
COVID ECONOMICS  
VETTED AND REAL-TIME PAPERS

 

HEALTHCARE SATURATION  
AND INEQUALITY
Enrique G. Mendoza, Eugenio Rojas,  
Linda L. Tesar and Jing Zhang

HIBERNATION OR ZOMBIFICATION?
Mathieu Cros, Anne Epaulard  
and Philippe Martin

SCHOOL OPENING
Victor Chernozhukov, Hiroyuki Kasahara 
and Paul Schrimpf

EXIT STRATEGY
So Kubota

WHICH POLITICIANS CATCH  
COVID IN THE US?
Patrick Carlin, Sumedha Gupta,  
Daniel W. Sacks and Coady Wing

ISSUE 70 
25 FEBRUARY 2021



Covid Economics 
Vetted and Real-Time Papers
Covid Economics, Vetted and Real-Time Papers, from CEPR, brings together 
formal investigations on the economic issues emanating from the Covid 
outbreak, based on explicit theory and/or empirical evidence, to improve the 
knowledge base.

Founder: Beatrice Weder di Mauro, President of CEPR
Editor: Charles Wyplosz, Graduate Institute Geneva and CEPR

Contact: Submissions should be made at https://portal.cepr.org/call-papers-
covid-economics. Other queries should be sent to covidecon@cepr.org.  

Copyright for the papers appearing in this issue of Covid Economics: Vetted and 
Real-Time Papers is held by the individual authors.

The Centre for Economic Policy Research (CEPR) 

The Centre for Economic Policy Research (CEPR) is a network of over 1,500 
research economists based mostly in European universities. The Centre’s goal 
is twofold: to promote world-class research, and to get the policy-relevant 
results into the hands of key decision-makers. CEPR’s guiding principle is 
‘Research excellence with policy relevance’. A registered charity since it was 
founded in 1983, CEPR is independent of all public and private interest groups. 
It takes no institutional stand on economic policy matters and its core funding 
comes from its Institutional Members and sales of publications. Because 
it draws on such a large network of researchers, its output reflects a broad 
spectrum of individual viewpoints as well as perspectives drawn from civil 
society. CEPR research may include views on policy, but the Trustees of the 
Centre do not give prior review to its publications. The opinions expressed in 
this report are those of the authors and not those of CEPR.

Chair of the Board Sir Charlie Bean
Founder and Honorary President 	 Richard Portes
President 	
Vice Presidents 

Chief Executive Officer 	

Beatrice Weder di Mauro 
Maristella Botticini 
Ugo Panizza 
Philippe Martin 
Hélène Rey
Tessa Ogden

https://portal.cepr.org/call-papers-covid-economics
https://portal.cepr.org/call-papers-covid-economics
mailto:covidecon%40cepr.org?subject=


Editorial Board
Beatrice Weder di Mauro, CEPR
Charles Wyplosz, Graduate Institute Geneva 
and CEPR
Viral V. Acharya, Stern School of Business, 
NYU and CEPR
Guido Alfani, Bocconi University and CEPR
Franklin Allen, Imperial College Business 
School and CEPR
Michele Belot, Cornell University and CEPR
David Bloom, Harvard T.H. Chan School of 
Public Health
Tito Boeri, Bocconi University and CEPR
Alison Booth, University of Essex and CEPR
Markus K Brunnermeier, Princeton 
University and CEPR
Michael C Burda, Humboldt Universitaet zu 
Berlin and CEPR
Luis Cabral, New York University and CEPR
Paola Conconi, ECARES, Universite Libre de 
Bruxelles and CEPR
Giancarlo Corsetti, University of Cambridge 
and CEPR
Fiorella De Fiore, Bank for International 
Settlements and CEPR
Mathias Dewatripont, ECARES, Universite 
Libre de Bruxelles and CEPR
Jonathan Dingel, University of Chicago Booth 
School and CEPR
Barry Eichengreen, University of California, 
Berkeley and CEPR
Simon J Evenett, University of St Gallen and 
CEPR
Maryam Farboodi, MIT and CEPR
Antonio Fatás, INSEAD Singapore and CEPR
Pierre-Yves Geoffard, Paris School of 
Economics and CEPR
Francesco Giavazzi, Bocconi University and 
CEPR
Christian Gollier, Toulouse School of 
Economics and CEPR
Timothy J. Hatton, University of Essex and 
CEPR
Ethan Ilzetzki, London School of Economics 
and CEPR
Beata Javorcik, EBRD and CEPR
Simon Johnson, MIT and CEPR
Sebnem Kalemli-Ozcan, University of 
Maryland and CEPR Rik Frehen

Tom Kompas, University of Melbourne and 
CEBRA
Miklós Koren, Central European University 
and CEPR
Anton Korinek, University of Virginia and 
CEPR
Michael Kuhn, International Institute for 
Applied Systems Analysis and Wittgenstein 
Centre
Maarten Lindeboom, Vrije Universiteit 
Amsterdam
Philippe Martin, Sciences Po and CEPR
Warwick McKibbin, ANU College of Asia and 
the Pacific
Kevin Hjortshøj O’Rourke, NYU Abu Dhabi 
and CEPR
Evi Pappa, European University Institute and 
CEPR
Barbara Petrongolo, Queen Mary University, 
London, LSE and CEPR
Richard Portes, London Business School and 
CEPR
Carol Propper, Imperial College London and 
CEPR
Lucrezia Reichlin, London Business School 
and CEPR
Ricardo Reis, London School of Economics 
and CEPR
Hélène Rey, London Business School and 
CEPR
Dominic Rohner, University of Lausanne and 
CEPR
Paola Sapienza, Northwestern University and 
CEPR
Moritz Schularick, University of Bonn and 
CEPR
Paul Seabright, Toulouse School of 
Economics and CEPR
Flavio Toxvaerd, University of Cambridge
Christoph Trebesch, Christian-Albrechts-
Universitaet zu Kiel and CEPR
Karen-Helene Ulltveit-Moe, University of 
Oslo and CEPR
Jan C. van Ours, Erasmus University 
Rotterdam and CEPR
Thierry Verdier, Paris School of Economics 
and CEPR



Ethics
Covid Economics will feature high quality analyses of economic aspects of the 
health crisis.  However, the pandemic also raises a number of complex ethical 
issues. Economists tend to think about trade-offs, in this case lives vs. costs, 
patient selection at a time of scarcity, and more. In the spirit of academic 
freedom, neither the Editors of Covid Economics nor CEPR take a stand on 
these issues and therefore do not bear any responsibility for views expressed 
in the articles.

Submission to professional 
journals
The following journals have indicated that they will accept submissions of 
papers featured in Covid Economics because they are working papers. Most 
expect revised versions. This list will be updated regularly.

