraction of work time that an individual

has to work on-site. In practice, F(θ) has a heavy weight on θ = 1 which means that most

workers cannot telecommute at all and some weight on θ = 0 which means that there is

a non-trivial number of workers who always work remotely. A transition toward more

telecommuting corresponds to a shift to F∗(θ)which is first-order stochastically dominated

by F(θ), as shown in Figure 1.

Figure 1: Distribution of commuter types.

2.1.2 Preferences

A worker n who resides in location i ∈ {1, ..., I}, works in location j, and has to commute

there a fraction θ of time, enjoys utility

Ui jn(θ) =
zi jn

di j(θ)

(
c

1 − γ

)1−γ (h
γ

)γ
, (2.1)

where zi jn represents an idiosyncratic preference shock for the pair of locations i and j,
and di j(θ) is the disutility from commuting for type θ given by

di j(θ) = eθκti j . (2.2)
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Individuals consume c units of the final good and h units of housing. The share of housing

in expenditures is given by γ, and consumption choices are subject to the budget constraint

wi j(θ) = c + qih, (2.3)

where wi j(θ) is the wage earned by a type-θworker who lives in i and works in j, and qi is

the price of residential floorspace in location i.
Idiosyncratic shocks zi jn are drawn froma Frèchet distributionwith c.d.f. Fz(z) = e−z−ε

.

The indirect utility of worker n who lives in location i and works in location j is given by

ui jn(θ) = zi jnvi j(θ), where

vi j(θ) ≡
Bi jwi j(θ)

di j(θ)qγi
(2.4)

is the utility obtained by a type-θ worker, net of the preference shock. In the above

formulation, Bi j is a location pair-specific shifter defined as

Bi j ≡ XiE jbi j, (2.5)

where Xi is the average amenity derived from living in location i, E j is the average amenity

derived from working in location j, and bi j is the pair-specific amenity component.

2.1.3 Location Choices

Optimal choices imply that the probability that a worker with a given θ chooses to live in

location i and work in location j is

πi j(θ) =

(
vi j(θ)

)ε∑
r∈I

∑
s∈I

(vrs(θ))ε
=

(
Bi jwi j(θ)

)ε (
di j(θ)qγi

)−ε
∑
r∈I

∑
s∈I

(Brswrs(θ))ε
(
drs(θ)qγr

)−ε . (2.6)

As a result, the equilibrium residential population of type θ in location i is

NRi(θ) =
∑
j∈I

πi j(θ), (2.7)

and the equilibrium employment of type θ in location j is

NW j(θ) =
∑
i∈I

πi j(θ). (2.8)
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The total amount of labor commuting from i to j is given by

NC
ij ≡

∫
θπi j(θ)dF(θ), (2.9)

while the amount of labor telecommuting between i and j is

NT
ij ≡

∫
(1 − θ)πi j(θ)dF(θ). (2.10)

Notice that the distinction between on-site and remote labor is not the same as the dis-

tinction between commuters and telecommuters, since a worker with θ ∈ (0, 1) provides
both on-site and remote labor by commuting fraction θ of time and telecommuting the

remaining 1 − θ. Thus, employment in each location consists of on-site labor

NC
W j =

∑
i∈I

NC
ij, (2.11)

and remote labor

NT
W j =

∑
i∈I

NT
ij. (2.12)

The probability of working in location j, conditional on living in i, is given by

πi j|i(θ) =

(
E jbi jwi j(θ)

)ε (
di j(θ)

)−ε∑
s∈I

(Esbiswis(θ))ε (dis(θ))−ε
. (2.13)

The probability of living in location i, conditional on working in i, is

πi j| j(θ) =

(
Xibi jwi j(θ)

)ε (
di j(θ)qγi

)−ε
∑
r∈I

(
Xrbr jwrj(θ)

)ε (
drj(θ)qγr

)−ε . (2.14)

The following commuter market clearing conditions relate the number of workers in each

location to the number of residents in each location:

NW j(θ) =
∑
i∈I

πi j| j(θ)NRi(θ), (2.15)

NRi(θ) =
∑
j∈I

πi j|i(θ)NW j(θ). (2.16)
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2.1.4 Welfare

The expected utility of a worker, before she knows her value of θ and before the idiosyn-

cratic preference shocks realize, is

V = ς

∫ ∑
i∈I

∑
j∈I

(
Bi jwi j(θ)

)ε (
di j(θ)qγi

)−ε
1
ε

dF(θ), (2.17)

where ς ≡ Γ
(
ε−1
ε

)
and Γ (·) is the Gamma function.

2.2 Firms

2.2.1 Production

In each location, there is a representative firm which hires both on-site and remote la-

bor and produces a homogeneous consumption good which is traded costlessly across

locations. The total output of the firm in location j is

Y j = YC
j + YT

j , (2.18)

where YC
j and YT

j are the amounts produced on-site and remotely, respectively. The on-site

production function is given by

YC
j = A j

(
NC

W j

)αC
(
HC

W j

)1−αC
, (2.19)

where NC
W j is labor, HC

W j is floorspace, and αC is the labor share. The remote production

function is also Cobb-Douglas and it combinesworkers fromdifferent locations as follows:

YT
j = νA j

∑
i∈I

(
NT

ij

)αT (
HT

ij

)1−αT
. (2.20)

In the previous specification, NT
ij is the number of telecommuters who reside in location

i and work for a firm in location j, whereas HT
ij is the amount of home office space the

firm rents on behalf of these workers in the place of their residence.4 Parameter ν is the

productivity gap between on-site and remote work, common to all workers and firms. We

4We assume that the firm rents the floorspace that remote workers need in order to work from home,

however this specification is isomorphic to the one in which the firm only pays for labor services of a

telecommuter and the telecommuter uses his labor income to rent additional floorspace in his house.
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let the floorspace share, 1 − αm, differ between the two modes.5

2.2.2 Wages

Firms take wages and floorspace prices as given, and choose the amount of on-site labor,

telecommuting labor, and floorspace that maximize their profits. Equilibrium payments

for on-site work are

wC
j = αCA

1
αC
j

(
1 − αC

q j

) 1−αC
αC

, (2.21)

where q j is the local price of floorspace. The payments for at-home work of an individual

who is employed in j and works remotely from i are given by

wT
ij = αT

(
νA j

) 1
αT

(
1 − αT

qi

) 1−αT
αT

. (2.22)

In the previous expression the relevant floorspace price is the price at the location of

residence of the worker. The take-home wage of a worker with a given θ is the weighted

average of payments to his commuting labor and his telecommuting labor:

wi j(θ) = θwC
j + (1 − θ)wT

ij. (2.23)

Note that the wage of a regular commuter (θ = 1) does not depend on her location

of residence i. However, the wage of a worker who works some of the time remotely

(θ < 1) depends on his location of residence i because the home-office floorspace is used

in production. The average income earned by residents of location i is

w̃i =

∫ ∑
j∈I

wi j(θ)πi j|i(θ)dF(θ). (2.24)

5Onemay expect that 1−αC > 1−αT because telecommuters tend to work in industries and occupations

that require little floorspace (e.g., compare software development with manufacturing). While we do not

impose this inequality in our theoretical analysis, it holds in our calibration.
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2.3 Developers

2.3.1 Supply of floorspace

There is a large number of perfectly competitive floorspace developers operating in each

location. Floorspace is produced using technology

Hi = K1−ηi
i

(
φiLi

)ηi
, (2.25)

where Li and Ki are the amounts of land and the final good used to produce floorspace,

and ηi is the location-specific share of land in the production function. Each location is

endowed with Λi units of buildable land which is exogenous and serves as the upper

bound on the developers’ choice of land: Li ≤ Λi. Parameter φi stands for the local land-

augmenting productivity of floorspace developers.6 Let qi be the equilibrium price of

floorspace. Then the equilibrium supply of floorspace in location i is

Hi = φi(1 − ηi)
1−ηi
ηi q

1−ηi
ηi

i Li. (2.26)

The price elasticity of floorspace supply is therefore
1−ηi
ηi

.

2.3.2 Demand for floorspace

Floorspace is used by firms, residents, and telecommuters, and therefore is divided into

commercial, residential, and home offices. The demand for commercial floorspace is

HWi =

(
1 − αC

q j

) 1
αC

NC
W jA

1
αC
j , (2.27)

the demand for residential floorspace is

HRi =
γ

qi
NRiw̃i, (2.28)

and the demand for home offices is given by

HTi =

(
1 − αT

qi

) 1
αT

NRi

∑
j∈I

(
νA j

) 1
αT

∫
(1 − θ)πi j|i(θ)dF(θ). (2.29)

6The productivity may depend on terrain, climate, land use regulations, etc.
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In equilibrium the supply of floorspace must equal to the total demand,

Hi = HWi + HRi + HTi. (2.30)

2.3.3 Land and floorspace prices

Floorspace demand also determines the demand for land. We followMonte, Redding, and

Rossi-Hansberg (2018) in assuming that land in each location is owned by local immobile

landlords who only consume the final good. Thus, we can account for changes in land

values when computing welfare effects, while eliminating anticipated income from land

ownership as a factor in the location choice problem. In equilibrium, it is optimal for

developers to use all buildable land, i.e., Li = Λi. As a result, the equilibrium land price is

equal to

li =
ηi

Λi

1 − αC

αC
wC

i

∑
j∈I

NC
ji + γ

∑
j∈I

wC
j NC

ij +
(
γ +

1 − αT

αT

)∑
j∈I

wT
ijN

T
ij

 . (2.31)

Finally, equilibrium floorspace prices are given by

qi =
1

ηηi
i (1 − ηi)1−ηi

(
li

φi

)ηi

. (2.32)

2.4 Externalities

Local total factor productivity and residential amenities depend on density. In particular,

the productivity in location j is determined by an exogenous component, a j, and an

endogenous component that is increasing in the density of on-site labor in this location:

A j = a j

NC
W j + ψNT

W j

L j


λ

. (2.33)

Parameter λ > 0 measures the elasticity of productivity with respect to the local density of

workers. Parameter ψ ∈ [0, 1] is the degree of remote workers’ participation in productive

externalities. These externalities include learning, knowledge spillovers, and networking

that occur as a result of face-to-face interactions between workers. When workers are

not on-site, but are working remotely, they may not participate fully in the types of

interactions that give rise to these externalities. As we will see, the value of ψ has

important consequences for wages and welfare in our counterfactual analysis.
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Similarly, the residential amenity in location i is determined by an exogenous com-

ponent, x j, and an endogenous component that depends on the density of residents:

Xi = xi

(NRi

Li

)χ
. (2.34)

Parameter χ > 0 measures the elasticity of amenities with respect to the local density of

residents.7 The positive relationship between residential density and amenities represents

in reduced form the greater propensity for both public amenities, such as parks and

schools, and private amenities, such as retail shopping, to locate in proximity to greater

concentrations of potential users and customers. All types of workers, commuters and

telecommuters, contribute equally to amenity externalities at their location of residence.8

2.5 Equilibrium

Definition 2.1. A spatial equilibrium consists of location choice probabilities, πi j(θ); resi-
dential and workplace employment, NRi(θ) and NW j(θ); wages, wC

j and wT
ij; land prices, li;

floorspace prices, qi; local productivity, A j; and local amenities, X j; such that equations

(2.6), (2.15), (2.16), (2.21), (2.22), (2.31), (2.32), (2.33), and (2.34) are satisfied.

2.6 Counterfactual Equilibrium

In order to compute counterfactual changes in equilibrium variables, we use the “exact-

hat algebra” approach pioneered by Dekle, Eaton, and Kortum (2007). For any variable

with benchmark value of z and counterfactual value of z∗, define ẑ ≡ z∗/z. Then the

counterfactual changes can be computed by solving the following system of equations:

ŵC
j = Â

1
αC
j q̂
−

1−αC
αC

j , (2.35)

ŵT
ij =

(
ν̂Â j

) 1
αT q̂

−
1−αT
αT

i , (2.36)

ŵi j(θ)wi j(θ) = θŵC
j wC

j + (1 − θ)ŵT
ijw

T
ij, (2.37)

7We do not include spatial spillovers of productivity and amenities between adjacent locations. These

spillovers are highly localized, as found in Ahlfeldt, Redding, Sturm, and Wolf (2015) and several other

studies. Given the size of locations in our quantitative economy, the effect of the spillovers is minimal.

For example, the 1st percentile of one-way travel times for location pairs with positive commuting flows

is 10.63 minutes (the minimum is 7.68 and the median is 26.56). With spillover decay parameters from

Ahlfeldt, Redding, Sturm, and Wolf (2015), δ = 0.36 and ρ = 0.76, only a fraction e−δti j = e−0.36×10.63 = 0.0218
of the density in one of these locations would be translated into local productivity of another location and

a fraction e−ρti j = e−0.76×10.63 = 0.0003 of the density would be translated into amenities.

8It is also possible that remote workers, by spending more time in the area of their residence, contribute

more to local amenities than commuters.
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q̂i =

 l̂i

φ̂i

ηi

, (2.38)

π̂i j(θ) =

(
X̂iÊ jb̂i jŵi j(θ)

)ε (
d̂i j(θ)q̂γi

)−ε
∑
r∈I

∑
s∈I
πrs(θ)

(
X̂rÊsb̂rsŵrs(θ)

)ε (
d̂rs(θ)q̂γr

)−ε , (2.39)

N̂C
ijN

C
ij =

∫
θπ̂i j(θ)πi j(θ)dF∗(θ), (2.40)

N̂T
ijN

T
ij =

∫
(1 − θ)π̂i j(θ)πi j(θ)dF∗(θ), (2.41)

l̂i =

1−αC
αC

ŵC
i wC

i

∑
j∈I

N̂C
jiN

C
ji + γ

∑
j∈I

ŵC
j wC

j N̂C
ijN

C
ij +

(
γ + 1−αT

αT

) ∑
j∈I

ŵT
ijw

T
ijN̂

T
ijN

T
ij

1−αC
αC

wC
i

∑
j∈I

NC
ji + γ

∑
j∈I

wC
j NC

ij +
(
γ + 1−αT

αT

) ∑
j∈I

wT
ijN

T
ij

, (2.42)

Â j = â j

N̂C
W jN

C
W j + ψN̂T

W jN
T
W j

NC
W j + ψNT

W j


λ

, (2.43)

X̂i = x̂i

(
N̂Ri

)χ
. (2.44)

In equations (2.40) and (2.41), F∗(θ) denotes the counterfactual c.d.f. of θ.9 In the last two

equations, the changes in relevant workplace and residential employment are given by

N̂m
W jN

m
W j =

∑
i∈I

N̂m
ij N

m
ij , (2.45)

for m ∈ {C,T}, and
N̂RiNRi =

∑
j∈I

(
N̂C

ijN
C
ij + N̂T

ijN
T
ij

)
. (2.46)

In order to solve the system (2.35)–(2.44), we must have data on commuting flows,

πi j(θ), wageswC
i andwT

ij, and thedistributionof commuter types, F(θ). Section 3.1describes
how we obtain this data. We must also know the economy-wide elasticities, ε, γ, αC, αT,

λ, and χ, as well as local floorspace supply elasticities ηi. Section 3.2 describes how we

calibrate or estimate these parameters. Notably, solving the system (2.35)–(2.44) does not

require any knowledge of the levels of exogenous location characteristics ai, xi, Ei, bi j, φi,

commuting costs, di j(θ), the relative productivity of telecommuters, ν, floorspace prices

qi, and buildable land areas Λi. This system can be solved recursively and we follow a

procedure similar to the one in Monte, Redding, and Rossi-Hansberg (2018).

9We do not use the hat-algebra notation for F in order to allow that F(θ) = 0 and F∗(θ) > 0 for some θ.
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Counterfactual Welfare Changes. The counterfactual change in the consumption-

equivalent welfare is given by

V̂ =

∫
ŵi j(θ)wi j(θ)

(
π̂i j(θ)πi j(θ)

)− 1
ε
(
d̂i j(θ)di j(θ)

)−1
dF∗(θ)∫

wi j(θ)πi j(θ)− 1
ε di j(θ)−1

dF(θ)
. (2.47)

Note that the previous expression yields the same value of V̂ for any pair (i, j). While

we can compute counterfactual changes in all equilibrium variables without knowing

commuting costs, di j(θ), we need to know them to compute counterfactual changes in

welfare.10 Appendix A.1 discusses how counterfactual welfare changes can be calculated

for each typeθ separately anddecomposed intovarious channels (consumption, amenities,

commuting, etc.).

3 Data, Calibration, and Estimation

3.1 Data

3.1.1 Locations

The set of model locations is the intersection of the Census Public Use Microdata Areas

(PUMA) and counties. The benefit of using PUMAs is that they are defined based on

population and therefore allow for rich variation within large urban areas. However, in

rural areas PUMAs may be very large and comprise several counties.11 Using PUMAs,

when they are contained within a county, and counties, when they are contained within

PUMAs, results in 4,504 locations. Two of these locations do not have wage data.12 Hence,

we exclude them from the analysis and end up with 4,502 model locations.

3.1.2 Employment, commuters and telecommuters

We use the LEHD Origin-Destination Employment Statistics (LODES) data provided by

the Census Bureau to construct employment by residence and workplace for each of our

model locations. We also use LODES to build the commuting matrix between each pair

of locations, as discussed in Section 3.2.3. LODES provides employment and commuting

10In many gravity models, exact-hat algebra enables expressions for welfare changes which only depend

on changes. Here, however, counterfactual changes are driven by a shift in F(θ). Hence, welfare gains

depend on the change in the number of workers who face commuting costs for a particular θ.
11By construction, PUMAs are between 100,000 and 200,000 residents.

12These two locations have a total population of only 8,000.
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flows at the level of Census blocks, and we aggregate the data to the level of our model

locations, i.e., PUMAs and counties. This data, however, does not distinguish workers

who commute to work from those who work from home. We use survey evidence from

Barrero, Bloom, and Davis (2020) to build the distribution of commuter types F(θ) before
Covid-19 and the predicted distribution after Covid-19, as described in Section 4.1.

3.1.3 Commuting times and distances

The Census Transportation Planning Products (CTPP) reports commuting time data for

origin-destination pairs of Census tracts across the contiguous United States for 2012–

2016. Travel times are reported for over four million trajectories, which is a small fraction

of all possible bilateral trajectories, because most pairs of tracts are far enough apart and

do not have any commuters traveling between them. We transform this data into bilateral

matrix of travel times in two steps. First, we calculate the average location to location travel

times as the average of all tract-level travel times reported in the data where the origin

is in one model location and the destination is in the other. This provides us with links

for the subset of location pairs that are closest to each other.13 Then we use these links

as the first-order connections in a transport network, and use the Dĳkstra’s algorithm to

calculate the quickest path through this network between each pair of model locations.

Further details of our methodology are contained in Appendix A.3.

3.1.4 Wages

Our tract-level wage estimates are also taken from the database of Census Transporta-

tion Planning Products (CTPP), in combination with the microdata from the American

Community Survey (ACS). We use these two datasets from 2012–2016 to calculate the

quality-adjustedwage index for eachmodel location. For additional details, see Appendix

A.2.

Existing empirical evidence finds a wage premium of around 10% for telecommuters

over regular commuters (Gariety and Scaffer, 2007). Yet, it is not clear if this premium

will persist if manymore workers telecommute. In addition, our data does not allow us to

observe the location of employer of a telecommuter. To be conservative, in the benchmark

economy we set wT
ij = wC

j for all i, where wC
j equals the wage index described above.

13We perform the same calculation for the average distance of each location from itself, thereby obtaining

data-based estimates of the average internal travel time for each location as well.
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3.1.5 Floorspace supply elasticities and prices

Location-specific housing supply elasticities, (1 − ηi)/ηi, are taken from Baum-Snow and

Han (2020). They estimate elasticities of floorspace supply with respect to prices at the

Census tract level for over 300metropolitan areas. We aggregate their estimates to the level

of ourmodel locations using populationweights. They do not have estimates for locations

outsideMSAs and these are predominantly rural locationswithpopulationdensities lower

than in metro areas. Because there is a strong negative relationship between population

density and the supply elasticity, we assume that locationswithmissing estimates have the

same elasticity as the location with the highest elasticity. At the level of model locations,

elasticities vary from 2.07 to 4.82, and the population-weighted mean is 3.38. This implies

that ηi ranges from 0.21 to 0.33, and the mean is 0.24.14

Note that our method of computing counterfactual changes in equilibrium variables

and welfare does not require any information on floorspace prices. Yet, in order to

calculate changes in prices at higher levels of geography than our model locations (e.g.,

metropolitan area or the entire country), we need to know price levels in the benchmark

economy. To obtain the prices, we estimate hedonic rent indices for each PUMA using

self-reported housing rents from the ACS.We follow the procedure in Eeckhout, Pinheiro,

and Schmidheiny (2014) and, as regression controls, we include the age of the building,

the number of rooms, and the type of the structure (single-family, multi-family, etc.).

3.2 Estimation and Calibration

3.2.1 Externally calibrated parameters

Using similar gravity models of commuting, Ahlfeldt, Redding, Sturm, and Wolf (2015)

estimate that the sensitivity of the disutility of commuting to commuting time, κ, is equal

to 0.01, while Tsivanidis (2019) estimates a value of 0.012. We set κ = 0.011, the average

of these two estimates. We borrow the estimates of the elasticities of local productivity

and amenities with respect to density from Heblich, Redding, and Sturm (2020), and set

λ = 0.086 and χ = 0.172.15
The share of housing in expenditures, γ, is equal to 0.24, following Davis and Ortalo-

Magné (2011). The labor share of commuters in the production function, α, is set to 0.8,

following Valentinyi and Herrendorf (2008). We borrow the value for the labor share of

14Recall that in our model ηi also corresponds to the land share in the production function for floorspace.

Hence, the mean ηi in our model aligns well with existing estimates of the land share. For instance, Albouy

and Ehrlich (2018) find that the land share is about 1/3 for the U.S., while Combes, Duranton, and Gobillon

(2019) estimate a value of about 0.2 for France.

15In a future version of this paper we will estimate these two elasticities from our data.
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telecommuters, αT = 0.934, from Delventhal, Kwon, and Parkhomenko (2020).16 Due to

the lack of empirical evidence and appropriate calibration targets, we do not take a stance

on the relative contribution of remote workers to productive externalities, ψ. Instead, we

will consider counterfactual scenarios with ψ = 0 and ψ = 1.

3.2.2 Estimated parameters

Estimate ε. First, we estimate the product εκ following the approach in Heblich,

Redding, and Sturm (2020). To do this, we take the log of the gravity equation (2.6)

evaluated at θ = 1,
lnπi j = −εκti j + ϕR

i + ϕW
j + ln bi j, (3.1)

where the location-specific fixed effects ϕR
i and ϕW

j subsume local amenities, wages, and

floorspace prices. Before estimating this equation, we set πi j = 0 for all pairs with

commuting times of more than 3 hours one way.17

We first estimate the previous equation by OLS and obtain εκ = 0.03199 (Table 1

reports regression results). However, ti j may be endogenous toπi j due to traffic congestion

or because the supply of infrastructure responds to commuting demand.18 Hence, we

instrument for ti j with straight-line distance between i and j, δi j, and obtain εκ = 0.03409.
To recover the Frèchet shape parameter ε we use the calibrated value κ = 0.011, as
discussed above. Our estimate of ε is therefore equal to 3.099 = 0.03409/0.011.19

16Since αT determines the teleworkers’ demand for floorspace, it was calibrated to the observed difference

between house sizes of commuters and telecommuters. See Delventhal, Kwon, and Parkhomenko (2020) for

details.

17Out of around 139 mln commuters that we observe in LODES, 9.8 mln travel between locations that are

more than 3 hours apart. We believe that most of these observations are due to errors in assigning locations

of work or residence, and therefore drop them from our sample.

18See Heblich, Redding, and Sturm (2020) for a more detailed discussion.

19Our value of ε is on the lower end of the range of estimates in the literature. Monte, Redding, and

Rossi-Hansberg (2018) estimate 3.3, Heblich, Redding, and Sturm (2020) find a value of 5.25, and Ahlfeldt,

Redding, Sturm, and Wolf (2015) estimate 6.65.
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Table 1: Estimation of the gravity equation

(1) (2)

OLS IV

Second stage

ti j -0.03199 -0.03409

(0.000046) (0.000050)

Residence f.e. yes yes

Workplace f.e. yes yes

Observations 318,870 318,870

R2
0.792 –

First stage

δi j 0.8970

(0.000018)

Residence f.e. yes

Workplace f.e. yes

Observations 318,870

R2
0.996

Note: This table reports estimates of equation (3.1). Standard errors are in parentheses. See

the text for details.

Estimate bi j. Notice that the location pair-specific shifter, bi j, can be identified from

the residual in equation (3.1). However, since the estimation procedure only uses location

pairs with positive commuting flows, we cannot infer the value of bi j for pairs with zero

flows. In this class of models, it is common to set bi j = 0 for zero-flow pairs.20 However,

our counterfactual experiments study environments inwhichmanymore individuals gain

the ability to work remotely and may choose residence-workplace location pairs that have

not been chosen in the benchmark economy.

In order to resolve this problem, we specify bi j as a function of straight-line distance

between i and j,
ln bi j = β0 + β1 ln δi j, (3.2)

and estimate this relationship on the sample of pairs with positive flows. Our hypothesis

is that, even thoughmany location pairs have zero commuters due to the high commuting

costs, they would have positive number of commuters if the costs were lower and that the

flows between such locations depend on the distance between them. Table 2 reports the

regression results. We find that the there is a statistically significant negative relationship

between bi j and δi j, albeit the distances do not explain much of the variation in the pair-

20As, for example, inMonte, Redding, and Rossi-Hansberg (2018) or Heblich, Redding, and Sturm (2020).

Dingel and Tintelnot (2020) show that dropping pairs with zero flows may bias the estimates of the Frèchet

shape parameter.

189

Co
vi

d 
Ec

on
om

ic
s 6

1, 
11

 D
ec

em
be

r 2
02

0:
 17

2-
22

1



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

specific shifter. Table 3 provides summary statistics of the estimated values of bi j for pairs

with zero flows in the data and shows that bi j varies from around 0.5 to 1.2.

Table 2: Relationship between the pair-specific shifter, bi j, and distance

Dependent variable: ln bi j
ln δi j -0.1671

(0.0027)

Observations 318,629

R2
0.012

Note: This table reports estimates of equation (3.2). Standard errors are in parentheses.

Table 3: Summary statistics of the pair-specific commuting flow shifter, bi j

Mean S.d. Min Max Observations

bi j 0.6339 0.0732 0.5109 1.2260 19,949,134

Note: This table reports summary statistics of bi j as predicted by the estimated relationship (3.2).

3.2.3 Commuting flow matrix

The benchmark economy consists of both commuters and telecommuters, however we

cannot tell them apart in the LODES data. Hence, we resort to our model and use the

estimated equation (3.1) in order to construct commuting flow matrices for each θ.21

Because the gravity equation was estimated at θ = 1 and because bi j are derived from

regression residuals, our model will match the observed bilateral flows of commuters

nearly exactly. However, since bi j > 0 for all pairs with zero observed flows, our model

will have positive, even if negligible, flows between each pair of locations. Figure A.8

shows the relationship between commuting flows in the model and the data for θ = 1.
Panel (a) demonstrates that the data and the model match up nearly exactly for pairs with

positive flows in the data. Yet, as panel (b) shows, zooming into the lower left corner of the

scatter plot, one can see that there are small positive flows in the model between locations

with zero flows in the data. These flows are negligible–their total volume corresponds

to 0.6% of total employment in the economy, even though they account for 98.4% of all

location pairs.

21Dingel and Tintelnot (2020) also suggest using amodel-based commutingmatrix to run counterfactuals

in settings when there are many zero-flow location pairs in the data.
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4 Implications of an Increase in Telecommuting

In this section, we study a simulated increase in the number of telecommuters and its

effect on the location of residents and jobs, floorspace prices, wages, commuting costs,

and welfare.

4.1 The Counterfactual Experiment

The counterfactual experiment consists of changing the distribution of commuter types

from F(θ) to F∗(θ), as shown in Figure 1, while keeping all other parameters at the bench-

mark level.22 First, we study a counterfactual economy in which local productivity Ai

and amenities Xi are fixed at the benchmark level, by setting λ = χ = 0. This allows us

to isolate the first-order effects of changing commuting requirements from the amplifi-

cations via endogenous productivity and amenities. Then, we turn “on” productive and

amenity externalities, one by one, by restoring λ and χ to their calibrated levels and let

these externalities affect the counterfactual changes. In all previous experiments, we set

ψ = 0 in equation (2.34), i.e., we disallow remote workers to contribute to productive

externalities. In the last two experiments, we let remote workers to fully contribute to

productive externalities as if they were physically present in the office, by setting ψ = 1;
we calculate results when amenities are exogenous, and again when they are endogenous.

Distribution of commuter types. Wediscretize the distribution of commuter types,

F(θ), to six support points, θ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. We chose this support so that each

value of θ can be interpreted as the number of days per week that an individual commutes

to work. For example, a worker with θ = 0 always works at home, a worker with θ = 0.2
commutes one day a week, and a worker with θ = 1 commutes five days a week.

In order to build empirical benchmarkand counterfactual distributions ofθwe turn to

Barrero, Bloom, and Davis (2020). Using evidence from a survey of employers conducted

in May 2020, they find that in 2019, 3.4% of employees worked at home 5 or more days a

week, 2.9% did so 2–4 days, another 3.4% worked from home one day, and the remaining

90.3% rarely or never worked at home. Thus, in the benchmark economy, the probability

distribution of commuter types is f = (0.034, 0.01, 0.01, 0.01, 0.034, 0.903), where we split

the 2.9% who worked at home 2–4 days a week equally between 2, 3, and 4 days. The

survey also asks about plans of employers after Covid-19 as to how often their employees

would work at home and on-site. They find that 10.3% will work at home 5 or more days

22When we solve the system of counterfactual changes (2.35)–(2.44), âi, x̂i, Êi, b̂i j, φ̂i, ν̂, and d̂i j(θ) are all

equal to 1 for all locations i and j and types θ.
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a week, 9.9% will do so 2–4 days a week, 6.9% will work from home one day a week, and

only 73% will rarely or never work at home. Therefore, the counterfactual distribution

is f ∗ = (0.103, 0.033, 0.033, 0.033, 0.069, 0.73). This shift in the distribution implies that in

the counterfactual economy 17.6% of work days will be done from home, a more than

a threefold increase compared to 5.8% in the benchmark.23 Figure 2 demonstrates the

benchmark and the counterfactual distributions of commuter types.