American Economic Journal, Applied 
Economics
American Economic Journal, 
Economic Policy 
American Economic Journal, 
Macroeconomics  
American Economic Journal, 
Microeconomics 
American Economic Review 
American Economic Review, Insights
American Journal of Health 
Economics
Canadian Journal of Economics
Econometrica*
Economic Journal
Economics of Disasters and Climate 
Change
International Economic Review
Journal of Development Economics
Journal of Econometrics*
Journal of Economic Growth

Journal of Economic Theory
Journal of the European Economic 
Association*
Journal of Finance
Journal of Financial Economics
Journal of Health Economics
Journal of International Economics
Journal of Labor Economics*
Journal of Monetary Economics
Journal of Public Economics
Journal of Public Finance and Public 
Choice
Journal of Political Economy
Journal of Population Economics
Quarterly Journal of Economics
Review of Corporate Finance Studies*
Review of Economics and Statistics
Review of Economic Studies*
Review of Financial Studies

(*) Must be a significantly revised and extended version of the paper featured 
in Covid Economics.



Covid Economics 
Vetted and Real-Time Papers

Issue 70, 25 February 2021

Contents

A macroeconomic model of healthcare saturation, inequality and the  
output–pandemia tradeoff	 1
Enrique G. Mendoza, Eugenio Rojas, Linda L. Tesar and Jing Zhang

Will Schumpeter catch Covid‑19?	 49
Mathieu Cros, Anne Epaulard and Philippe Martin

The association of opening K-12 schools and colleges with the spread of 
Covid-19 in the United States: County-level panel data analysis	 70
Victor Chernozhukov, Hiroyuki Kasahara and Paul Schrimpf

The macroeconomics of Covid-19 exit strategy: The case of Japan	 109
So Kubota

Partisan differences in COVID-19 prevalence among politicians suggest 
important role for protective behaviours	 134
Patrick Carlin, Sumedha Gupta, Daniel W. Sacks and Coady Wing



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Covid Economics	 Issue 70, 25 February 2021

Copyright: Enrique G. Mendoza, Eugenio Rojas, Linda L. Tesar and Jing Zhang

A macroeconomic model of 
healthcare saturation, inequality 
and the output–pandemia 
tradeoff1

Enrique G. Mendoza,2 Eugenio Rojas,3 Linda L. Tesar4 and 
Jing Zhang5
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COVID-19 became a global health emergency when it threatened the 
catastrophic collapse of health systems as demand for health goods and 
services and their relative prices surged. Governments responded with 
lockdowns and increases in transfers. Empirical evidence shows that 
lockdowns and healthcare saturation contribute to explain the cross-
country variation in GDP drops even after controlling for COVID-19 cases 
and mortality. We explain this output-pandemia tradeoff as resulting 
from a shock to subsistence health demand that is larger at higher capital 
utilization in a model with entrepreneurs and workers. The health system 
moves closer to saturation as the gap between supply and subsistence 
narrows, which worsens consumption and income inequality. An 
externality distorts utilization, because firms do not internalize that 
lower utilization relaxes healthcare saturation. The optimal policy 
response includes lockdowns and transfers to workers. Quantitatively, 
strict lockdowns and large transfer hikes can be optimal and yield 
sizable welfare gains because they prevent a sharp rise in inequality. 
Welfare and output costs vary in response to small parameter changes 
or deviations from optimal policies. Weak lockdowns coupled with weak 
transfers programs are the worst alternative and yet are in line with 
what several emerging and least developed countries have implemented.

1	 The views expressed in this document are those of the authors and not those of the Federal Reserve 
Bank of Chicago or the Federal Reserve System. We thank participants at the Fifth Annual Conference on 
International Economics organized by the Federal Reserve Bank of Dallas, University of Houston, and Bank 
of Mexico for useful comments and suggestions.

2	 University of Pennsylvania and NBER.
3	 University of Florida.
4	 University of Michigan and NBER
5	 Federal Reserve Bank of Chicago.
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1 Introduction

Adistinguishing feature of the COVID-19 pandemia is that, unlike other viral illnesses that are either

more lethal (e.g. Ebola, MERS) or just as contagious but less severe (e.g. Influenza, H1N1), it caused

a large, sudden surge in use of human and material resources for prolonged hospitalizations and in

demand for medical and cleaning supplies by the economy as a whole.1 Thus, in addition to its in-

fection and mortality rates, a key challenge posed by COVID-19 has been the threat of catastrophic

collapse of health systemsworldwide. The painful experiences of Bergamo, Guayaquil, Mexico City,

New York City, Wuhan, and other cities, showed that collapsing health systems prevented hospi-

tals from providing required care to COVID-19 patients and affected the provision of services to

those affected by other conditions, both emergencies and elective treatments, thus increasing excess

mortality well above the mortality rate of COVID-19 itself.

Governments responded to the threat of collapse of health systems by imposing severe lock-

downs that required all non-essential businesses to close and households to obey strict stay-at-home

orders, after attempts with weaker social-distancing restrictions failed to slow the spread of the dis-

ease. Aswe document in the next Section, lockdowns have been in place, with some shifting between

relaxing and re-tightening, fromMarch, 2020 until the present in several countries. These lockdowns

resulted in the largest quarterly declines in GDP in history inmany countries during the secondquar-

ter of 2020, with a median of -10.6 percent relative to the second quarter of 2019 in a sample with

48 countries (see Section 2 for details). Most countries also implemented policies to provide liquid-

ity to households and firms by increasing transfers and suspending or deferring tax payments. On

average, lockdowns have been stricter and transfers programs larger in advanced economies than

in emerging and less developed countries. In many cases, these large fiscal interventions produced

record-high public deficits and sharp increases in already-high public debt ratios.

The unprecedented economic costs of the lockdowns, on the one hand, and their effectiveness

at preventing the collapse of health systems, on the other, pose a critical public policy trade-off:

What is the socially-optimal severity of a lockdown that balances the need to contain a pandemia

like COVID-19 against its large economic costs? Related to this are other central questions: How

does the pandemia affect income and consumption inequality? What is the optimal size of transfers

for workers to offset the adverse effects of the lockdown? How does heterogeneity in economic

development and health-system strength affect the output-pandemia tradeoff?