Figure 2: Change in the distribution of commuting frequency

0.0 0.2 0.4 0.6 0.8 1.0

%

3.4
10.3

1.0 3.3 1.0 3.3 1.0 3.3 3.4
6.9

90.3

73.0

baseline
counterfactual

4.2 Results

When more workers gain the ability to commute less frequently or not at all and when

there are no agglomeration effects in productivity or amenities, two immediate effects

occur. First, the importance of distance between employers and employees weakens, and

workers who experience a fall in θ relocate further from their jobs.24 Second, as the supply

of on-site labor falls and the supply of remote labor increases, the demand for commercial

real estate plummets and the demand for residential real estate goes up. The rest of the

section describes how these two basic mechanisms change residential and employment

density, floorspace prices, wages, and discusses welfare implications of more widespread

23
∑
θ∈{0,...,1}(1−θ) f (θ) = 0.058 and

∑
θ∈{0,...,1}(1−θ) f ∗(θ) = 0.176. The latter number is less than half of 0.37

which, according Dingel and Neiman (2020), is the fraction of jobs in the United States that can be done at

home. It reasonable to expect, however, that employers and employees may prefer to conduct a significant

amount of work on-site even when it can feasibly be done from home.

24For example, the benchmark economy has few commuters from San Diego to Los Angeles, CA. These

cities are 120 miles apart and a one-way commute takes about 3 hours, either by car or train. In the

counterfactual economy, there is a 149% jump in the number of weekly commuter trips from locations in

San Diego county to Downtown L.A., largely driven by those who commute once or twice a week.
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telecommuting. We conclude the section by discussing the importance of agglomeration

externalities and the contribution of teleworkers to productive externalities for our results.

4.2.1 Residential density

More telework leads to the increased sprawl of residents who leave dense and expensive

urban cores for less dense suburbs and rural areas, as panel (a) in Figure 3 shows. The

map in panel (a) of Figure 9 confirms that most locations that gain density are located in

suburban and rural areas, while locations that lose density are primarily in urban areas.25

Does this mean that telecommuting will create a massive exodus from cities to rural

areas? Panel (b) of Figure 9 demonstrates that even though many rural and suburban

locations experience a large percentage increase in residents, in the vast majority of them

the absolute changes in density are small. We find that most people will keep living in

cities–the fraction of workers that reside in the 397 largest MSAs only declines from 85.9%

in the benchmark to 84.6% in the counterfactual.26 Moreover, as panel (b) of Figure 3 shows,

not all large metro areas shrink: Los Angeles, as well as the neighboring Riverside-San

Bernardino and San Diego grow larger.

A closer look at the two largest metro areas, New York and Los Angeles, unveils a

rich pattern of reallocations. In Los Angeles (panels (c) and (e) of Figure 9), the crescent

between Santa Monica and Downtown loses residents. This area is characterized by

proximity to jobs and sky-high real estate prices. As it becomes less important to be close

to jobs, people move to more affordable suburbs in San Fernando Valley, San Bernardino

County, and Orange County. In contrast, most areas in the New York metro area (panels

(d) and (f) of Figure 9) lose residents. The biggest reductions occur in Manhattan and

adjacent parts of Brooklyn and Queens, while parts of the Bronx and the Staten Island, as

well as some far-flung suburbs attract new residents.

25In accordance with these results, Althoff, Eckert, Ganapati, and Walsh (2020) find that in the few

months after the beginning of the COVID-19 pandemic there was a sizable reallocation of residents from

the densest to the least dense commuting zones in the U.S.

26We use Core-Based Statistical Areas (CBSAs) for our MSA-level results.
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Figure 3: Change in Residents

Panel (a): model locations Panel (b): metropolitan areas

Note: These scatterplots show the relationship between the benchmark residential density and the counter-

factual change in log density. Panel (a) shows this relationship for model locations, panel (b) shows this

relationship for metropolitan areas. “Elasticity” is the coefficient of the OLS regression of the counterfactual

change on the benchmark level.

4.2.2 Employment density

We find that telecommuting also results in the outflow of employment from high-density

to low-density locations, albeit the effect is much weaker than for residents (panel (a) of

Figure 4). In fact, as panel (b) in Figure 4 demonstrates, many of these reallocations occur

within metropolitan areas, and there is virtually no relationship between the initial size

of an MSA and the change in its employment. Indeed, some metro areas, such as New

York and Washington, D.C., experience moderate increases in employment. The maps in

Figure 10 confirm that in many urban locations employment grows.

How is it possible that some places lose residents and gain workers at the same

time? This happens because a large portion of the increase in employment comes from

telecommuters. With less frequent commutes, more workers combine the benefits of

working in high-wage cities, such as Washington, D.C., and living in more affordable

places nearby, such as Richmond, VA. Similarly, firms located in highly productive metro

areas can increase their size by hiring more workers from distant places. Figure 5 focuses

on five metropolitan areas and shows that areas which experience employment growth

in the counterfactual do so thanks to a jump in the number of telecommuters, while

on-site employment falls in all places shown in the figure. In addition, Table A.1 in
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Appendix displays changes in jobs, residents, and floorspace prices for each of the 100

largest metropolitan areas.

Figure 4: Change in Employment

Panel (a): model locations Panel (b): metropolitan areas

Note: These scatterplots show the relationship between the benchmark employment density and the coun-

terfactual change in log density. Panel (a) shows this relationship for model locations, panel (b) shows this

relationship for metropolitan areas. “Elasticity” is the coefficient of the OLS regression of the counterfactual

change on the benchmark level.

Figure 5: Changes in total, on-site, and remote employment in selected metro areas

Note: This figure shows the counterfactual change in total, on-site, and remote employment in several

metropolitan areas. Since a given worker can provide on-site and remote labor at the same time, these

changes are converted from changes in total, on-site, and remote work days in each workplace location.

195

Co
vi

d 
Ec

on
om

ic
s 6

1, 
11

 D
ec

em
be

r 2
02

0:
 17

2-
22

1



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

4.2.3 Floorspace prices

The rise of telecommuting reallocates the demand for floorspace across uses–commercial

and residential–and across locations. In particular, as fewer workers spend time in offices,

the stock of commercial real estate declines. At the same time, these workers require more

residential floorspace to be able to work at home productively, and therefore the supply

of residential real estate goes up. The rise in residential demand is further exacerbated

by the migration of residents to suburban and rural areas where housing is cheaper and

therefore large houses are more affordable.

We find that, on average, floorspace prices only fall by 2%. However, there are

sizable differences in price changes across locations. As panel (a) in Figure 11 and panel

(a) in Figure 6 show, many suburban and rural areas experience large increases in prices.

This happens because some residents and employers relocate to these areas. However, as

panels (b) and (c) in Figure 11 demonstrate, even within the largest cities, some locations

see an increase in prices. While the densest places, such as Manhattan in New York

and Downtown Los Angeles, become cheaper, several peripheral areas become more

expensive.

The aggregate average fall in floorspace prices is due to the combination of two

effects: First, residents move on average to less dense places, where in the benchmark

economy prices were lower. Second, residents move on average to places with a higher

elasticity of floorspace supply to price. To assess the importance of the second channel

we run an alternative counterfactual exercise in which the elasticity of housing supply is

uniform across space and equal to the population-weighted national average. Housing

costs only fall by 1.82% in this alternative exercise, indicating that about 7% of the total

fall in prices is due to reallocation to more flexible housing markets.

Even when many more workers can telecommute, large metropolitan areas remain

attractive places to live and run businesses, and real estate there does not become dra-

matically cheaper (see panel (b) in Figure 6 and Table A.1 in Appendix).27 Having said

that, while telecommuting is unlikely to improve housing affordability in the “superstar”

cities, it offers the opportunity for many workers to move to more affordable places while

retaining their jobs in major economic hubs.

27These results contrast with Delventhal, Kwon, and Parkhomenko (2020) who find that floorspace prices

in Los Angeles would fall by nearly 6%withmore telecommuting. However, that papermodels Los Angeles

as a closed city and does not consider the possibility that residents and firms may move in and out of the

city. In this paper, we allow such migration and find that, as more widespread telecommuting increases the

population and employment in Los Angeles, floorspace prices only fall by 1%.
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Figure 6: Floorspace prices

Panel (a): model locations Panel (b): metropolitan areas

Note: These scatterplots show the relationship between the benchmark log floorspace prices and the coun-

terfactual change in log floorspace prices. “Elasticity” is the coefficient of the OLS regression of the variable

on the vertical axis on the variable on the horizontal axis.

4.2.4 Wages

One important effect of the rise in telecommuting is that it increases resident market

access for many workers by lowering their commuting frequency. This implies that more

individuals have access to the most productive locations and many of them switch from

less productive jobs they held before. As a result, as panel (a) in Figure 7 demonstrates,

telecommuting increases the dispersion of wages across model locations and also across

metropolitan areas. These findings suggest that, even though remote work may bring

greater employment opportunities to workers who do not currently live in the most

successful local labor markets, it is unlikely to make the distribution of income more

equal. However, since the importance of living close to jobs fades, the competition for

expensive real estate in the most successful places becomes less intense and results in

greater spatial mixing of people with different income levels. As panel (b) in Figure 7

shows, the dispersion of income at the place of residence declines.
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Figure 7: Wages

Panel (a): model locations Panel (b): metropolitan areas

Note: Panel (a) show the relationship between the benchmark log wages of commuters at the place of work,

wC
j , and the counterfactual change in log wages. Panel (b) shows this relationship for wages at the place of

residence, w̃i. “Elasticity” is the coefficient of the OLS regression of the variable on the vertical axis on the

variable on the horizontal axis.

4.2.5 Aggregate Results and Welfare Effects

We find that, by weakening the link between the place of work and the place of residence,

a shift toward more telework results in modest wage gains, especially for telecommuters,

and a slight reduction in real estate prices (column (1) in Table 4). Both of these effects

result in a 0.8% larger aggregate consumption (column (1) in Table 5). Individuals further

gain by spending less time on commuting (column (1) in Table 4 and column (1) in Table

5). In addition, as many workers commute to work less frequently or not at all, they can

pick location pairs with better residential and workplace amenities, Xi and E j (column (1)

in Table 5).

Yet, most of the welfare gains can be attributed to better matches between firms and

workers, as measured by the value of the Frèchet preference shock. Because a commuter

must reside close to her job and because the distribution of preference shocks is i.i.d.

across pairs of locations, it is unlikely that she would be able to choose a pair of locations i
and j with a high value of zi jn. A telecommuter places a lesser importance on the disutility

of commuting and can therefore choose a pair with a higher value of zi jn. We find that

gains from greater consumption, less commuting, and better access to amenities increase

aggregatewelfare by almost 5%, however, better access to location pairswith higher values
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of preference shocks further increases aggregate welfare gains to nearly 35%.

Thesewelfare gains took into account thoseworkerswho experienced a decrease inθ,

i.e., switched from more to less commuting. What are the welfare effects on workers who

did not change their commuting frequency in the counterfactual? Column (1) in Table 5

lists welfare gains for workers with each θ and demonstrates that welfare gains are larger

for those who commute more frequently. Commuters experience an increase in wages

and a fall in housing costs. In addition, as the demand for living close to places with good

employment opportunities recedes, commuters gain from being able to pick residence

locations with shorter commutes and better amenities. At the same time, full-time remote

workers experience a slight reduction in expected utility. The main reason for that is

that in the benchmark economy telecommuters tended to live in less dense areas with

cheap housing. As the number of telecommuters grows, these areas experience a surge in

housing demand and increasing floorspace prices, thereby harming those telecommuters

who lived there before.

Table 4: Aggregate results

Productive externalities (λ > 0): no no yes yes yes yes

Amenity externalities (χ > 0): no yes no yes no yes

Remote labor adds to productive externalities (ψ = 1): no no no no yes yes

(1) (2) (3) (4) (5) (6)

Wages, all workers, % chg 0.28 0.17 -0.98 -1.14 0.29 0.11

Wages, on-site labor, % chg 0.47 0.36 -0.82 -0.99 0.45 0.26

Wages, remote labor, % chg 0.09 -0.01 -1.08 -1.21 0.24 0.10

Floorspace prices, % chg -1.95 -2.69 -2.15 -3.02 -1.96 -2.90

Time spent commuting, all workers, % chg -7.04 -6.44 -7.00 -6.34 -6.90 -6.20

Time spent commuting, commuters (θ = 1), % chg -0.13 0.44 -0.09 0.53 0.01 0.67

Distance traveled, all workers, % chg -6.42 -5.06 -6.49 -4.88 -6.27 -4.57

Distance traveled, commuters (θ = 1), % chg -0.46 0.92 -0.54 1.12 -0.31 1.43

Note: Columns (1)–(6) present results from models with different combinations of productive and amenity

externalities, and whether remote labor contributes to productive externalities, as specified in the header of

the table.
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Table 5: Welfare Decomposition

Productive externalities (λ > 0): no no yes yes yes yes

Amenity externalities (χ > 0): no yes no yes no yes

Remote labor adds to productive externalities (ψ = 1): no no no no yes yes

(1) (2) (3) (4) (5) (6)

Welfare by source, % chg

consumption only 0.81 0.86 -0.42 -0.38 0.82 0.87

+ commuting 4.01 3.90 2.73 2.59 3.98 3.83

+ amenities 4.90 5.26 3.66 4.09 5.00 5.50

+ Frèchet shocks 34.92 35.84 33.28 34.31 35.05 36.13

Welfare by commuter type, % chg

θ = 0 -0.05 1.69 -1.19 0.72 0.20 2.20

θ = 0.2 0.21 0.76 -0.95 -0.31 0.32 1.00

θ = 0.4 0.33 0.56 -0.86 -0.57 0.39 0.69

θ = 0.6 0.43 0.48 -0.80 -0.71 0.44 0.53

θ = 0.8 0.51 0.45 -0.75 -0.79 0.50 0.45

θ = 1 0.57 0.46 -0.72 -0.82 0.55 0.44

Note: Columns (1)–(6) present results from models with different combinations of productive and amenity

externalities, and whether remote labor contributes to productive externalities, as specified in the header of

the table. Appendix A.1 provides more details on welfare results by type and source.

4.2.6 Role of Agglomeration Externalities

Next, we considerwhatwould happen if local productivity, A j, and amenities, Xi, adjusted

endogenously to changes in employment and residential density (see equations 2.33 and

2.34). In the context of these counterfactual exercises, it is important that workers only

contribute to agglomeration externalities when they are on-site (ψ = 0): a one-day-per-

week commuter only contributes to these externalities one fifth as much, and a full-time

telecommuter does not contribute at all. As a result, even if no workers changed their

residences or jobs, more teleworkwould result in lower aggregate productivity. Yet, when

the productivity in a given location falls, wages fall as well making some workers seek

employment elsewhere and therefore amplifying the initial reduction in productivity.

Similarly, when some individuals move to suburban or rural areas from dense urban

locations, amenities in these places decline and, as a result, even more residents leave.

Figures (A.1)–(A.7) in the Appendix repeat Figures (3)–(11) and show that all of the effects

described in Sections 4.2.1–4.2.4 are stronger when the agglomeration externalities are

present. There is more reallocation of residents and jobs toward less dense places, greater

convergence in floorspace prices, and larger divergence in wages.
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The changes in density and prices with agglomeration externalities do not bring any

real quantitative surprises–almost all the same locations and variables see changes in the

same direction as before, the changes are just bigger. In terms of welfare, however, we

find that the picture is now completely changed. Tables 4 and 5 show this change in steps.

Column (1) of each table corresponds to the baseline counterfactual, when endogeniety

for both amenities and productivity is turned “off.” Column (2) shows the effect of turning

“on” endogeneity only for amenities. Column (3) shows the effect of turning endogeneity

“on” only for productivity. Finally, column (4) shows the effect of turning endogeneity

“on” for both at once.

Endogenous amenities. When only amenities are endogenous, the reduction in

distance traveled and time spent commuting for commuters, is reversed. This is because

telecommuters bring amenities out to the periphery with them when they move, and

commuters are thus induced to follow them, and accept longer commutes in exchange

for better residential amenities. The small increases in wages for all categories of workers

are attenuated because the migration of commuters to higher-productivity tracts is thus

less pronounced and because increased demand for floorspace in the periphery induces

telecommuters to slightly reduce the sizes of their home offices and, thus, their productiv-

ity. In terms of welfare, commuters still experience some gains but the gradient in welfare

gains is now reversed–now telecommuters benefit most, because they take the amenities

with them. Overall welfare gains are still positive due to the increase in at-home work

days for most workers.

Endogenous amenities also considerably increase the role of the relocation of res-

idents to places with more elastic housing supply in accounting for the reduction in

floorspace prices. In an alternative exercise in which only amenities are endogenous but

the floorspace supply elasticity takes the average value everywhere, floorspace prices fall

by only 2.43%. This indicates that nearly 10% of the total reduction is due to the im-

provement in the average housing supply elasticity, as compared to 7% in the “basic”

counterfactual in column (1).

Endogenous productivity. When only productivity is endogenous, small gains in

wages turn into a nearly 1% drop. This is because telecommuters no longer contribute to

externalities when working remotely, reducing the productivity especially of those work

locations which are most accessible to commuters. The effect on commuting times and

distances barely changes compared to the baseline counterfactual. In terms of welfare,

each category individually now suffers losses between 0.7% and 1.2%, with reductions
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larger for telecommuters than commuters. Overall welfare gains are negative when only

accounting for consumption, becausewages and overall productivity are now lower. Once

commuting and amenities are taken into account, the overall welfare effect is positive, due

to the reallocation of workers from commuting to telecommuting, which offers reduced

time on the road and a freer choice of residence.

Endogenous amenities and productivity. When both amenities and productivity

are endogenous, wages fall further and commute times and distances traveled by com-

muters go up. Average floorspace prices fall by over 3%,more than in the baseline scenario

or either of the “piecemeal” scenarios, which helps to offset the consumption cost of lower

wages. Everyone now earns less, but they have access to more affordable housing on aver-

age. When accounting for consumption, commuting disutility, and amenities together, the

overall increase in welfare is now only 4.1%. This increase is due entirely to an improved

situation for the lucky commuters who can now work from home. Commuters who are

“stuck” working on-site full-time see their welfare fall by 0.8%.

One way to think about the counterfactual results with agglomeration effects, is that

they give us a peek at what could happen in the long run. In the short and medium run,

the levels of productivity and amenities may not change much even if many more people

telecommute. Co-workers can still connect via Zoom, while restaurants or schools may

remain open at the same capacity levels. In the long run, however, a permanent reduction

in face-to-face interactions and a fall in the demand for living and working in dense urban

places, may result in a permanent blow to productivity and a reallocation of neighborhood

amenities.

4.2.7 Telecommuters’ contribution to workplace externalities

Butwhat if future advances allow telecommuters toparticipate in allwork-relatedactivities

just as efficiently as they would in person? In the preceding discussion, we have only

considered scenarios in which remote workers do not contribute at all to productive

externalities which, in terms of our model, means setting ψ = 0.
One alternative is to make the opposite extreme assumption, and set ψ = 1. Column

(5) in Tables 4 and 5 shows the results when ψ = 1 and only productivity externalities are

turned “on.” Column (6) in each table shows the results when amenity externalities are

“on” also. The contrast between columns (4) and (6) is striking. Allowing telecommuters

to contribute to local productivity externalities reverses most of the negative effects of

the increase in telecommuting which showed up in columns (3) and (4) when we turned

endogenous productivity “on.” Instead of falling, wages now rise modestly. Instead

202

Co
vi

d 
Ec

on
om

ic
s 6

1, 
11

 D
ec

em
be

r 2
02

0:
 17

2-
22

1



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

of disadvantaging left-behind commuters, this group now benefits considerably, their

expected utility increasing by 0.44%. The reduction in real estate prices, combined with

the rise in wages allows a larger gain in average consumption welfare than in any of the

other scenarios.

In other ways, the results for columns (4) and (6) are similar. Just as was the case

when telecommuters did not contribute to externalities, full commuters end up travelling

farther and spending more time on the road. The motivations are the same: an increase

in the relative wage advantage of jobs in the city centers, and an increase in the amenities

of farther-flung suburbs. When telecommuters improve productivity, too, the city center

wage advantage is made bigger, hence larger changes in average commute time and

distance.28

As ψ changes from 0 to 1, all of the aggregate results shown in Tables 4 and 5

transition smoothly from column (4) to column (6).29 Figure 8 shows this transition for

average wages, for consumption utility, and for the utility of left-behind commuters.

These are three aggregate outcomes for which, if telecommuters make no contribution

to production externalities, the effect of increased telecommuting is negative. Varying ψ

between 0 and 1 suggests another way to think about its importance: What would the

contribution of telecommuters to externalities have to be in order to turn these negative

results positive?

Average consumption utility is the first to turn positive asψ increases: if remotework-

ers contribute 30% as much to workplace spillovers as on-site workers, that is enough for

the utility derived from consumption of goods and housing, averaged across all types

of workers in the economy, to increase. The next to turn is overall utility for left-behind

full-time commuters. If telecommuters contribute to workplace spillovers 60% as much

as their on-site colleagues, this is enough to erase the losses suffered by every-day com-

muters. The hardest nut to crack, so to speak, is the average wage. For the counterfactual

increase in telecommuting we consider, the average wage will go down unless remote

labor contributes fully 90% as much as local labor to productive externalities.

Is it likely that the “true” value of ψ could be as high as 0.3, or 0.6, or 0.9? There is

28The direction and size of the change in aggregate commuting is almost exactly the same if we compare

columns (3) and (5), when endogenous amenities are absent. Therefore, the difference between (3) and

(5), or (4) and (6), give an estimate of the importance of telecommuters’ productivity contribution in

drawing workers into city centers. In contrast, the change in commuting variables between columns (5)

and (6) highlights the considerably larger role of endogenous amenities in the suburbs of promoting long

commutes. The fact that the change from (3) to (4) is also nearly the same as the change from (5) to (6)

indicates that the two influences on commuting–that of endogenous amenities and that of improved center-

city productivity–operate independently of one another, without amplifying or canceling each other out in

a major way.

29The transition from column (3) to column (5) is also smooth.
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little information available to form the basis of an objective answer to this question. Any

assessment, therefore, will depend heavily on the priors held by the individual observer.

Figure 8: Remote workers’ workplace externalities: wages and welfare
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5 Conclusions and Further Work

In this paper we have built a quantitative general equilibrium model of employment and

residence choice in which a portion of workers work from home either some or all of the

time. In a counterfactual experiment, we increased the share of telecommuters, and saw

that themodel predicted rich patterns of reallocation bothwithin and across metropolitan

areas. In particular, there is a mostly monotonic shift of residents from central locations

to the periphery, while jobs go up both in very small and very big cities. The question

of how a decrease in face-to-face interaction will affect productivity in the long run is the

key to predicting the overall welfare impact of such a change.

Our analysis has a number of limitations which open opportunities for extensions.

First, our model does not consider trade between locations and its impact on wages and

prices. Costly trade would probably act as a centripetal force, increase the cost of living

in remote areas that otherwise might receive more migration from new telecommuters.

Second, it might be useful to introduce multiple occupations to our analysis. Considering

local differences in industrial and occupational structure could be central to understand

quantitative implications of telecommuting, since the ability towork remotely varies across

industries and occupations. Considering trade costs could tone down our findings, since

some of the firms, especially those that produce non-traded goods, and therefore some

of their workers, would have to remain in dense urban areas because this is where most
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of their customers are. Third, our model does not distinguish between transportation

modes and our counterfactual scenarios assume that commuting costs do not change.

With fewer commuters traffic congestion may become less severe, though after Covid-19

many workers may switch from public transit to private cars.
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Maps
Figure 9: Density of residents

Panel (a): United States, relative changes

Panel (b): United States, absolute changes

Panel (c): Los Angeles, relative changes Panel (d): New York, relative changes

Panel (e): Los Angeles, absolute changes Panel (f): New York, absolute changes
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Figure 10: Density of workers

Panel (a): United States, relative changes

Panel (b): United States, absolute changes

Panel (c): Los Angeles, relative changes Panel (d): New York, relative changes

Panel (e): Los Angeles, absolute changes Panel (f): New York, absolute changes
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Figure 11: Floorspace Prices

Panel (a): United States, percentage changes

Panel (b): Los Angeles, percentage changes Panel (c): New York, percentage changes
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A Appendix

A.1 Welfare Decomposition
Welfare by type. The expected utility of a worker after he learns his type θ but before

location preference shocks are realized, is given by

V(θ) = ςπi j(θ)−
1
ε
XiE jbi jwi j(θ)

di j(θ)qγi
. (A.1)

Hence, we compute counterfactual changes in welfare for each worker who did not switch

his commuter type θ as

V̂(θ) = π̂i j(θ)−
1
ε
X̂iÊ jb̂i jŵi j(θ)

d̂i j(θ)q̂γi
. (A.2)

Note that the previous expression yields the same value of V̂(θ) for any pair (i, j).

Welfare by source. Aggregate composite consumption (i.e., c1−γhγ) is given by∫ ∑
i∈I

∑
j∈I

wi j(θ)q−γi πi j(θ)dF(θ). (A.3)

Therefore welfare gains resulting from changes in consumption are calculated as the ratio

of aggregate counterfactual and benchmark consumption levels:

V̂
C

=

∫ ∑
i∈I

∑
j∈I ŵi j(θ)wi j(θ)

(
q̂iqi

)−γ π̂i j(θ)πi j(θ)dF∗(θ)∫ ∑
i∈I

∑
j∈Iwi j(θ)q−γi πi j(θ)dF(θ)

. (A.4)

Similarly, we calculate welfare gains resulting from changes in consumption and commuting
by adjusting the previous expression by the commuting cost of traveling from i to j:

V̂
C,C

=

∫ ∑
i∈I

∑
j∈I ŵi j(θ)wi j(θ)

(
q̂iqi

)−γ π̂i j(θ)πi j(θ)d̂i j(θ)di j(θ)dF∗(θ)∫ ∑
i∈I

∑
j∈Iwi j(θ)q−γi πi j(θ)di j(θ)dF(θ)

. (A.5)

Then, we calculate welfare gains resulting from changes in consumption, commuting, and
amenities by adding relevant residential, workplace, and bilateral amenity levels to the

previous expression:

V̂
C,C,A

=

∫ ∑
i∈I

∑
j∈I X̂iXiÊ jE jb̂i jbi jŵi j(θ)wi j(θ)

(
q̂iqi

)−γ π̂i j(θ)πi j(θ)d̂i j(θ)di j(θ)dF∗(θ)∫ ∑
i∈I

∑
j∈IXiE jbi jwi j(θ)q−γi πi j(θ)di j(θ)dF(θ)

. (A.6)

Finally, welfare gains resulting from changes in consumption, commuting, amenities, and
Frèchet shocks correspond to total welfare gains and are given by equation (2.47).
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A.2 Local Wage Indices
Our source of wage data is the Census Transportation Planning Products (CTPP). CTPP

data sets produce tabulations of theAmerican Community Survey (ACS) data, aggregated

at the Census tract level. We use the data reported for the five-year period from 2012 to

2016. We use the variable “earnings in the past 12 months (2016 $), for the workers 16-

year-old and over,” which is based on the respondents’ workplace locations. The variable

provides the estimates of the number of people in each of the several earning bins in each

workplace tract.30

We calculate mean tract-level labor earnings as

ŵ j =
Σbnworkersb, j × ˆmeanwb

Σbnworkersb, j
, (A.7)

where nworkersb, j is the number of workers in bin b in tract j, and ˆmeanwb is mean earnings

in bin b for each PUMA, calculated from the ACS microdata.

Next, to control for possible effects of workers’ heterogeneity on tract-level averages,

we run the following Mincer regression,

ŵ j = α + β1age j + β2sexratio j + Σrβ2,rracer, j + Σiβ3,iindi, j + Σoβ4,oocco, j + ε j, (A.8)

where age j is the average age of workers; sexratio j is the proportion of males to females

in the labor force; racer, j is the share of race r ∈ {Asian,Black,Hispanic,White}; indi, j is the

share of jobs in industry i; occo, j is share of jobs in occupation o in tract j.31 The estimated

tract-level wage index corresponds to the sum of the constant and the tract fixed effect,

α̂+ ε̂ j. Finally, we aggregate the tract-level wage indices to the level of our model locations

using employment weights.

A.3 Estimation of Travel Times
In constructing a matrix of location to location travel times, we follow the practice rec-

ommended by Spear (2011) and use LODES data as a measure of commuting flows and

Census Transportation Planning Products (CTPP) data to provide information on com-

mute times. The CTPP database reports commuting time data for origin-destination pairs

of Census tracts across the contiguous United States for 2012–2016, and is tabulated using

30The bins are≤ $9, 999; $10, 000–$14, 999; $15, 000–$24, 999; $25, 000–$34, 999; $35, 000–$49, 999; $50, 000–
$64, 999; $65, 000–$74, 999; $75, 000–$99, 999; and ≥ $100, 000.

31We use the following industry categories: Agricultural; Armed force; Art, entertainment, recreation,

accommodation; Construction; Education, health, and social services; Finance, insurance, real estate; Infor-

mation; Manufacturing; Other services; Professional scientific management; Public administration, Retail.

We use the following occupation categories: Architecture and engineering; Armed Forces; Arts, design,

entertainment, sports, and media; Building and grounds cleaning and maintenance; Business and financial

operations specialists; Community and social service; Computer and mathematical; Construction and ex-

traction; Education, training, and library; Farmers and farm managers; Farming, fishing, and forestry; Food

preparation and serving related; Healthcare practitioners and technicians; Healthcare support; Installation,

maintenance, and repair; Legal; Life, physical, and social science; Management; Office and administrative

support; Personal care and service; Production;Protective service; Sales and related.
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American Community Survey (ACS) data.32 Travel times are reported for a little over four

million trajectories, which is a small fraction of all possible bilateral trajectories, because

most pairs of tracts are far enough apart that the ACS survey does not observe anyone

commuting between those two points. We process this data in the following three steps:

1. We calculate the average travel time between each pair of locations as the average

of all reported tract-to-tract travel times with an origin inside one location and a

destination in the other. To minimize the influence of outliers on these estimates,

we throw out the calculation for any pair of locations for which less than 10% of all

possible tract-to-tract travel times is reported byCTPP.We also exclude average travel

times that imply a travel speed of more than 100 kilometers per hour or less than

5 kilometers per hour. We perform this same calculation for the average distance

of each location from itself, thereby obtaining data-based estimates of the average

internal travel time for each location as well.

2. To prevent “breaks” in the network, we check to see if any location does not have an

estimated travel time to its 5 nearest neighbors. If travel times are missing for any

of these location-to-location trajectories, we project a travel time using the estimated

coefficients of a regression of average location-to-location travel times on average

great circle distance and an indicator variable that takes the value one if the origin is

the same as the destination. This procedure adds about 10,000 additional links, out

of 20,268,004 possible location-to-location trajectories.

3. We take the approximately 34,000 primitive connections, the travel times for which

we have calculated as detailed above, as the first-order connections in a transport

network. We use Dĳkstra’s algorithm to find the least possible travel times through

this network between each pair of model locations.