This paper answers these questions by proposing amodel that deviates from thewidely-used ap-

proach of integrating the susceptible-infected-recovered (SIR) model of epidemiology into dynamic

macroeconomic models. Instead, we propose a framework that focuses on the severe scarcity prob-

lem caused by the pandemia and captured by the saturation of health systems and the shortages of

health goods. This approach is motivated by the observation that COVID-19 puts health systems at

the risk of collapse despite its low mortality and large share of asymptomatic infections. The severe

strain on health systemswas evidenced by the suspension of regular hospital services to concentrate

1According to the CDC, the median length of hospitalizations for surviving patients in the U.S. as of October, 2020 was
10 to 13 days. Severe shortages of medical staff, ventilators, N95 masks, disinfectants, and various other health-related
products were reported worldwide since the initial outbreak in January 2020.
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on COVID treatment and by the sharp increases in occupancy of hospital beds, particular ICU beds,

in demand for medical specialists and nurses, and in usage of critical equipment such as respiratory

ventilators (see Section 2 for details). As a result, excessmortality rates rose significantly above those

explained by COVID. For instance, while COVID’s infection fatality rate is estimated at 0.65 percent

(according to the CDC), excess weekly deaths as a percent of expected deaths between March and

June, 2020, peaked at 154 percent in Spain, 108 in the United Kingdom, 90 in Italy, and 45 in the

United States, and in Mexico City excess mortality reached 300 percent in the March-May period.2

The paper starts with an empirical examination of cross-country data that documents the effects

of COVID-19 on resource scarcity and relative prices for health goods and services, excess mortality

rates and severity of lockdowns. In addition, we conduct an empirical analysis showing that a non-

trivial share of cross-country differences in observed output declines caused by the pandemia is

explained by variables that proxy for the severity of lockdowns, resource shortages and pre-COVID-

19 health system strength, even after controlling for COVID-19 cases and fatalities.

In the model, the pandemia arrives as a large, temporary shock to the subsistence demand for

health goods and services in a Stone-Geary utility function. The shock is larger at higher capital

utilization rates. The degree of saturation of the health sector is represented by the gap between

the available supply of health goods and services and their subsistence level. The catastrophic (i.e.,

nonlinear) nature of a health-system collapse is captured by the Inada condition of Stone-Geary

preferences. The tradeoff with economic activity works through the dependency of the subsistence

demand for health on utilization. Lower utilization relaxes the capacity of the health system,moving

it away from its saturation point, but it implies reduced demand for factors of production, reduced

output and lower factor payments in the non-health sector. This also introduces a “utilization exter-

nality,” because firms do not internalize the link between utilization and health-system-saturation

when choosing utilization. The size of the hike on subsistence demand for health and the severity

of the externality depend on the elasticity of the subsistence health demand to utilized capital. A

planner who takes the externality into account has a social marginal cost of utilization higher than

the private cost when a pandemia is active. This results in a socially-optimal reduction in utilization

during a pandemia, which is decentralized as a competitive equilibrium by mandating an optimal

lockdown (i.e., a binding constraint on utilization tighter than the technologically feasible limit).

In order to study the implications of the output-pandemia tradeoff for inequality and the design

of liquidity-provision programs, themodel includes two types of agents: entrepreneurs, who collect

wages and all capital income from the health and non-health sectors, and workers, who collect only

wage income. We show that, as the pandemia causes health-system saturation to worsen and the

relative price of health goods to rise, inequality in terms of both relative income and relative excess

consumption (or relative marginal utilities) of entrepreneurs vis-a-vis workers worsens. As a result,

the optimal policy calls for increased transfers to workers.3 Hence, the optimal policy response to a

pandemia includes both a lockdown and higher transfers.

2See https://ourworldindata.org/excess-mortality-covid and https://www.washingtonpost.com/world/the_americas/
mexico-citycoronavirus- excess-death-toll/2020/07/02/2baaab3e-bbbb-11ea-80b9-40ece9a701dc_story.html.

3Inequality makes transfers desirable even without a pandemia for a planner who is utilitarian or weights workers by
more than their share of the population. Still, optimal transfers rise with a pandemia because inequality worsens.
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In the model, aggregate allocations and prices are independent of individual allocations in both

the decentralized and social planner’s equilibria. In particular, the effects of the pandemia on utiliza-

tion and the relative price of health goods are unaffected by agent heterogeneity, inequality and the

planner’s welfare weights. The effects of the pandemia on inequality and the optimal transfers, how-

ever, do depend on the severity of the utilization externality. The stronger the externality, the closer

to saturation the pandemia brings the health systemand the higher the increase in the price of health

goods. This worsens income and excess consumption inequality, since the income of workers falls

more and their consumption moves closer and faster to their subsistence levels, which makes larger

transfers optimal. The size of the optimal transfers also depends on the planner’s welfare weights

and the fraction of workers relative to entrepreneurs (i.e., the pre-pandemia wealth distribution).

We explore the model’s quantitative implications by examining numerical solutions based on a

calibration to U.S. data. Key to this calibration are the determination of the subsistence demand for

health in “normal times” (i.e. without a pandemia) and the parameterization of the function that

drives the jump in this subsistence demand when the pandemia hits. We determine the former by

estimating a standard linear-expenditure-system regression using U.S. data. For the latter, we use a

linear function that simplifies the calibration into choosing the value of the elasticity of subsistence

health demand with respect to utilized capital. Since little is known about this elasticity, we study

results for the interval of values for which the competitive equilibrium with pandemia exists (0 to

0.107). Because of the Inada condition of the Stone-Geary utility, there is an upper bound of the

elasticity at which workers’ health consumption equals subsistence demand and hence there is no

competitive equilibrium solution. For the weights of the planner’s social welfare function, we focus

on the case in which the planner’s solution supports the competitive equilibrium in normal times.

Among the feasible elasticities, we study a particular scenario in which the planner’s optimal

lockdown yields an output drop equal to the drop in U.S. non-health GDP in the second quarter of

2020 (an elasticity of about 0.09). This scenario rationalizes the observed non-health output drop as

resulting from an optimal lockdown that reduces utilization by 15 percentage points. The optimal

increase in transfers equals 10.9 percentage points of GDP. This planner’s equilibrium is compared

with two competitive equilibria computed using the same elasticity: A “no lockdown” (NL) case in

which policy is unchanged and an “observed lockdown” (OL) case in which the optimal lockdown

is imposed in ad-hoc fashion. In the OL case, utilization and the other aggregate variables match the

planner’s but transfers are unchanged. This scenario shows the implications of implementing the

optimal lockdown without the optimal transfers.

Assuming a pandemia that lasts four quarters, the optimal policies yieldwelfare gains of 0.82 and

0.33 percent v. theNL andOL cases, respectively (in terms of the standardwelfare measure given by

a compensating variation in consumption constant across time that equalizes lifetime utility under

alternative regimes). Hence, a policy of implementing a lockdown as severe as the optimal one

without increasing transfers yields awelfare gain of 0.49 percent relative to unchanged policies but it

still means a loss of 0.33 percent relative to the optimal policy regime. This indicates that the adverse

effects of the pandemia on inequality are large. Inequality is at its worst in theNL case, for which the

ratio of excess consumption of entrepreneurs toworkers rises to 16.5 during the pandemia, 4.75 times
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higher than under the optimal policies (which by construction keep the ratio at its normal-times level

of 3.5). In the OL case the ratio still rises to 9.5, 2.75 times larger than the optimal ratio. The same

pattern affects income inequality: it worsens more in the NL than the OL case, because the relative

price of health goods rises 158 percent in the former v. 101 in the latter. Thus, the entrepreneur’s

capital income from the health sector rises much more in the NL than the OL case. Increasing the

elasticity of subsistence health demand to utilized capital above 0.09 yieldsmuch largerwelfare gains

and transfers, with the former growing infinitely large as the pandemiamovesworkers closer to their

subsistence demand and at a much faster pace than for entrepreneurs. The relevance of inequality

is also reflected in a comparison of these results with those for a representative-agent version of the

model. This economy yields sharply smaller welfare gains for the same elasticities of subsistence

health demand to utilized capital.

The results for the full interval of feasible elasticities of subsistence health demand to utilized

capital show that pandemias start to have sizable effects on macro aggregates and inequality at elas-

ticities above 0.05. The output-pandemia tradeoff produces concave, inverse relationships between

the planner’s optimal utilization (or non-health output) and that elasticity. Relative prices and ex-

cess consumption ratios in the NL and OL solutions, as well as the welfare gains under the optimal

policies, are increasing and convex functions of the elasticity. Hence, small errors in measuring the

elasticity result in non-trivial differences in the size of optimal lockdown and transfer policies and

their effects on aggregate variables and inequality.

The planner neutralizes the strong adverse impact of the pandemia on consumption and income

inequality as a result of the direct effect of higher transfers and the indirect effect of the lockdown.

The latter reduces inequality because it mitigates the relative price hike and the rise in the excess

consumption ratio. Preventing inequality from worsening contributes over 90 percent of the welfare

gains of the optimal policies for all elasticities of subsistence health demand to utilized capital that

produce non-negligible pandemias. The aggregate effect of the lockdown removing the utilization

externality accounts for the remaining 10 percent. Inequality and distributional effects also makes

the model more plausible. A planner in a representative-agent version of the model only gains by

removing the utilization externality and as a result it needs larger elasticities of subsistence health

demand to utilized capital (of at least 0.13) in order to yield non-trivial welfare gains. These elastic-

ities, however, imply output drops much larger than those that have been observed.

We also conduct an analysis of the implications of deviating from the optimal policies for a large

set of lockdown and transfer policy pairs. These deviations result in sizable welfare costs relative

to the optimal policies but still policy intervention to respond to the pandemia is preferable to no

intervention. Moreover, transfers and lockdowns are substitutable to a degree and using either tool

with sufficient strength can get reasonably close to the gains attained by the optimal policies. The

reason is that either a large increase in transfers or a strict lockdownweakens significantly the strong

adverse effects of the pandemia on inequality. For the same reason, however, combining weak lock-

downswith small transfers programs is theworst policy choice. Unfortunately, this seems to bewhat

is occurring in emerging and least developed countries, which on average responded to COVID-19

with weaker lockdowns and smaller fiscal interventions than advanced economies. Using the data
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from Section 2 and from the IMF’s Fiscal Monitor, we found that income per capita has a correlation

with COVID lockdown effectiveness of roughly -0.2 but its correlation with Covid-related transfers

is 0.5. Through September 2020, advanced economies increased transfers by nearly 10 percentage

points of GDP on average while the increases in emerging and least developed countries averaged

4.4 and 3 percentage points, respectively.

The model and the quantitative findings also have important implications for the analysis of

cross-country or cross-region responses to COVID-19. The model predicts that the pandemia has

beenmore damaging for countries with higher wealth inequality and/or weaker pre-pandemia con-

ditions in characteristics such as quality or capacity of health systems, income per capita, etc. Weaker

pre-pandemia conditions can be thought of as implying higher elasticities of subsistence health de-

mand to utilized capital which the model associates with larger optimal lockdowns and output

drops. The relative size of the health sector also reflect cross-country differences in health systems.

For a given elasticity, the model predicts larger effects of pandemias in countries with smaller health

sectors or smaller shares of non-health expenditures.

This paper is related to the growing COVID-19 macro literature. Most of this literature empha-

sizes the probabilistic dynamics of contagion, infection and death (or recovery) from the disease

itself, by incorporating them into macro models using the canonical SIR/SEIR models from epi-

demiology. The contribution of our work is the focus on resource scarcity and the saturation of

the health sector as the drivers of the output-pandemia tradeoff and its distributional implications.4

In SIR/SEIR-based models, decentralized equilibria are inefficient because the planner internalizes

these disease dynamics and the social welfare function depends negatively (positively) on the death

(recovery) rates. In contrast, in the model proposed here social welfare is a standard aggregation of

individual preferences over consumption and labor, and the adverse implications of a pandemia for

efficiency and inequality result from the surge in subsistence demand for health that it causes, which

is larger at higher utilization and affects workers more severely than entrepreneurs. Moreover, this

framework also accounts for large increases in the relative price of health goods during a pandemia.

Alvarez et al. (2020), Atkeson (2020) and Eichenbaum et al. (2020) initiated the literature on

quantitative SIR-based macro models. In these models, the pandemia affects macroeconomic out-

comes through demand and supply effects. Infections and mortality increase with consumption

and hours worked. Sick workers become less productive or work less and consume less, and con-

sumption and labor have feedback effects on infections. In addition, contagion causes externalities

as agents do not internalize how their individual actions affect the SIR dynamics. Lockdowns im-

prove efficiency by tackling this externality. Alvarez et al. (2020), Favero et al. (2020) and Jones et al.

(2020) introduce also a congestion externality by modeling the COVID-19 fatality rate as an increas-

ing function of total infections above a constant rate. This externality is similar to the utilization

externality resulting from the adverse effect of utilization on the health subsistence demand in our

model, but it differs in that in the SIR models congestion increases fatalities, which the planner is

4This is in parallel with the public health literature on pandemias, in which a branch focusing on resource scarcity and
saturation of hospitals (e.g. Ajao et al., 2015, Halpern and Tan, 2020) coexists with the SIR/SEIR epidemiology branch
(see the survey by Britton, 2010).
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assumed to dislike. Hence, although both models predict that lockdowns are desirable because of

health-system congestion, the mechanism driving the result is different. In particular, in our setup

lockdowns are desirable because the pandemia brings all agents closer to their subsistence level of

health regardless of whether they are infected and of the COVID-19 fatality rate, and redistribution

is desirable because this effect hits workers more severely than entrepreneurs.

The macro-SIR/SEIR framework has also been used in models with agent and sectoral hetero-

geneity, as in the studies by Acemoglu et al. (2020), Baqaee et al. (2020), Bodenstein et al. (2020),

Azzimonti et al. (2020), Glover et al. (2020), Guerrieri et al. (2020), Hur (2020), Kaplan et al. (2020),

Krueger et al. (2020) and Rampini (2020). These studies suggest that lockdowns should be targeted

differentially across sectors, with their severity depending on how contact-intensive sectors are, the

composition of workers in the sector (age, susceptibility, health), how essential and easy to substi-

tute are the goods produced by the sector, and how connected agents are in a production network.

In most of these articles, agent and/or sectoral heterogeneity drive the policies due to their effect on

aggregate outcomes and on the dynamics of infection, recovery and death rates.