32The CTPP data divides commuting times into 10 bins: less than 5 minutes, 5 to 14 minutes, 15 to 19

minutes, 20 to 29 minutes, 30 to 44 minutes, 45 to 59 minutes, 60 to 74 minutes, 75 to 89 minutes, 90 or more

minutes, and work from home.
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A.4 MSA-level results

Table A.1: Changes in residents, jobs, and floorspaces prices for 100 largest CBSAs

Change in residents Change in jobs Change in

CBSA all workers on-site remote all workers on-site remote floorspace

% ’000 ’000 ’000 % ’000 ’000 ’000 prices, %

New York-Jersey City-Wh..., NY-NJ -3.0 -186 -683 497 2.5 166 -699 865 -1.2

Los Angeles-Long Beach-..., CA 0.7 29 -458 486 -0.2 -8 -463 455 -1.0

Chicago-Naperville-Arli..., IL -2.7 -94 -397 303 -1.2 -43 -404 361 -1.5

Houston-The Woodlands-S..., TX -2.4 -67 -317 250 -1.0 -28 -316 289 -1.5

Atlanta-Sandy Springs-R..., GA -3.0 -73 -285 212 0.9 23 -284 307 -1.3

Washington-Arlington-Al..., DC-VA-MD-WV -2.6 -59 -252 193 1.1 27 -262 289 -1.4

Dallas-Plano-Irving, TX -2.5 -53 -247 194 -3.7 -82 -258 176 -1.4

Minneapolis-St. Paul-Bl..., MN-WI -5.2 -100 -229 130 -4.7 -92 -231 139 -1.9

Phoenix-Mesa-Scottsdale..., AZ -3.0 -57 -224 167 -1.2 -23 -222 200 -1.5

Riverside-San Bernardin..., CA 8.4 133 -167 300 -0.5 -7 -152 145 0.4

Nassau County-Suffolk C..., NY -3.1 -45 -158 113 4.7 63 -142 205 -1.6

Seattle-Bellevue-Everet..., WA -3.3 -46 -168 122 -3.3 -51 -181 130 -1.7

Denver-Aurora-Lakewood, CO -2.2 -31 -167 136 -4.4 -61 -169 109 -1.5

Anaheim-Santa Ana-Irvin..., CA 1.0 13 -152 165 -0.7 -10 -161 151 -1.1

Baltimore-Columbia-Tows..., MD -3.2 -43 -154 111 -1.6 -22 -155 133 -1.5

St. Louis, MO-IL -4.6 -61 -161 100 -3.5 -48 -162 114 -1.7

San Diego-Carlsbad, CA 0.1 1 -152 154 -4.6 -58 -156 99 -1.1

Cambridge-Newton-Framin..., MA -5.7 -70 -141 71 3.4 44 -139 183 -2.0

Newark, NJ-PA -4.3 -52 -134 82 -1.1 -13 -131 118 -1.7

Warren-Troy-Farmington ..., MI 0.2 3 -142 145 -2.5 -29 -142 113 -1.0

Oakland-Hayward-Berkele..., CA -0.4 -5 -136 131 -0.0 -0 -118 118 -1.1

Tampa-St. Petersburg-Cl..., FL -2.3 -27 -132 105 6.3 76 -132 209 -1.4

Pittsburgh, PA -5.2 -60 -137 78 -2.9 -35 -139 105 -1.8

Portland-Vancouver-Hill..., OR-WA -2.6 -29 -136 107 -4.8 -54 -138 84 -1.6

Charlotte-Concord-Gasto..., NC-SC -3.4 -37 -128 91 1.7 20 -128 148 -1.3

Fort Worth-Arlington, TX -1.6 -17 -123 106 -3.3 -32 -117 85 -1.3

Cincinnati, OH-KY-IN -4.2 -43 -122 78 -3.2 -33 -122 89 -1.5

Kansas City, MO-KS -4.6 -47 -125 77 -3.3 -35 -126 92 -1.8

Miami-Miami Beach-Kenda..., FL -3.1 -32 -114 82 6.0 66 -120 186 -1.7

Boston, MA -5.9 -60 -117 57 5.4 68 -133 201 -2.0

Montgomery County-Bucks..., PA -4.0 -41 -116 75 -1.9 -20 -119 100 -1.6

Cleveland-Elyria, OH -1.4 -14 -119 106 -3.0 -31 -128 96 -1.3

Orlando-Kissimmee-Sanfo..., FL -3.3 -33 -115 82 3.0 34 -125 159 -1.5

Indianapolis-Carmel-And..., IN -3.4 -33 -117 83 -0.5 -6 -118 113 -1.5

Columbus, OH -0.9 -9 -114 105 1.8 19 -116 135 -1.1

Las Vegas-Henderson-Par..., NV -3.2 -30 -116 86 -3.7 -35 -116 81 -1.5

San Antonio-New Braunfe..., TX -1.2 -11 -109 98 -2.0 -18 -109 90 -1.3

Sacramento–Roseville–..., CA 2.9 26 -103 129 -2.2 -20 -106 86 -0.6

San Jose-Sunnyvale-Sant..., CA -2.3 -20 -101 81 -1.7 -16 -108 92 -1.7

Philadelphia, PA -4.1 -35 -100 64 -1.4 -13 -104 91 -1.7

Austin-Round Rock, TX -1.0 -8 -99 91 0.5 5 -101 106 -1.1

Nashville-Davidson–Mur..., TN -4.1 -34 -101 67 -1.2 -11 -104 93 -1.4

Milwaukee-Waukesha-West..., WI -5.0 -41 -97 56 -3.3 -30 -103 74 -2.0

San Francisco-Redwood C..., CA -1.5 -12 -92 80 0.4 4 -108 112 -1.5

Providence-Warwick, RI-MA -6.4 -51 -94 43 -3.1 -23 -87 64 -2.1

Fort Lauderdale-Pompano..., FL -4.8 -38 -90 52 6.2 49 -83 132 -2.0

Virginia Beach-Norfolk-..., VA-NC -2.8 -20 -85 64 -0.6 -4 -85 81 -1.5

Detroit-Dearborn-Livoni..., MI -1.6 -11 -81 70 -2.3 -17 -83 66 -1.3

Camden, NJ -0.1 -1 -70 69 -0.1 -0 -62 62 -0.9

Louisville/Jefferson Co..., KY-IN -4.2 -27 -75 49 -0.4 -3 -76 73 -1.6

Hartford-West Hartford-..., CT -7.1 -44 -74 30 -4.2 -28 -79 51 -2.2

Richmond, VA -0.0 -0 -72 72 2.6 17 -74 91 -0.9

Silver Spring-Frederick..., MD -1.4 -9 -67 59 2.1 13 -65 77 -1.2

Oklahoma City, OK -0.5 -3 -74 70 2.3 15 -75 90 -1.1

Memphis, TN-MS-AR -4.0 -23 -72 49 -4.4 -26 -73 47 -1.7

Jacksonville, FL -3.9 -23 -71 49 -0.5 -3 -73 69 -1.5

Salt Lake City, UT -2.8 -16 -73 56 -5.6 -38 -84 47 -1.7

Raleigh, NC -3.9 -22 -69 47 3.8 23 -67 91 -1.3
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Table A.2: Changes in residents, jobs, and floorspaces prices for 100 largest CBSAs (cont’d)

Change in residents Change in jobs Change in

CBSA all workers on-site remote all workers on-site remote floorspace

% ’000 ’000 ’000 % ’000 ’000 ’000 prices, %

Buffalo-Cheektowaga-Nia..., NY -6.0 -34 -68 35 -3.1 -18 -70 52 -2.0

New Orleans-Metairie, LA -2.7 -14 -62 48 5.0 29 -64 93 -1.6

Rochester, NY -4.0 -21 -64 43 1.2 7 -64 71 -1.5

West Palm Beach-Boca Ra..., FL -2.5 -13 -59 46 12.1 69 -59 129 -1.5

Birmingham-Hoover, AL 0.9 5 -61 65 1.4 8 -63 71 -0.7

Omaha-Council Bluffs, NE-IA -4.8 -23 -59 36 -5.6 -28 -60 33 -1.9

Grand Rapids-Wyoming, MI -1.4 -7 -60 53 -4.0 -21 -65 44 -1.2

Worcester, MA-CT -4.9 -23 -54 31 0.2 1 -46 47 -1.6

Tulsa, OK 0.9 4 -56 60 -1.3 -6 -57 51 -0.8

Bridgeport-Stamford-Nor..., CT -5.6 -24 -48 24 -3.3 -15 -51 36 -2.1

Lake County-Kenosha Cou..., IL-WI -1.8 -8 -48 40 -1.1 -4 -45 41 -1.3

New Haven-Milford, CT -6.7 -28 -49 21 -5.3 -21 -47 26 -2.2

Allentown-Bethlehem-Eas..., PA-NJ -2.7 -11 -45 34 -2.6 -9 -43 34 -1.2

Albany-Schenectady-Troy..., NY -5.1 -21 -49 28 1.8 8 -51 59 -1.5

Albuquerque, NM -0.9 -4 -50 46 0.0 0 -49 49 -1.1

Greenville-Anderson-Mau..., SC -5.1 -19 -44 25 -2.8 -11 -46 35 -1.5

Baton Rouge, LA -1.6 -6 -44 38 9.6 39 -42 82 -1.1

Knoxville, TN -1.0 -3 -44 41 -0.5 -2 -47 45 -0.9

Oxnard-Thousand Oaks-Ve..., CA 4.8 17 -41 58 -0.8 -2 -35 32 -0.3

Madison, WI -2.9 -10 -42 32 -4.5 -18 -47 29 -1.4

Tacoma-Lakewood, WA 0.9 3 -43 46 -3.4 -10 -35 26 -0.7

Wilmington, DE-MD-NJ -5.2 -18 -41 23 -6.1 -22 -43 21 -1.8

Dayton, OH -4.7 -16 -42 25 -3.5 -13 -43 31 -1.7

Columbia, SC 0.2 1 -41 41 5.4 21 -42 62 -0.8

Fresno, CA 7.0 24 -43 67 -3.8 -12 -44 32 -0.3

Little Rock-North Littl..., AR 0.9 3 -42 45 4.2 15 -44 59 -0.7

Akron, OH -2.8 -9 -40 30 -4.3 -14 -41 27 -1.5

Tucson, AZ 6.0 20 -42 62 0.5 2 -43 45 0.1

Des Moines-West Des Moi..., IA -3.2 -10 -40 30 1.4 5 -42 47 -1.5

Greensboro-High Point, NC -1.0 -3 -37 34 0.7 2 -42 44 -1.1

El Paso, TX -1.7 -5 -41 36 -5.6 -18 -42 24 -1.3

Gary, IN -1.3 -4 -37 33 -4.7 -13 -35 22 -1.2

Charleston-North Charle..., SC 2.6 8 -39 47 7.0 23 -39 62 -0.3

Boise City, ID 2.3 7 -41 48 -5.5 -16 -42 25 -0.4

Wichita, KS -3.5 -10 -37 27 -0.9 -3 -38 35 -1.5

Elgin, IL -2.7 -8 -34 26 -2.6 -7 -30 23 -1.4

Springfield, MA -1.0 -3 -32 29 3.2 9 -33 42 -1.1

Ogden-Clearfield, UT -2.2 -6 -37 30 -5.7 -13 -30 17 -1.2

Winston-Salem, NC -2.7 -8 -34 26 1.7 4 -30 35 -1.0

Bakersfield, CA 12.8 35 -33 68 -2.0 -5 -35 30 0.6

Toledo, OH -2.8 -8 -32 24 -4.8 -14 -35 21 -1.6

Syracuse, NY -1.3 -3 -33 29 1.1 3 -34 38 -1.1
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A.5 Counterfactual Results with Agglomeration Effects

Figure A.1: Change in Residents

Panel (a): model locations Panel (b): metropolitan areas

Note: These scatterplots show the relationship between the benchmark residential density and the counter-

factual change in log density. Panel (a) shows this relationship for model locations, panel (b) shows this

relationship for metropolitan areas. “Elasticity” is the coefficient of the OLS regression of the counterfactual

change on the benchmark level.

Figure A.2: Change in Employment

Panel (a): model locations Panel (b): metropolitan areas

Note: These scatterplots show the relationship between the benchmark employment density and the coun-

terfactual change in log density. Panel (a) shows this relationship for model locations, panel (b) shows this

relationship for metropolitan areas. “Elasticity” is the coefficient of the OLS regression of the counterfactual

change on the benchmark level.
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Figure A.3: Density of residents

Panel (a): United States, relative changes

Panel (b): United States, absolute changes

Panel (c): Los Angeles, relative changes Panel (d): New York, relative changes

Panel (e): Los Angeles, absolute changes Panel (f): New York, absolute changes
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Figure A.4: Density of workers

Panel (a): United States, relative changes

Panel (b): United States, absolute changes

Panel (c): Los Angeles, relative changes Panel (d): New York, relative changes

Panel (e): Los Angeles, absolute changes Panel (f): New York, absolute changes
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Figure A.5: Real Estate Prices

Panel (a): United States, percentage changes

Panel (b): Los Angeles, percentage changes Panel (c): New York, percentage changes
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Figure A.6: Floorspace prices

Panel (a): model locations Panel (b): metropolitan areas

Note: These scatterplots show the relationship between the benchmark log floorspace prices and the coun-

terfactual change in log floorspace prices. “Elasticity” is the coefficient of the OLS regression of the variable

on the vertical axis on the variable on the horizontal axis.

Figure A.7: Wages

Panel (a): model locations Panel (b): metropolitan areas

Note: These scatterplots show the relationship between the benchmark log wages of commuters at the place

of work, wC
j , and the counterfactual change in log wages. “Elasticity” is the coefficient of the OLS regression

of the variable on the vertical axis on the variable on the horizontal axis.
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A.6 Additional Figures and Tables

Figure A.8: Commuting flows

Panel (a): all pairs Panel (b): pairs with small flows

Note: These scatterplots show the relationship between commuting probabilities in the LODES data and

their counterparts in the model. Panel (a) shows all pairs, panel (b) shows pairs with πi j < 2.5 × 10−6
. The

dotted line is the 45-degree line.
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This paper aims to highlight the role of supply chain linkages for the 
transmission of Covid-19 induced shocks based on the monthly trade of 
the European Union member states. The paper distinguishes demand and 
supply shocks as of either domestic or partner country origin and further 
characterizes the role of the latter based on the bilateral GVC positions, 
thereby taking into account the possibility of transmission through 
forward and backward linkages. Using the framework of the gravity 
model, we find a general decline in trade following the Covid-19 outbreak 
and significantly negative trade effects associated with Covid-19 cases 
per capita in both origin and destination country. The combined trade 
effect of Covid-19 is almost minus 20% for both exports and imports, 
taking into account the average Covid-19 infection rates in the EU and 
partner countries from April 2020. While export decreases twice as much 
in response to an increase in the current number of Covid-19 cases in the 
destination country than in the origin country, it becomes more sensitive 
to the Covid-19 situation in the origin country over time, suggesting that 
import demand shocks have a more immediate effect than export supply 
ones. Moreover, the results confirm that forward GVC linkages act as a 
channel for the transmission of (demand) shocks in the supply chain 
trade. An increase in the incidence of destination’s Covid-19 cases, namely, 
induces a steeper decline in domestic exports of intermediate products in 
those destinations with which a country has stronger forward linkages, 
i.e. in partners positioned further downstream. On the other hand, we fail 
to find robust evidence for the transmission of Covid-19-induced shocks 
via backward linkages.

1	 This research was sponsored by the Slovenian Research Agency (Research Programme P5-0117).
2	  Full Professor of International Economics, University of Ljubljana, School of Economics and Business.
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1. Introduction  
 
As a result of the Covid-19 pandemic, predictions show the global economy contracting sharply 
by -4.9 percent in 2020 (IMF, 2020)1, whilst all regions will suffer double-digit declines in exports 
and imports (WTO, 2020)2, much worse than during the 2008-09 global financial crisis (hereinafter 
GFC). It is projected for the European Union to be among the most affected economies, with a 
drop in GDP by 8.3 percent in 2020 (European Commission, 2020)3. Estimates of the expected 
recovery of Europe in 2021 are uncertain, with outcomes depending significantly on the duration 
of the outbreak and the effectiveness of the policy responses. An economic downturn, increased 
uncertainty and simultaneous supply chain disruptions have been putting tremendous pressure on 
the reorganisation and reconfiguration of the global value chains (GVC hereafter). Covid-19 has 
hit at the core of GVC hub regions, including Europe, China, and the US.  
 