SIR models with wealth and income inequality have also been used to study the optimal re-

distributive policy during a pandemia. Glover et al. (2020) find that the optimal policy involves

redistribution from agents that continue working towards those who cannot or who lost their jobs.

Bloom et al. (2020) argue that lockdowns and transfers should consider dimensions of income and

wealth inequality, because low-income or low-wealth workers typically are more affected by lock-

downs since their occupations are less suitable for teleworking (see alsoGalasso, 2020,Mongey et al.,

2020 and Palomino et al., 2020). Thus, economies with a larger fraction of low-wealth agents require

milder lockdowns and/or larger transfers. Chetty et al. (2020) examine heterogeneous effects on

consumption. Using high-frequency data, they find that COVID-19 has had negative effects on con-

sumption, with lower-income agents being affected disproportionately.

The SIR framework has also been used in open economy models. Arellano et al. (2020) embed

SIR dynamics into an Eaton-Gersovitz sovereign default model. The sovereign cares about the fa-

tality rate and can impose lockdowns in order to mitigate the magnitude of the health crisis. Since

lockdowns depress output, the sovereign has the incentive to borrow abroad to smooth consump-

tion, but this increases default risk and hence limits the planner’s ability to impose aggressive lock-

downs as its borrowing capacity is restricted, costing additional lives. Cakmakli et al. (2020) study

a multi-sector model with sectoral supply and demand shocks that vary with infections depending

on lockdowns. The openness of the economymatters via external demand shocks and input-output

linkages.

There are other influential macro models of COVID-19 that do not use the SIR setup and consider

the role of financial frictions on firms. Gourinchas et al. (2020) study effects on small and medium

enterprises using a model in which the virus causes labor supply constraints that vary by sector and

also causes sectoral and aggregate demand shocks and business failures. Theyfind that firm bailouts

are better than labor subsidies for reducing bankruptcies and saving jobs, and that targeted bailouts

have sizable benefits at lower GDP costs. Céspedes et al. (2020) and Fornaro and Wolf (2020) show

that financial frictions combined with a negative productivity shock during the pandemia can pro-

7

Co
vi

d 
Ec

on
om

ic
s 7

0,
 2

5 
Fe

br
ua

ry
 2

02
1: 

1-
48



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

duce equilibria with long-lasting crises and slow recoveries. Elenev et al. (2020) study a setup in

which firms can go bankrupt due to the pandemia, and study how bailouts can help save firms that

are experiencing financial distress. Faria e Castro (2020) models the pandemia as a shutdown of the

contact-intensive services sector (caused by a utility shock) that is transmitted to other sectors in the

economy, while Guerrieri et al. (2020) model it as a shock on the labor supply of a productive sector

that requires physical interactions (a fraction of workers becomes unable to work in this sector). In

turn, reduced consumption of goods from this sector reduces the households’ health. These studies

find that transfer payments to workers in sectors affected by the pandemia are socially optimal.

The rest of the paper is organized as follows. Section 2 provides empirical evidence on the

relevance of healthcare saturation and important empirical regularities of the macro effects of the

COVID-19 pandemia. Section 3 describes the model. Section 4 presents the quantitative results of

the calibrated model. Section 5 provides some conclusions.

2 Empirical Evidence

In this Section, we review the empirical evidence on COVID-19 that motivates the theoretical model.

The discussion is divided into four parts: 1) a review of the resource shortages and constraints on

medical systems formanaging the pandemia, 2) the impact of the pandemia onprices of criticalmed-

ical services and equipment, 3) international evidence on the severity and duration of lockdowns,

and 4) a cross-country analysis of the determinants of output collapse during the pandemia.

2.1 Resource shortages and capacity constraints for COVID-19

Saturation of the health system caused by COVID-19 has three important components. The first

is the capacity of hospitals to treat COVID patients, particularly to provide them with ventilation

therapy. The second is the closure of non-Covid related medical and hospital services, as hospitals

are dedicated to COVID patients and medical practices and elective procedures are shut down. The

third are the shortages ofmedical and cleaning supplies as the healthcare and non-healthcare sectors

as well as households aim to build up subsistence inventories.

Consider first hospital capacity to treat patients. Evidence from COVID-19 projections and exist-

ing studies from the public health literature shows that pandemias pose a serious risk to cause health

systems to collapse. On March 26, 2020, the Institute for Health Metrics and Evaluation (IHME) of

the University of Washington issued a forecast of the likely stresses on the U.S. medical system due

to COVID-19. Their analysis, based on a state-by-state assessment of medical facilities, warned that

in the absence of large-scale public health interventions, particularly mitigation measures (i.e. lock-

downs) the demand for intensive care facilities would outstrip existing supply in a matter of days.

IHME’s analysis focused on ICU beds, but health systems can collapse well before running out

of regular and ICU hospital beds as they run out of medical specialists, nursing staff, equipment and

materials needed to treat patients in respiratory distress. Ajao et al. (2015) assessed the capacity of

the U.S. healthcare system to respond to increased demand for ventilation therapy due to a hypothet-
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ical influenza pandemic outbreak under three levels of stress on the health system: (i) conventional

capacity (usual and normal patient care); (ii) contingency capacity (minor adaptation of treatment

approaches) and (iii) crisis capacity (fundamental, systematic change in which standards of care

are significantly altered to allow treatment of a greater number of patients). Their study identified

four key components necessary to provide ventilation therapy:

1. Supplies, such as ventilators, ancillary supplies, and equipment.

2. Space, namely hospital beds equipped for ventilation and critical care.

3. Staff, consisting of specialized medical personnel to manage patients on ventilators.

4. Systems, namely accessible, exercised plans to rapidly increase ventilation therapy capacity.

Hence, the provision of ventilation therapy is akin to a Leontief technology that requires comple-

mentary inputs in relatively fixed proportions. As a result, hitting a constraint on one input limits

the ability to provide ventilation therapy. Taking as given the estimated number of ventilators avail-

abe in 2010 and assuming that they would not be the constraining factor, Ajao et al. (2015) showed

that at the peak of the hypothetical influenza pandemia in the United States, the constraining factor

for ventilation therapy in scenario (iii) would be the number of respiratory therapists, not the num-

ber of beds. The maximum number of additional patients that could be put in a ventilator would

range from 56,300 to 135,000, which would fall short of the number of available beds enabled for

ventilation therapy. In fact, 32,300 to 42,300 beds would go unused.

Halpern and Tan (2020) assess U.S. capacity for treating COVID-19 patients under current con-

ditions. Based on surveys of U.S. hospitals, they report that acute care hospitals own 62,188 full-

featuredmechanical ventilators. Adding other equipment that can be diverted to ventilator use (e.g.

from operating rooms and the U.S. stockpile) has the potential to bring the total up to 200,000 de-

vices nationally. Recent projections suggest that approximately 960,000 patients in the US would

require ICU ventilatory support, though not all patients would be treated at the same time. But even

if the number of patients could be optimally staggered, they conclude the critical factor is staffing.