The lessons from recent global crises and shocks, such as GFC in 2008 and the Japanese 
earthquake/tsunami in 2011, showed that companies react by reorienting their sourcing strategies 
towards more diversification of risk and breaking the value chains into shorter and less complex 
ones (OECD, 2013). However, the Covid-19 crisis differs from the GFC mainly in that it involves 
lockdown and social distancing which has led to major GVC disruptions. Trade is likely to fall 
more steeply in sectors characterized by complex value chain linkages, particularly in electronics 
and automotive products. This is closely tied to the nature of certain jobs that cannot be sufficiently 
performed remotely and thus result in lesser output by the industry,  consequentially amplifying 
trade effects due to the supply chain linkages. Dingel and Neiman (2020) estimated, using survey 
data for the US, an upper bound of 22% that represents a share of jobs in manufacturing that can 
be performed remotely, which helps explain negative trade effects from exporting countries due 
to lesser export supply as a consequence of imposed measures.  
 
On top of this, as pointed out by Evenett (2020), a troubling trade policy dimension is now coming 
to light. Over 80 countries have introduced export prohibitions or restrictions as a result of the 
Covid-19 pandemic, predominantly on medical supplies, pharmaceuticals, and medical equipment, 
but also additional products, such as foodstuffs and toilet paper (WTO, 2020)4. At the same time, 
politicians’ calls for “sovereign” or “national” supply chains and re-thinking of domestic 
companies’ approaches to international outsourcing of production are becoming louder (Serič, 
Görg, Mösle, and Windisch, 2020). These processes and developments might lead as well to the 
break of the existing GVCs and their readjustment. 
 

                                                           
1 Available at https://www.imf.org/en/Publications/WEO/Issues/2020/06/24/WEOUpdateJune2020 
2 Available at https://www.wto.org/english/news_e/pres20_e/pr855_e.htm 
3 Available at https://ec.europa.eu/info/sites/info/files/economy-finance/ip132_en.pdf 
4 More on this https://www.wto.org/english/tratop_e/covid19_e/export_prohibitions_report_e.pdf 
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Friedt and Zhang (2020) estimated that GVC contagion effect explains around two-thirds of the 
total reduction in Chinese exports thus providing support for the decisive role of GVC participation 
for the trade response to Covid-19 pandemic situation. In line with this observation, Figure 1 
placed later in Section 3.5 illustrates that during the first wave of the pandemic EU member states 
overall recorded the largest decline in trade with intermediated goods. Though, differences in the 
trade contraction that unfolded at the beginning of the second quarter of 2020 among the EU 
member states do not reflect, at least, at first sight, differences in the incidence of Covid-19 cases. 
As exemplified in Figures 2 and 3 in Section 3.5, despite having relatively fewer Covid-19 cases 
per capita, the new EU member states experienced above-average import and export contraction. 
Can this discrepancy be explained by differences in GVC participation and position among the 
member states? According to World Development Report 2020, the type of GVC participation 
significantly differs among the EU member state; while most of the old EU member states are 
specialized in innovative GVCs activities, CEE-11 are mostly specialized in advanced 
manufacturing and services GVCs with a high share of manufacturing and business services 
exports and high backward GVC integration. Overall, the old member states occupy a more 
upstream position in GVCs compared to the new EU member states. 
 
Understanding the severity and nature of trade collapse in EU member states in the wake of the 
Covid-19 pandemic requires knowledge about the structure of value chains and subsequent level 
of integration by countries. In this paper, we intend to add to the growing literature on the 
disruptions of the real economic activity caused by the pandemic by empirically evaluating how 
involvement and position in the GVCs determine the trade adjustment to Covid-19 induced shocks. 
We augment the gravity model with the backward and forward GVC linkages to account for 
various trade-related transmission mechanisms of the Covid-19 shocks in partner countries. We 
find that among the identified transmission channels, forward linkages played the most prominent 
role in transmitting the pandemic induced shocks through the supply chains. A significant 
contraction in both exports and imports is directly attributed to a country’s forward participation.   
 
Our work is closely related to Baldwin and Freeman (2020), Baldwin and Tomiura (2020) and 
Friedt and Zhang (2020) who investigate the so-called ‘triple pandemic effect’ on trade through 
the pandemic-induced domestic supply, international demand, and GVC contagion shocks. The 
transmission role of the GVCs has been addressed also from the perspective of its impact on real 
economic activity and prices (Meier and Pinto, 2020), output adjustments to cross-sectoral effects 
of labour supply shocks (Bonadio et al., 2020; McCann and Myers, 2020), and aggregate welfare, 
through both deaths and reduced gains from trade (Antras et al., 2020). While the literature on 
demand and supply shocks includes Farhi and Baqaee (2020) who study how Covid-19 induced 
supply and demand shocks affect real economic variables and Hassan et al. (2020) who identify 
negative demand shock and supply chain disruptions as one of the prevailing concerns when 
conducting a firm-level analysis of earnings’ calls.  

224

Co
vi

d 
Ec

on
om

ic
s 6

1, 
11

 D
ec

em
be

r 2
02

0:
 2

22
-2

44



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

 

 
The rest of the paper is organised as follows. Section 2 discusses transmission mechanisms of 
Covid-19 shocks through supply chain linkages. Section 3 sets gravity-model-based empirical 
specifications, discusses methodological issues and presents stylised facts on trade performance 
and Covid-19 pandemic situation across EU member states. Section 4 shows the estimates and 
discusses the results of the Covid-19 impact on bilateral trade flows and provides some robustness 
checks. Section 5 concludes the paper.   

 

2. Background on GVC linkages and transmission of Covid-19 induced 
shocks 

 
In many countries, several drastic measures have been taken in response to the Covid-19 pandemic, 
such as lockdowns and social distancing, with direct impact on both the demand and the supply 
side of the domestic economy and thus on its trade performance. Moreover, due to strong supply 
chain linkages, the Covid-19 induced shocks spread quickly across countries. Baldwin and 
Freeman (2020), Baldwin and Tomiura (2020) and Friedt and Zhang (2020) conceptualize this 
diverse set of effects as the ‘triple pandemic effect’ on trade through direct supply disruption due 
to various containment efforts, the supply-chain contagion due to the disruptions of the 
international flow of intermediate inputs, and the decline in global demand due to reduction in 
consumer spending and investment delays. 
 

We build upon this classification by further acknowledging that supply and demand shocks 
transmit through the GVC linkages in both directions via forward and backward linkages, i.e. 
upstream and downstream, giving rise to complex interplay of the trade effects of Covid-19 
pandemic which we summarize in Table 1. Based on their position in GVCs, countries can be 
classified as more upstream or downstream, each category of countries being subject to different 
dynamics of shock transmission.   
 
On the supply side, lockdown measures, subsequent closing of local businesses as well as fear of 
infection result in a labour supply shock. On a domestic level, lockdown-induced labour supply 
shock is manifested in lesser export supply due to lower output. Moreover, labour supply shocks 
in partner countries affect domestic trade through (see Table 1): (i) lower domestic imports of final 
consumption goods due to ravaged supply in a partner country, and (ii) reduced imports of 
intermediates via backward linkages, i.e. supply-chain disruption from foreign upstream suppliers 
conveyed to domestic downstream customers. Bonadio et al. (2020), for instance, showed that a 
quarter of the average real GDP downturn due to lockdown-induced labour supply shocks could 
be contributed to the transmission through global supply chains.  
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On the demand side, increased uncertainty and fall in the household disposable income propagate 
decreased demand for products, mostly consumer goods, which means lower import quantities. 
Hassan et al. (2020) confirmed by employing text-based measures of the costs, benefits and risks 
firms associate with the spread of Covid-19 disease in the first quarter of 2020 that collapse of 
demand and increased uncertainty were among firms’ primary concerns. Transmission of demand-
side shocks from partner countries come through multiple channels, trade in final goods and supply 
chain trade (intermediates and capital goods). While the impact on trade in final goods is relatively 
straightforward, corresponding directly to the decreased exports to partner country which 
experiences a demand shock  (i.e. partner country’s demand shock resulting in lesser imports will 
translate directly to lesser domestic export), supply chain trade transmission depends upon the 
GVC interrelations. In particular, the demand-side shock in a partner country results in lower 
demand for intermediated goods sourced from more upstream domestic suppliers via forward GVC 
linkages, hence lower exports of intermediate goods from domestic to partner country. We 
summarize these potential channels and expected effects of Covid-19 on trade in Table 1.  
 

Table 1: Domestic and transmitted effects of Covid-19 pandemic on the domestic 
country’s trade  
 

 Domestic 
Covid-19 
shock in 

i 

Transmission of Covid-19 shock from partner country j 

Final good 
trade 

Supply chain trade 
(intermediates and capital goods) 

 From downstream customers 
in j to domestic upstream 

suppliers (via FPij) 

From upstream suppliers in j 
to domestic downstream 

customers (via BPij) 
Demand side  IMi ⇩  EXi  ⇩ EXi ⇩    
Supply side  EXi ⇩ IMi ⇩  IMi ⇩  

 
 

Friedt and Zhang (2020) estimated that the impact of GVC contagion explains around 75% of the 
total reduction in Chinese exports, while the domestic supply shock in China accounts for around 
10% to 15% and the international demand shock only explains around 5% to 10%. McCann and 
Myers (2020) studied the nature of transmission of Covid-19 shock through inter-sectoral supply-
chain linkages and found that in particular upstream sectors without direct Covid-19 exposure 
containment policies can still be affected if their downstream (customer) firms suffer acute revenue 
losses, while the transmission from upstream suppliers to downstream firms is likely to be smaller. 
In line with this evidence, we expect that transmission of supply-chain shocks operates primarily 
from downstream customers to their upstream suppliers. It does so by initially affecting the exports 
of the intermediate goods via forward linkages. On the other hand, Meier and Pinto (2020) provide 
indirect evidence of the transmission of shocks through backward linkages. They found that US 
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sectors with greater exposure to intermediate goods imports from China contracted significantly 
more than other sectors coupled with their relative input and output price increase. As per direct 
impact of Covid-19 crisis, Hayakawa and Mukunoki (2020) found that in the early stage of the 
pandemics Covid-19 burden in exporting countries, but not in importing countries, has a 
significantly negative effect on trade.  
 
 
3. Conceptual framework, methodology and data 
 
3.1. Gravity model framework 

 
The identified channels of Covid-19 trade effects are tested within a gravity model framework. 
The gravity model is a workhorse for testing various determinants of international trade and the 
effect of trade policy measures. It adopts the logic of Newton's law of universal gravitation for 
explaining the bilateral trade flows stating that trade between two economic areas will be directly 
proportional to the product of their market sizes (e.g. GDPs) and inversely proportional to the 
square of the distance between their centres. 
 
We will follow the approach of Anderson and van Wincoop (2003) who had shown that proper 
specification of the gravity model grounded in the trade theory requires the inclusion of the inward 
and outward multilateral resistance terms (MRT) which take into consideration how “remote” both 
regions are from the rest of the world. The main idea is that bilateral trade flows between trading 
partners “i” and “j” depend on bilateral trade barriers relative to average trade barriers that both 
trading partners face with all their trading partners. Their formulation of the structural gravity 
equation, which is the basis for almost all subsequent papers using gravity models to explain 
bilateral trade flows, is as follows: 
 

𝑡𝑟𝑎𝑑𝑒𝑖𝑗𝑡 =
𝑌𝑖𝑡𝑌𝑗𝑡

𝑌𝑡
(

𝑡𝑖𝑗𝑡

𝜋𝑖𝑡𝑃𝑗𝑡
)

1−𝜎

,                 [1] 

 
where Yit and Yjt stand for particular countries’ GDP and Yt for the world aggregate GDP, while 
tijt stands for the tariff equivalent of overall trade costs. The elasticity of substitution between goods 
is represented with 𝜎, while 𝜋𝑖𝑡 and 𝑃𝑗𝑡 represent multilateral resistance terms (in other words – 
exporter and importer ease of market access).  
 
By log-linearizing structural gravity eq. [1], we obtain the most common theory-consistent gravity 
model specification: 
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ln 𝑡𝑟𝑎𝑑𝑒𝑖𝑗𝑡 = ln 𝑌𝑖𝑡 + ln 𝑌𝑗𝑡 − ln 𝑌𝑡 + (1 − 𝜎)[ln 𝑡𝑖𝑗𝑡 − ln 𝛱𝑖𝑡 − ln 𝑃𝑗𝑡] + 𝜀𝑖𝑗 . [2] 
 
 
3.2. Accounting for transmission of Covid-19 induced shocks via GVC linkages 

 

To account for the role of both the extent of participation in and the position along GVCs in cross-
country transmission of Covid-19 shocks we augment eq. [2] with GVC participation indices 
which measure to what extent are countries involved in a vertically fragmented production and 
resulting supply chain trade flows. The GVC participation is decomposed in the two indices: 
forward participation (FP) and backward participation (BP). Forward GVC participation refers to 
the type of participation where an economy joins the global production by exporting domestically 
produced inputs to partners who are in charge of downstream production stages, while backward 
GVC participation is the type of integration where the country participates by importing foreign 
inputs to produce the goods and services for its export. Backward linkages are measured as foreign 
value-added (FVA) in domestic exports, while forward ones by the domestic value-added 
embodied in foreign exports (DVAFX). Hence, the FVA in the exports indicates the country’s 
“downstreamness” in global production chains and the DVAFX indicates “upstreamness”. 
 
The GVC indices are calculated using the following equations: 
 

 𝐹𝑃𝑖𝑗𝑡 =
𝐷𝑉𝐴𝐹𝑋𝑖𝑗𝑡

𝑔𝑟𝑜𝑠𝑠𝐸𝑋𝑖𝑡
∙ 100                                                                                            [3] 

                      

𝐵𝑃𝑖𝑗𝑡 =
𝐹𝑉𝐴𝑖𝑗𝑡

𝑔𝑟𝑜𝑠𝑠𝐸𝑋𝑖𝑡
∙ 100                                                                                             [4] 

 
Where DVAFXijt n eq. [3] denotes domestic value-added of country i embodied in exports of 
country j in a year t, and FVAijt  in eq. [4] represents foreign value-added of a country j embedded 
in exports of a country i. GrossEXit represents gross exports of a country i in that same year. 
 