According to the BLS there are approximately 130,000 respiratory therapists in the labor force. How-

ever, there are far fewer respiratory intensivists, physicians certified to provide care for critically ill

patients. The American Hospital Association estimates that there are roughly 29,000 intensivists na-

tionwide, and about half of acute care hospitals have no intensivists on their staff. Halpern and Tan

(2020) conclude, “At forecasted crisis levels, we estimate that the projected shortages of intensivists,

critical care APPs, critical care nurses, pharmacists, and respiratory therapists trained in mechanical

ventilation would limit the care of critically ill ventilated patients” (p. 1). “Moreover, even in the 50

percent of acute care hospitals with intensivists, the intensivist team may be overstretched as new

ICU sites are created or experienced ICU staff become ill” (p. 8).

Li et al. (2020) apply the dynamics of the COVID-19 outbreak inWuhan to the United States and

reached similar conclusions as Ajao et al. (2015) and Halpern and Tan (2020). In their analysis, “the

projected number of prevalent critically ill patients at the peak of a Wuhan-like outbreak in US cities

was estimated to range from 2.2 to 4.4 per 10,000 adults, depending on differences in age distribution

and comorbidity (ie, hypertension)prevalence” (p. 1). Based on a population of roughly 210million
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adults, this is an afflicted population of 460,000 to 920,000. “[I]f a Wuhan-like outbreak were to

take place in a US city, even with social distancing and contact tracing protocols as strict as the

Wuhan lockdown, hospitalization and ICU needs fromCOVID-19 patients alonemay exceed current

capacity... Plans are urgently needed to mitigate the consequences of COVID-19 outbreaks on local

health care systems in US cities” (pp. 5-7).

The second aspect of health system saturation caused by COVID-19 is evidenced by the sus-

pension or drastic reduction in provision of non-Covid-related medical services and treatments.

Hospitals expanded capacity to treat COVID patients as envisaged in the critical scenario (iii) of

Ajao et al. (2015), by reallocating physical and human resources normally dedicated to other uses to

treat COVID patients. In addition, inmany instances lockdowns implied closure ofmedical and den-

tal practices, laboratories, and outpatient surgery facilities. These changes and restrictions caused

a sharp increase in mortality, as measured by the standard excess mortality P-Score. We collected

cross-country data for P-cores computed using the number of total deaths, COVID- and non-COVID-

related, at a weekly frequency minus the average of deaths over the 2015–2019 period and divided

by the same 2015–2019 average (the source was https://ourworldindata.org/excess-mortality-covid

and some country-specific sources). Table 1 shows the highestweekly P-Scores for the January-June,

2020 period in 35 countries. The mean (median) reached 42.9 (23.8) percent, but in several cases it

exceeded 50 percent (Belgium, Chile, Italy, Netherlands, Mexico, Peru, Spain, Turkey and the U.K.).

Since P-scores combine COVID and non-COVID fatalities, they are a noisy measure of fatalities not

caused directly by the disease, but in the analysis of cross-country output drops conducted below

we will control for COVID fatalities to identify the effect of non-COVID excess mortality.

The third element of resource shortages due to COVID-19 relate to health goods and services and

cleaning supplies for the economy as whole. We document the impact of these shortages by exam-

ining the evolution of the relative prices of the affected goods and services in the next subsection.

2.2 Rising prices of PPE and medical equipment

COVID-19 caused severe shortages of medical equipment and cleaning supplies that resulted in

sharp price hikes. In the United States, spikes in prices for cleaning supplies, toilet paper and med-

ical masks prompted consumer groups to complain of price gouging. Several states embarked on

campaigns inviting consumers to send images of purported price gouging. A Google search of im-

ages of “COVID price gouging” yields pictures of 8 oz. bottles of hand sanitizer priced at $50 and

Clorox wipes at over $40 per container. The U.S. PIRG consumer watchdog association reported in-

flation rates of COVID-19 related goods ranging from 200 percent for thermometers to 1,300 percent

for anti-bacterial handwipes. These goods disappeared from store shelves where they were priced

at regular prices, resulting in massive, prolonged stockouts of key items in retail chains. The prices

of these goods facing severe shortages are mismeasured in aggregate price indexes, because these

indexes rely on surveys of posted retail prices even for out-of-stock goods (e.g. on August 18, 2020,

the posted but out-of-stock price for Clorox disinfecting wipes 75ct was $6.59 on the CVS website,

but theywere available on eBay for $29 plus $11.67 shipping; Lysol disinfectant spray 19oz was $5.97
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at Home Depot but out of stock, while on eBay it was available for $12.50 plus $17.50 shipping).

Table 1: Excess Mortality P-Scores, Percent

Country P-score Country P-score
Peru 163 Israel 20.3
Spain 154.5 South Africa 18
United Kingdom 108 Colombia 18
Belgium 104.4 Greece 16
Italy 96.8 Austria 16
Mexico 87 Germany 14.5
Netherlands 74.9 Russia 14
Chile 68.7 Finland 13.6
France 65.2 Ireland 12
Turkey 54 Australia 12
Indonesia 50 New Zealand 11.9
Sweden 47.1 Denmark 10.5
United States 44.9 South Korea 9.6
Switzerland 44 Norway 9.5
Brazil 42 Taiwan 9.2
Canada 26.2 Czech Republic 8.9
India 25 Poland 8.3
Portugal 23.8

Notes: The scores shown are the maximum of weekly P-scores over the January-June, 2020
period computed as the number of total deaths in each week minus the average of deaths
over the 2015-2019 period and divided by the same 2015-2019 average. For most countries,
weekly P-scores were retrieved from https://ourworldindata.org/excess-mortality-covid
on 12/2/2020. Data for Brazil, Indonesia, Mexico, Peru, Russia, South Africa, and
Turkey are from https://www.economist.com/graphic-detail/2020/07/15/tracking-
covid-19-excess-deaths-across-countries, for Colombia, India and Ireland from
https://www.nytimes.com/interactive/2020/04/21/world/coronavirus-missing-
deaths.html, and for Australia from the Australian Bureau of Statistics. Data for Indonesia
and Turkey cover only Jakarta and Istanbul, respectively.

Similar price dynamics were observed for medical equipment as hospitals and even state gov-

ernments competed for the limited supply of PPE and ventilators. On April 24, 2020, National Pub-

lic Radio aired a report entitled “Are Illinois Officials Paying Hugely Inflated Prices For Medical

Supplies?” A government audit revealed spending up to $174 million on COVID-related medical

supplies and equipment, including $13 million for 200 ventilators, a 100 percent markup over the

pre-COVID price. The governor stated that “A typical ventilator that’s useful in an [intensive care

unit] situation, the price starts at $25,000, maybe up to $35,000 or $40,000, ... Whenwe’re payingmore

than that, that’s typically because the market has bid up the prices for any available ventilators. Let

me be clear: There are very few ventilators available in the entire world. We are acquiring whatever

we can so that we’re ready in the event there’s a spike in ICU beds and a need for ventilators...”