To portray the bilateral GVC position of EU countries we use the log ratio of a country’s forward 
and backward participation as proposed by Koopman, Powers, Wang, & Wei, (2010). The higher 
the value of the ratio the more upstream position in the GVC a country holds. This measure 
characterises the relative upstreamness of a country by comparing the importance of forward and 
backward participation, as opposed to “distance to final demand” based measures, proposed by 
e.g. Fally (2012) and Antràs et al. (2012), which measure how many stages of production are left 
before the goods or services produced by an industry reach their final consumers. We adjust the 
GVC position measure to be country-pair specific by using bilateral participation indices that we 
specified in eq. [3] and eq. [4] to obtain a bilateral GVC participation index (eq. [5]).   
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 𝐺𝑉𝐶𝑖𝑗𝑡 =  Ln(1 + 𝐹𝑃𝑖𝑗𝑡/100) –  ln(1 + 𝐵𝑃𝑖𝑗𝑡/100)                                [5] 
 

To account for the impact of the Covid-19 pandemic situation in domestic and partner countries 
on bilateral trade both directly and via supply-chain linkages summarized in Table 1 we augment 
gravity model specification [2] in the following way: 
 
ln 𝑡𝑟𝑎𝑑𝑒𝑖𝑗𝑡 = 𝛽0 + 𝛽1𝑐𝑜𝑣𝑖𝑑_𝑝𝑒𝑟𝑖𝑜𝑑𝑡 + 𝛽2𝑐𝑜𝑣𝑖𝑑_𝑐𝑎𝑠𝑒𝑠_𝑜𝑖𝑡 + 𝛽3𝑐𝑜𝑣𝑖𝑑_𝑐𝑎𝑠𝑒𝑠_𝑑𝑗𝑡 + 𝛽4𝐹𝑃𝑖𝑗𝑡 +

                +𝛽5𝐵𝑃𝑖𝑗𝑡+ 𝛽6𝐹𝑃𝑖𝑗𝑡 ∗ 𝑐𝑜𝑣𝑖𝑑_𝑐𝑎𝑠𝑒𝑠_𝑑𝑗𝑡 + 𝛽7𝐵𝑃𝑖𝑗𝑡 ∗ 𝑐𝑜𝑣𝑖𝑑_𝑐𝑎𝑠𝑒𝑠_𝑑𝑗𝑡 + 𝛽8 ln 𝑦𝑖𝑡 + 𝛽9 ln 𝑦𝑗𝑡 +

                +𝑋𝑖𝑗
′ 𝛽10 + ∑ 𝛽11.𝑡 𝑚𝑜𝑛𝑡ℎ𝑡 + ∑ 𝛽12.𝑡 𝑦𝑒𝑎𝑟𝑡 + ∑ 𝛽12.𝑖𝑡𝑦𝑒𝑎𝑟𝑡 ∗ 𝑟𝑒𝑝𝑜𝑟𝑡𝑒𝑟𝑖 +

                + ∑ 𝛽13.𝑗𝑡𝑦𝑒𝑎𝑟𝑡 ∗ 𝑝𝑎𝑟𝑡𝑛𝑒𝑟𝑗 + ∑ 𝛽14.𝑖𝑗𝑐𝑜𝑢𝑛𝑡𝑟𝑦_𝑝𝑎𝑖𝑟𝑖𝑗 + 𝜀𝑖𝑗𝑡                                           [6] 

 

Where, tradeijt denotes export and import flows between countries i and j in time t, while 
covid_period is a dummy variable which takes value one during the Covid-19 pandemic situation, 
i.e. from February 2020 on, and zero otherwise. The latter variable tests the general drop in trade 
during the first wave of the Covid-19 pandemic situation. Regressors Covid_cases_o and 
covid_cases_d count the number of affected people per 1000 population in the reporter (origin) 
and partner (destination) country in t to account for domestic and international supply and demand 
Covid-19 induced shocks. As explained above, FPijt and BPijt indicate bilateral forward and 
backward participation based on equations [3] and [4], respectively, while their interaction with 
the number of affected people per 1000 population in partner country tests the presence of supply-
chain transmission of shocks from partner country to domestic exports/imports via both forward 
and backward linkages. Vector X’ includes country-pair, time-invariant specific variables such as 
lnDist measuring log value of the weighted distance between country i and country j, and dummy 
variables indicating whether countries i and j share a common border (contig), language is spoken 
by at least 9% of the population in both countries (comlang_ethno), have had a common colonizer 
after 1945 (comcol), have had a colonial relationship after 1945 (col45), were/are the same country 
(smctry). Specification includes various sets of fixed effects including time-varying reporter and 
partner fixed effects, country-pair fixed effects and annual and monthly fixed effects. 
 
3.3.Methodological issues 

 
There are certain potential econometric concerns of estimating gravity model in a panel data setting 
that deserve discussion. The first issue that arises in our estimation is zero trade values that are 
relatively common in the trade matrix and are dropped from the OLS model due to undefined 
logarithm value of number zero. Ignoring this issue might result in inefficient and biased estimates. 
To deal with this issue of zero values we use the Poisson Maximum Likelihood Estimator (PPML) 
which effectively solves this potential selection bias  (Burger et al. 2009). The next issue is a 
problem of endogeneity (see Baier & Bergstrand, 2007 for discussion). Contrary to exogenous 
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variables, endogenous variables are systematically affected by the changes in other variables 
within the model. Among the gravity equation variables in our specification, the GVC indices are 
most likely candidates for endogenous variables. To reduce the risk of endogeneity in our 
specifications, the FP and BP GVC participation indices are entered in the model in their lagged 
forms. We also lagged the GDP and Covid-19 variables due to potential simultaneity. Third, 
following the abovementioned findings from Anderson & van Wincoop (2003) multilateral trade-
resistance terms (MRT) are also important when estimating the gravity model. Under MRT we 
understand a number of different trade barriers that a country faces in trade with all its trading 
partners, and not just with one particular partner. Without respecting the MRT the only factors that 
influence the trade between countries i and j are included in the analysis, which is creating a so-
called omitted variable bias in the intuitive equation. To control for MRT we use a wide set of 
fixed effects including time-varying reporter and partner fixed effects, country-pair fixed effects 
and annual and monthly fixed effects. We implement Poisson pseudolikelihood regression with 
multiple levels of fixed effects as described by Correia, Guimarães, and Zylkin (2020) which is 
robust to statistical separation and convergence issues and allows any number and combination of 
fixed effects and individual slopes based on procedures developed in Correia, Guimarães, and 
Zylkin (2019). Moreover, the estimations under [6] are obtained through the clustering on the 
country-pair indicator variable and are therefore robust to cross-sectional heteroscedasticity and 
serial correlation.  
 
3.4.Data and descriptive statistics 

 
The empirical specification [6] will be applied to monthly bilateral trade data of EU member states 
covering the five-year period, i.e. from June 2015 till May 2020.  Gross trade data used in the 
analysis is obtained from the Comext trade database. It includes monthly intra- and extra-EU 
export and import flows that are grouped into three product categories according to their broad 
economic purpose (BEC classification): intermediates, consumption and capital goods. The data 
on the nominal GDP of destination/origin countries were taken from World Development 
Indicators database (The World Bank, 2020), while bilateral distances and a number of country-
pair dummy variables from CEPII database (Head, Mayer & Ries, 2010; Head & Mayer, 2014). 
 
Data for the number of affected people and deaths caused by Covid-19 is taken from the European 
Centre for Disease Prevention and Control. Their data is sourced from health authorities 
worldwide, comprising from but not limited to official reports from countries’ ministries of health, 
public health institutes, World Health Organisation, and other national authorities.  
 
To calculate the GVC indices, we use data from the Eora Multi-Region Input-Output (MRIO) 
database (henceforth referred to as Eora (see Lenzen et al. (2012) and Lenzen et al. (2013)), which 
has a considerably broader geographic coverage than the TiVA database. It includes virtually all 
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countries in the world and starts in 1990. Thus, it also provides information on countries without 
I-O tables based on optimisation algorithms for estimating intra- and interregional transaction 
matrices for all countries worldwide. Additionally, the robustness check estimations are performed 
on the TiVA database that excludes non-OECD partner countries from our sample. 
  
3.5.Some stylized facts on EU trade during Covid-19 pandemics 

 
As per the data published by the Comext database, trade among the EU member states and with 
third countries decreased notably following the outbreak of Covid-19. A decrease in the total intra- 
and extra-EU imports was led mostly by the decrease in the imports of the intermediate goods as 
presented in Figure 1 which plots year on year relative changes in monthly imports of the EU 
member states. We can observe that the negative trend in imports of intermediate goods started 
already in the second half of the year 2019. With the outbreak of Covid-19 pandemics, imports of 
intermediate goods further dropped sharply by over 30% in April 2020 compared to its level in 
April 2019. 
 

Figure 1: Monthly imports (intra- and extra-EU) of EU-27 according to BEC (indices 
defined as Importt/Importt-12100) 

 
Source: Authors’ calculations based on the Comext database (Eurostat, 2020). 
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Figure 2 presents cumulative Covid-19 cases per capita for 27 EU member states in the time span 
from January through April 2020. Notably, Central and Eastern European Countries (CEECs) had 
seen a lesser number of cases, while Luxembourg, Spain, and Belgium respectively had the most 
officially confirmed cases per capita. Figure 3 shows relative changes in trade for each European 
country, comparing the April 2020 values to those in April 2019 to present the trade situation that 
unfolded at the beginning of the second quarter of 2020 in the EU. Further division to relative 
changes to exports (Figure 3a) and relative changes to imports (Figure 3b) aims to portray different 
initial dynamics that may be dominantly affected by either supply or demand shock. These figures 
signify notable differences in the trade contraction among member states, which cannot be directly 
related to the severity of the pandemic situation in terms of the number of Covid-19 patients.  
 
Figure 2: Cumulative cases of Covid-19 per 100,000 inhabitants on a country level (period 
January-April 2020) 

 
Source: Authors’ calculations based on the European CDC data (ECDC, 2020). 

Notably, we can see that despite having relatively fewer Covid-19 cases per capita, peripheral 
countries nonetheless experienced a significant import and export contraction. In the observed time 
period, for instance, a CEE country, Slovakia, had an average of 25.50 cases per 100000 
inhabitants, one of the lowest among the member states, yet its trade contracted more than in the 
average EU country. The imports decreased by 46.58% on a year-on-year basis while the exports 
sector experienced a 40.85% reduction. For reference, Spain ranked 2nd among cases per capita 
and had a sharper decline in intermediate goods trade (37.44 % for imports and approximately 40 
% decline in exports). Germany, the largest EU economy, had the 10th highest cases per capita 
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among the EU countries and saw a 25.96 % decline in imports and exports of intermediate goods. 
An interesting case was Bulgaria, a country with then the lowest number of officially recorded 
cumulative cases per capita. In Bulgaria, imports fell by almost 32 % while the exports decreased 
by a much lesser amount (16.18 %). While some countries, like Spain and Italy, saw an above-
average rise in the number of cases early on, other countries did not experience a surge until later 
on. An overall decline in both imports and exports was expected, thus our paper focuses more on 
the aspect of shock transmission and supply chain amplification during the period of lockdowns 
and government-imposed restrictions.  
 
Figure 3: Percentage change in trade in intermediate goods (YoY comparison April 2019- 
April 2020) 

 
 

 
Source: Authors’ calculations based on the Comext database (Eurostat, 2020). 

4. Empirical results 
 
4.1 Baseline results for total export s and imports 
 
In this section, we present the results for the transmission channels discussed in section 2 and 
summarized in Table 1. First, we focus on total imports and exports (Table 2). As expected, the 

a) Exports b) Imports 
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results confirm the general drop in trade in the range of 9.5 % - 11 % during the pandemic time, 
i.e. since February 2020, as indicated with the significantly negative coefficient for the 
covid_period dummy variable. Furthermore, there is a highly significant, negative impact of per 
capita number of Covid-19 cases both in origin and destination country on imports and exports 
indicating the presence of both supply and demand shocks. Taking into account the average Covid-
19 infection rates in the EU and partner countries from April 2020, i.e. 1.066  and 0.489 affected 
people per 1000 population, respectively, the combined trade effect of Covid-19 is around minus 
19% for both exports and import (based on specifications in columns 1 and 5 in Table 2). 
 
However, results show that exports decrease more with a higher Covid-19 count in the destination 
country as opposed to the origin country. This means that for each additional Covid-19 case in the 
originating country exports will decrease relatively less compared to a decrease due to an 
additional case in the destination country. These results imply that demand induced shocks through 
contraction of imports by partner country play an important and immediate role in the transmission 
of them. Interestingly, we get the opposite result for the total exports when we introduce Covid-
19 as a lagged variable (column 4 in Table 2). Introducing Covid-19 as a lagged variable is 
important as many of the effects of an increased number of cases have a time component (ie. a 
government imposes stricter measures and lockdowns after the spike). Here the number of cases 
in exporting country plays a relatively more important role in the decrease in exports. This 
turnaround might be attributed to the fact that at the start of the pandemic, less strict measures 
were imposed, that induced uncertainty and the consumption of people decreased. When the more 
prominent measures were taken by the governments, not only did demand decrease further, there 
was a labour supply shortage and production halted, resulting in lesser exports supply. When 
looking at imports (columns 5 through 8 in Table 2), the difference between the impact of Covid-
19 cases in origin and destination country becomes evident only for lagged Covid-19 variable 
(column 8) suggesting the transmission of shocks through demand side is gradually reinforced, as 
this time the imports contract more depending on the number of cases in the origin country.  
 
Comparing regression coefficients of interaction terms between GVC indices accounting for 
forward and backward linkages and Covid-19 cases in a partner country we observe that forward 
participation interaction plays a statistically significant role and is more prominent and instant 
when it comes to exports. Strong bilateral forward linkages reinforce the negative impact of the 
covid-19 cases in the destination country on home exports signifying the transmission of the 
Covid-19 induced shocks from foreign downstream customers to more upstream domestic 
suppliers. We expect this channel to be particularly relevant for the supply-chain exports which 
we test on the disaggregated trade flows according to broad economic purpose in the next step. 
Impact of forward participation for transmission of Covid-19 related shocks can be explained 
through the GVC composition. With higher bilateral forward participation, the country has a larger 
share of its domestic value added relative to its gross exports embodied in exports of a particular 
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partner country. Since the home country’s exports are reliant on the exports of a partner country, 
the decrease in exports of a partner country, and hence its demand for intermediate goods from 
domestic country, will have an amplified effect on the home country’s exports. Consequentially 
with the elapsed time, this channel leads to a higher contraction of imports as well confirmed by 
significantly negative interaction term in case of considering lagged Covid-19 cases in import 
specification (column 8 in Table 2).  On the other hand, we haven’t found any empirical support 
for immediate transmission of Covid-19 induced supply shocks trough the backward linkages from 
foreign upstream suppliers to domestic downstream customers. As per the traditional regressors in 
gravity model specifications, e.g. distance and various country-pair dummy variables, all have 
expected signs and are mostly highly significant in all specifications. 
 