Wages for travel nurses responded to the increased demand for hospital staff. During peak

COVID periods in the Spring and Summer of 2020, the weekly compensation rate for travel nurses

roughly doubled, according to the Health IT website (HIT.net). The “Travel Nurse Compensation
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Report” data from BLS show more modest salary increases for nurses in early 2020 of less than five

percent, but these are somewhat misleading, however, as they aggregate the salaries of specialists in

fields where medical services actually declined (e.g. voluntary medical care, private medical prac-

tices) along with the rising salaries of nurses that are ICU and respiratory specialists.

Table 2 shows evidence of the large price hikes caused by Covid-related shortages of essential

health goods and services. The median price increase for transactions of thirteen key goods, in-

cluding N95 masks, ventilators, thermometers and disinfectants, reached 259 percent from March

to April, 2020. The Table also shows inflation rates for aggregate price indexes. Health-services

prices rose at annualized rates ranging from 3.1 to 4.7 percent in the second quarter of 2020, while

the price index for private goods-producing industries fell -16.1 percent.5 Hence, prices of health

services relative to those for goods-producing industries rose between 19.2 to 20.8 percent, and for

the specific health goods listed in the Table, the median relative price hike exceeded 275 percent.

2.3 Duration and severity of lockdowns

Figure 1 illustrates the severity and duration of the lockdowns implemented in a group of sixteen

advanced and emerging economies. The data correspond to the Government Response Stringency

Index constructed as part of the Oxford COVID-19 Government Response Tracker (OxCGRT).6 This

index combines information from nine indicators including school and business closures, and travel

bans in a scale from 0 to 100 (with 100 for the strictest). In countries where policies vary within the

country, the index corresponds to the strictest area. The index is available for 180 countries.

The Figure shows that strict lockdowns were implemented in all countries by mid March, 2020.

In most cases, the index peaked around 75-80 percent, except in Sweden, well-known for its less

restrictive stance. Even in Sweden, however, the stringency index reached nearly 50 percent. More-

over, lockdowns have persisted from March to the latest available data as of the date of this paper.

The severity of the lockdowns has fluctuated somewhat and in several cases declined (in some like

France and New Zealand quite sharply), but as of the Dec. 2020 data all countries still maintained

significant restrictions on economic activity relative to the pre-COVID-19 status. Even in Sweden,

the stringency index fell slightly from its peak but it remains above 30 percent.

2.4 Economic activity

The strict lockdowns caused deep recessions, inmany cases the largest recordeddeclines in quarterly

GDP. Figure 2 shows year-on-year drops in GDP in the second quarter of 2020 for 48 advanced and

emerging economies.7 The mean (median) drop was a staggering -11.5 (-10.6) percent.

5Health services at this level of aggregation include some for which prices fell as a result of suspension of elective
treatments, routine medical, dental and optical appointments, etc.

6Available at https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker
7Most of the data are from ourworldindata.org, fred.stlouisfed.org, and www.focus-economics.com. For China and

Hong Kong, the Figure shows the GDP drop in the first quarter, because these countries entered the pandemia earlier.
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Table 2: Price Changes of Key Health Goods & Services During the COVID-19 Pandemia

Item Price Change Source
N95 Masks 1513% SHOPP
3M N95 Masks 6136% SHOPP
Hand Sanitizer 215% SHOPP
Isolation Gowns 2000% SHOPP
Face Shields 900% SHOPP
Soap 184% SHOPP
Ventilators 80% NY State
Clorox Disinfecting Wipes 660% US PCW
Anti-Viral Facial Tissues 254% US PCW
Bleach Cleaner 238% US PCW
Thermometers 200% US PCW
Face Masks 259% US PCW
Anti-Bacterial Hand Wipes 1294% US PCW
Aggregate Price Indexes (Q2:2020 v. Q1:2020 annualized)
Physicians’ Services 4.68% BLS
Medical Care Services 4.40% BLS
Hospital Services 3.14% BLS
Health Care and Social Assistance 3.60% BEA
Private Goods-Producing Industries -16.10% BEA

Notes: Personal protective equipment price changes are for April 2020 relative to pre COVID-19 levels (not annual-
ized) reported by the Society for Healthcare Organization Procurement Professionals (SHOPP). Price changes (not
annualized) for items reported by theUSPCW(USPIRGConsumerWatchdog) correspond to thedifference between
the price listed in Amazon and the lowest price listed by other platforms during August 2020. BLS and BEA price
indexes correspond to percent changes between 1st and 2nd quarter of 2020, annualized. Private goods-producing
industries are: agriculture, forestry, fishing, and hunting; mining; construction; and manufacturing.

Howmuch of the output declines was due to healthcare system saturation? To answer this ques-

tion, we test for the relative importance of lockdowns, COVID case andmortality rates, andmeasures

of the stress on healthcare systems in explaining cross-country differences in the magnitude of the

decline in GDP.

The severity of lockdowns can be gauged with de-jure or de-facto measures. For the former,

we use again the Oxford Stringency Index, and for the latter we use the components of the Google

COVID-19 Community Mobility Reports that track movement to and from retail, recreational and

work places. Mobility is reported as percent change relative to a pre-COVID baseline (themedian for

the five-week period Jan. 3rd-Feb. 6, 2020).8 This indicator is useful because it captures the actual

mobility of the population while the stringency index captures legal restrictions.

Unconditional scatter diagrams of both de-jure and de-facto lockdown severity indicators show a

clear relationship with the observed quarterly GDP drops (see Figure 3). Output drops were larger

in countries with stricter lockdowns, whether measured by a higher stringency index or lower com-

munity mobility. These scatter diagrams only tell part of the story, however, because other variables

8For both the Stringency Index and Community Mobility, we use 30-day averages as of the end
of November, which were obtained from the components of Bloomberg’s Covid Resilience Index, see
https://www.bloomberg.com/news/articles/2020-11-24/inside-bloomberg-s-covid-resilience-ranking.
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are likely to jointly affect economic activity and lockdowns, and we are interested in particular in de-

termining whether variables that proxy for resource shortages and capacity constraints (i.e., health

system saturation) play a role. To identify those effects, we conduct a panel regression analysis in a

cross-section of 35 countries.

Figure 1: Lockdown Stringency Index for Selected Countries
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Source: Government Response Stringency Index available from the Oxford COVID-19 Government Response Tracker.