Table 2: Poisson pseudolikelihood estimates of gravity model for total trade of EU-27 member 
states 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

 EXPORTS 

total 

EXPORTS 

total 

EXPORTS 

total 

EXPORTS 

total 

IMPORTS 

total 

IMPORTS 

total 

IMPORTS 

total 

IMPORTS 

total 

    Lagged 
Covid-19 
variables 

   Lagged 
Covid-19 
variables 

         

covid_period  -0.102*** -0.099*** -0.102*** -0.115*** -0.112*** -0.110*** -0.110*** -0.107*** 

 [0.008] [0.008] [0.008] [0.007] [0.008] [0.008] [0.008] [0.008] 

Covid_cases_o -0.051*** -0.045*** -0.049*** -0.095*** -0.063*** -0.056*** -0.059*** -0.091*** 

 [0.008] [0.009] [0.009] [0.013] [0.009] [0.010] [0.009] [0.017] 

Covid_cases_d -0.113*** -0.096*** -0.103*** -0.084*** -0.068*** -0.054*** -0.062*** -0.059*** 

 [0.011] [0.014] [0.012] [0.013] [0.010] [0.013] [0.011] [0.015] 

FP(-1)  0.082*** 0.008 0.008  0.051** -0.002 -0.002 

  [0.014] [0.010] [0.010]  [0.022] [0.010] [0.010] 

Covid_cases_d  -0.013** -0.009** -0.011**  -0.005 -0.007 -0.011** 

    # FP(-1)  [0.006] [0.005] [0.005]  [0.007] [0.005] [0.006] 

BP(-1)  0.018 0.005 0.005  0.094*** 0.002 0.002 

  [0.022] [0.006] [0.006]  [0.020] [0.004] [0.004] 

Covid_cases_d  -0.000 0.002 0.007  -0.005 0.002 0.001 

    # BP(-1)  [0.007] [0.005] [0.006]  [0.010] [0.006] [0.007] 

lndistw -1.092*** -1.052***   -0.817*** -0.721***   

 [0.072] [0.072]   [0.103] [0.095]   
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contig 0.180** 0.105   0.366*** 0.252***   

 [0.074] [0.069]   [0.081] [0.078]   

comlang_ethno 0.107 0.062   0.133 0.008   

 [0.123] [0.117]   [0.143] [0.115]   

comcol 1.860*** 1.860***   1.755*** 1.848***   

 [0.147] [0.149]   [0.221] [0.227]   

col45 1.003*** 0.996***   0.597*** 0.504***   

 [0.129] [0.123]   [0.133] [0.134]   

smctry 0.015 -0.079   -0.140 -0.215   

 [0.144] [0.155]   [0.186] [0.191]   

Constant 28.610*** 28.154*** 20.851*** 20.851*** 26.560*** 25.571*** 20.888*** 20.888*** 

 [0.540] [0.544] [0.025] [0.025] [0.774] [0.732] [0.026] [0.026] 

         

Monthly FE yes yes yes yes yes yes yes yes 

Annual FE yes yes yes yes yes yes yes yes 

Reporter-year FE yes yes yes yes yes yes yes yes 

Partner-year FE yes yes yes yes yes yes yes yes 

Country-pair FE no no yes yes no no yes yes 

Observations 272,798 242,758 242,318 242,682 272,798 242,758 239,371 239,720 

Pseudo R2 0.963 0.964 0.994 0.994 0.948 0.950 0.992 0.992 
Note: Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1 
 
 
 
4.2 Accounting for the supply-chain trade 
 
We further analyse the trade effects by breaking down the exports and imports using the broad 
economic purpose classification in Tables 3 and 4, respectively to address the supply-chain trade 
effects. Here, we observe the difference among the intermediate, consumer and capital goods. 
Overall, exports of consumer goods seem to be least affected over the course of the first wave of 
Covid-19 pandemic, contracting in the range of 7.2 % to 8.3 % opposed to 10.2 %-10.7% and 7.2 
%-10.9 % reduction in intermediate and capital goods, respectively. As expected, the interaction 
term between Covid-19 cases in a destination country and forward GVC participation exhibits 
significant impact only for the exports of intermediate goods providing further support for the 
supply chain transmission of Covid-19 induced shocks through forward GVC linkages (see 
columns 1 and 2 in Table 3). This implies that an increase in the incidence of Covid-19 cases 
induces a steeper decline of supply chain exports of intermediates to those destinations with which 
a country has stronger forward linkages, i.e. to partner positioned further downstream. In other 
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words, an increase in bilateral forward participation amplifies the effect of Covid-19 cases in the 
destination country on decrease of exports of intermediate goods to this destination. 
 
 
Table 3: Poisson pseudolikelihood estimates of gravity model for EU-27 exports according to BEC 
categories 
 

 (1) (2) (3) (4) (5) (6) 

VARIABLES EXPORTS 

Intermediate 
goods 

EXPORTS 

Intermediate 
goods 

EXPORTS 

Consumer 
goods 

EXPORTS 

Consumer 
goods 

EXPORTS 

Capital goods 

EXPORTS 

Capital goods  

  Lagged Covid-
19 variables 

 Lagged Covid-
19 variables 

 Lagged Covid-
19 variables 

       

covid_period  -0.113*** -0.108*** -0.075*** -0.087*** -0.075*** -0.115*** 

 [0.009] [0.009] [0.012] [0.010] [0.017] [0.016] 

Covid_cases_o -0.028*** -0.077*** -0.029*** -0.067*** -0.102*** -0.138*** 

 [0.010] [0.015] [0.008] [0.011] [0.018] [0.020] 

Covid_cases_d -0.084*** -0.087*** -0.081*** -0.056*** -0.132*** -0.086*** 

 [0.012] [0.015] [0.011] [0.014] [0.018] [0.018] 

FP(-1) 0.004 0.004 0.009 0.009 0.004 0.004 

 [0.011] [0.011] [0.018] [0.018] [0.030] [0.030] 

Covid_cases_d -0.017*** -0.023*** -0.001 0.000 0.002 0.005 

    # FP(-1) [0.005] [0.007] [0.004] [0.005] [0.006] [0.006] 

BP(-1) -0.004 -0.004 0.006 0.006 0.035*** 0.035*** 

 [0.010] [0.010] [0.014] [0.014] [0.011] [0.011] 

Covid_cases_d 0.006 0.013* 0.000 0.002 0.000 -0.001 

    # BP(-1) [0.006] [0.007] [0.005] [0.005] [0.008] [0.006] 

Constant 20.208*** 20.208*** 19.459*** 19.459*** 19.100*** 19.100*** 

 [0.035] [0.035] [0.055] [0.055] [0.053] [0.053] 

Monthly FE yes yes yes yes yes yes 

Annual FE yes yes yes yes yes yes 

Reporter-year FE yes yes yes yes yes yes 

Partner-year FE yes yes yes yes yes yes 

Country-pair FE yes yes yes yes yes yes 

Observations 240,643 241,088 239,474 239,803 238,285 238,614 

Pseudo R2 0.993 0.993 0.993 0.993 0.978 0.978 
Note: Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1 
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Table 4: Poisson pseudolikelihood estimates of gravity model for EU-27 imports according to BEC 
categories 

 

 IMPORTS 

Intermediate 
goods 

IMPORTS 

Intermediate 
goods 

IMPORTS 

Consumer 
goods 

IMPORTS 

Consumer 
goods 

IMPORTS 

Capital goods 

IMPORTS 

Capital goods  

  Lagged 
Covid-19 
variables 

 Lagged 
Covid-19 
variables 

 Lagged 
Covid-19 
variables 

       

covid_period  -0.132*** -0.115*** -0.064*** -0.071*** -0.087*** -0.107*** 

 [0.009] [0.010] [0.014] [0.012] [0.016] [0.014] 

Covid_cases_o -0.057*** -0.120*** -0.040*** -0.013 -0.051* -0.033 

 [0.010] [0.014] [0.009] [0.026] [0.028] [0.026] 

Covid_cases_d -0.049*** -0.032** -0.026** -0.061*** -0.116*** -0.120*** 

 [0.014] [0.015] [0.010] [0.021] [0.024] [0.024] 

FP(-1) -0.006 -0.005 0.014 0.014 -0.018 -0.018 

 [0.013] [0.013] [0.017] [0.017] [0.025] [0.025] 

Covid_cases_d -0.004 -0.013** -0.005 -0.002 -0.019** -0.016* 

    # FP(-1) [0.006] [0.006] [0.004] [0.004] [0.008] [0.009] 

BP(-1) -0.002 -0.002 -0.003 -0.002 0.009 0.009 

 [0.006] [0.006] [0.007] [0.007] [0.009] [0.009] 

Covid_cases_d -0.002 -0.001 -0.001 -0.004 0.024** 0.017 

    # BP(-1) [0.006] [0.008] [0.003] [0.004] [0.010] [0.012] 

Constant 20.254*** 20.253*** 19.533*** 19.533*** 19.500*** 19.500*** 

 [0.034] [0.034] [0.038] [0.038] [0.062] [0.062] 

       

Monthly FE yes yes yes yes yes yes 

Annual FE yes yes yes yes yes yes 

Reporter-year FE yes yes yes yes yes yes 

Partner-year FE yes yes yes yes yes yes 

Country-pair FE yes yes yes yes yes yes 

Observations 231,648 232,099 228,903 229,464 219,154 219,504 

Pseudo R2 0.988 0.988 0.994 0.994 0.984 0.984 
Note: Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1 
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In Table 4 we present the import breakdown by the product category. Observing the import trade 
flows, the role of forward linkages as a channel for Covid-19 induced shocks is further confirmed 
(columns 2 and 5) for intermediate and capital goods, with changes to intermediate goods being 
on a lower scale than for the exports. This follows our notion that the decrease in imports through 
forward linkages comes after the decrease in exports, due to producers not needing the inputs as 
they have to lower the production. Again, no evidence provided for the magnification effect of the 
backward linkages for the destination country’s Covid-19 impact on the imports, but surprisingly 
the interaction becomes even positive for the category of capital goods. On top of that, we see that 
a decrease of 10.9 %-12.4 % in imports of intermediate goods was more substantial than in the 
exports, showcasing the role of demand shock in supply chain trade.   

 

4.3 Robustness checks 
 

Table 5 reports regression results using a different approach to the country’s GVC involvement. 
Here we use the upstreamness index that measures a country’s bilateral GVC position based on 
the forward and backward participation values. Results are in support of conclusions following 
from baseline results presented in Tables 3 and 4 on importance of forward linkages for the 
transmission of the Covid-19 shocks from partner countries to domestic country’s exports of 
intermediate goods. Namely, a significantly negative interaction term between upstreamness and 
Covid-19 cases in partner country for this type of exports (column 1) indicates that the adverse 
impact of the seriousness of destination country’s pandemic situation is larger the more upstream 
is the position of the country in trade relations with the particular partner country, i.e. higher the 
forward relative to backward participation. 

 
We perform second robustness check using the data from the OECD TiVA database to calculate 
the corresponding GVC indices based on the 2015 data (see Table 6) which limits our sample to 
OECD partner countries. Results are in line with our previous findings on GVC contagion effect 
through forward linkages resulting in lower exports of intermediate goods. However, the 
interaction term with backward participation is of the opposite sign suggesting that certain 
reorientation of exports of intermediate goods towards traditionally more upstream positioned 
partners took place during the pandemic period.  Furthermore, using the TiVA trade data, we get 
a statistically significant effect of backward linkages in transmitting the supply chain shocks from 
partner countries resulting in a sharper drop in imports of intermediate goods. Through these 
linkages, we provide indication that the supply side shocks/disruptions are transmitted from 
foreign upstream suppliers to downstream domestic importers. A country’s reliance on foreign 
value added in exports will cause its imports to decrease following the supply side shock caused 
by lesser output due to lockdown measures in partner countries.  
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Table 5: Poisson pseudolikelihood estimates of gravity model for EU-27 trade according to BEC 
categories 

 
 (1) (2) (3) (4) (5) (5) 

VARIABLES EXPORTS 

Intermediate 
goods 

EXPORTS 

Consumer 
goods 

EXPORTS 

Capital 
goods 

IMPORTS 

Intermediate 
goods 

IMPORTS 

Consumer 
goods 

IMPORTS 

Capital 
goods 

       

covid_period  -0.110*** -0.087*** -0.115*** -0.118*** -0.072*** -0.106*** 

 [0.010] [0.011] [0.016] [0.010] [0.012] [0.014] 

Covid_cases_o(-1) -0.079*** -0.067*** -0.137*** -0.124*** -0.015 -0.033 

 [0.014] [0.011] [0.019] [0.014] [0.026] [0.025] 

Covid_cases_d(-1) -0.108*** -0.052*** -0.076*** -0.060*** -0.074*** -0.119*** 

 [0.013] [0.012] [0.017] [0.014] [0.021] [0.020] 

Upstream(-1) 0.420 -0.418 -3.298*** 0.094 0.396 -0.969 

 [0.954] [1.233] [1.169] [0.560] [0.716] [0.982] 

Covid_cases_d(-1)  -1.855** -0.069 0.457 -0.530 0.231 -1.795 

   # Upstream(-1)  [0.757] [0.504] [0.626] [0.769] [0.395] [1.114] 

Constant 20.208*** 19.490*** 19.172*** 20.237*** 19.558*** 19.479*** 

 [0.005] [0.006] [0.007] [0.003] [0.004] [0.012] 

Monthly FE yes yes yes yes yes yes 

Annual FE yes yes yes yes yes yes 

Reporter-year FE yes yes yes yes yes yes 

Partner-year FE yes yes yes yes yes yes 

Country-pair FE yes yes yes yes yes yes 

Observations 241,088 239,803 238,614 232,099 229,464 219,504 

Pseudo R2 0.993 0.993 0.977 0.988 0.994 0.984 
Note: Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1 
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Table 6: Poisson pseudolikelihood estimates of gravity model for EU-27 trade according to 
BEC categories based on TiVA data 

 

 (1) (2) (3) (4) (5) (6) 

VARIABLES EXPORTS 

Intermediate 
goods 

EXPORTS 

Consumer 
goods 

EXPORTS 

Capital 
goods 

IMPORTS 

Intermediate 
goods 

IMPORTS 

Consumer 
goods 

IMPORTS 

Capital 
goods 

       

covid_period  -0.116*** -0.067*** -0.069*** -0.123*** -0.064*** -0.088*** 

 [0.008] [0.012] [0.018] [0.009] [0.015] [0.014] 

Covid_cases_o(-1) -0.025** -0.024*** -0.092*** -0.041*** -0.040*** -0.044 

 [0.010] [0.008] [0.019] [0.011] [0.010] [0.027] 

Covid_cases_d(-1) -0.080*** -0.081*** -0.142*** -0.056*** -0.016 -0.090*** 

 [0.014] [0.015] [0.020] [0.017] [0.011] [0.025] 

Covid_cases_d(-1) -0.040*** -0.015 0.013 0.005 -0.010 0.002 

    # FP_TiVA2015 [0.010] [0.011] [0.016] [0.013] [0.011] [0.010] 

Covid_cases_d(-1) 0.011*** 0.007 -0.006 -0.014** -0.005 -0.003 

    # BP_TiVA2015 [0.004] [0.005] [0.005] [0.007] [0.005] [0.005] 

Constant 20.356*** 19.658*** 19.396*** 20.347*** 19.610*** 19.471*** 

 [0.001] [0.001] [0.001] [0.001] [0.001] [0.001] 

       

Monthly FE yes yes yes yes yes yes 

Annual FE yes yes yes yes yes yes 

Reporter-year FE yes yes yes yes yes yes 

Partner-year FE yes yes yes yes yes yes 

Country-pair FE yes yes yes yes yes yes 

Observations 84,058 84,005 83,899 83,846 83,846 83,740 

chi2 641.9 211.2 233.7 436.0 113.1 129.1 

r2_p 0.994 0.994 0.976 0.991 0.993 0.980 
Note: Robust standard errors in brackets. *** p<0.01, ** p<0.05, * p<0.1 

 
 

5. Concluding remarks 
 
Although several months have already passed since the beginning of the Covid-19 outbreak in 
Europe, uncertainty regarding the future of international trade and supply chain reorganisation 
remains. In this paper, we have performed gravity model analysis of final good and supply chain 
trade of EU member states to identify the transmission channels of the shocks caused by the 
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pandemic. To account for various mechanisms we distinguish demand and supply shocks as of 
either domestic or partner country origin. We further characterize the latter on the basis of the 
country’s GVC position, thus accommodating for a possibility of transmission through forward 
and backward linkages. We argue that the identified transmission channels of demand shocks and 
forward linkages play an important role in the supply chain trade. Results show that an increase in 
the incidence of Covid-19 cases induces a steeper decline of supply chain exports of intermediates 
in those destinations with which a country has stronger forward linkages, i.e. in partners positioned 
further downstream. Furthermore, a decrease in exports of inputs is followed by a contraction in 
imports. Although our study demonstrates some of the important GVC trade dynamics during the 
Covid-19 pandemic, we are aware that certain outcomes remain unexplained. This may be 
attributed to the limitations of the existing model as well as to the current unavailability of 
important data. We, therefore, leave possible extensions of the model for future work as some of 
our findings may have long-lasting effects such as reshaping of the supply chains, whilst others 
will only be temporary. As some of the findings suggest, identifying the proper cause is important 
in explaining the trade dynamics, especially in a complex environment of GVCs. Thus, they should 
be recognised by policymakers, as the policies ought to address right causes for optimal outcomes, 
whether those concern demand or supply side.  
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