The dependent variable in this analysis is the contraction in GDP, as measured by the fall in the

second quarter of 2020 relative to the same quarter in 2019. The independent variables include: the

stringency index and community mobility changes described above, two variables to capture the

infection and mortality rates of COVID-19 itself (COVID cases for November, 2020 and cumulative

COVID deaths through the end of November), and four variables as proxies for health system re-

sources and capacity limits. The latter include a proxy for the non-COVID excess mortality rate

(defined as the residual from regressing the excess mortality P-scores on COVID deaths), hospital

beds, the log of 2019 GDP per capita, and the UNDP’s human development index (HDI) that com-

bines life expectancy, educational attainment and gross national income per capita. COVID cases

and fatalities and hospital beds are in units per one-million inhabitants and the rest of the variables

are in percent. The data are available for 48 countries formost variables, but excessmortality P-scores

are only available for 35, which sets the sample size of the regressions. The variables are expressed
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in deviations from their means and the regressions are estimated using MM Robust Least Squares.9

The coefficients for all variables but hospital beds and COVID cases and deaths are elasticities, since

the data are all in percent, and hence they are comparable. Coefficients for hospital beds and COVID

cases and deaths are comparable, because the data for each are per one-million inhabitants.

Figure 2: Year-on-Year 2020:Q2 GDP Declines
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Source: http://ourworldindata.org/, https://fred.stlouisfed.org/, https://www.focus-economics.com/ and country sources.

Figure 3: Lockdown Severity and 2020:Q2 Output Declines
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Notes: See footnotes to Figures 1 and 2 for sources of stringency index and GDP. Community mobility was retrieved from

https://www.bloomberg.com/news/articles/2020-11-24/inside-bloomberg-s-covid-resilience-ranking on 11/29/2020.

9Leverage plots, influence statistics and histograms indicated outliers in Q2:2020 GDP and in several of the regressors.
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The results are reported in Table 3. Column (1) shows the results with the highest overall signif-

icance (R2
n = 99.2) and explanatory power (robust R2

w = 0.81), and the lowest deviance coefficient

(0.036). The regressors include the stringency index, non-covid excess mortality, (log of) GDP per

capita, hospital beds and COVID cases. Using together a measure of lockdown severity, proxies

for resource shortages and health system capacity, and COVID cases is important to avoid possi-

ble omitted variable bias (e.g. lockdown severity is likely to depend on COVID cases and deaths).

Simultaneity bias is addressed by using lockdown severity and COVID variables with data up to

November, 2020, which makes them less likely to be determined jointly with Q2:2020 GDP. All of the

regression coefficients are significant at the 95-percent level or higher (hospital bedsmarginally) and

have the expected signs. The regression explains roughly 81 percent of the cross-country variation in

Q2:2020 GDP drops. In addition, an important result for the argument of this paper is that lockdown

severity and the variables that proxy for health systemresources and capacity are all significant, even

after controlling for COVID infections. Non-covid excess mortality has the largest elasticity. A 100-

basis-points increase in this variable reduces quarterly GDP growth by 1.12 basis points, compared

with 0.9 for a 100-basis points rise in the stringency index and 0.65 for a cut in GDP per capita of the

same magnitude. Moreover, hospital beds have a significantly larger effect on quarterly GDP than

COVID cases. Adding one bed per one-thousand people improves GDP by roughly 58 basis points,

whereas an extra COVID case per one-thousand inhabitants reduces GDP growth by 35 basis points.

Columns (2)-(8) explore the robustness of the above results to potentially important modifica-

tions. Column (2) shows that adding cumulative COVID deaths is not useful. The coefficient for this

variable is not significant, the rest of the coefficients change slightly, and the explanatory power, sig-

nificance and deviance statistics of the regression are slightly weaker. The coefficients on stringency

and beds are estimated with less precision (they are marginally significant at the 90-percent confi-

dence level). Column (3) shows that replacing cases for November, 2020 with cumulative COVID

deaths throughout end November worsens the results. The regression explains about 10 percentage

points less of the cross-country variation in GDP drops and has sharply lower R2
n and higher de-

viance than Columns (1) and (2). Beds are no longer significant. Columns (4) and (6) show that

replacing the stringency indexwith communitymobilitymakes little difference. Both are statistically

significant (with opposite signs because higher mobility implies a weaker lockdown), and the other

coefficients are similar to those in Columns (3) and (5), respectively. Column (5) shows that re-

moving hospital beds also weakens the results, with sharply lower R2
n and R2

w and higher deviance.

Column (7) compared with Column (5) shows that using either GDP per capita or HDI yields sim-

ilar results. Finally, Column (8) shows that removing hospital beds from Column (1) yields slightly

weaker results. The coefficient on the stringency index rises from -0.095 to -0.128, suggesting the

possibility of omitted variable bias as lockdown severity may depend on hospital capacity.

In summary, Table 3 yields three key results: (a) non-SIR variables, particularly the proxies for

differences in health system resources and capacity, are important determinants of the depth of the

recessions caused by COVID-19, even after controlling for the direct effects of COVID transmission;

(b) variables driving SIR dynamics also play a role, since the coefficients on COVID cases and/or

deaths are statistically significant; and (c) the effects of non-SIR variables are stronger.
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Table 3: Cross-Country Regressions for Output Collapse in Q2:2020

Dependent variable: year-on-year quarterly GDP growth as of Q2:2020
Regressors (1) (2) (3) (4) (5) (6) (7) (8)
Stringency -0.095 -0.084 -0.110 -0.115 -0.116 -0.128

(0.048) (0.109) (0.073) (0.058) (0.062) (0.010)

Mobility 0.186 0.168
(0.025) (0.044)

Non-covid excess -0.112 -0.108 -0.081 -0.095 -0.084 -0.090 -0.089 -0.116
Mortality (0.000) (0.000) (0.004) (0.000) (0.002) (0.001) (0.002) (0.000)

ln(GDP pc) 0.065 0.063 0.047 0.052 0.050 0.051 0.071
(0.000) (0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

Human dev. index 0.361
(0.000)

Hospital beds 5.801 5.262 1.649 2.766
(0.053) (0.100) (0.644) (0.410)

Covid cases -3.51E-04 -3.11E-04 -2.98E-04
(0.001) (0.013) (0.005)

Covid deaths -1.49E-05 -6.00E-05 -3.85E-05 -6.06E-05 -5.15E-05 -5.84E-05
(0.557) (0.020) (0.144) (0.017) (0.050) (0.024)

# Observations 35 35 35 35 35 35 35 35
R2

w 0.812 0.809 0.711 0.770 0.713 0.711 0.702 0.780
Adjusted R2

w 0.812 0.809 0.711 0.770 0.713 0.711 0.702 0.780
R2

n 99.151 93.737 55.515 69.026 56.655 61.942 54.073 82.747
Deviance 0.0363 0.037 0.0461 0.042 0.046 0.047 0.048 0.042

Notes: All regressionswere estimated using RobustMMLeast Squares. The variables are deviations from their respective country
means in the common sample. Numbers in parenthesis are p-values. Stringency is the Oxford stringency index divided by 100.
Mobility is Google’s community mobility indicator. Both stringency and mobility are 30-day averages over a period ending in
late November 2020. Non-covid excess mortality is the residual of regressing the excess mortality P-Scores in Table 1 on the
cumulative deaths due to COVID-19 as of end November 2020. Human dev. index is the 2019 UNDP’s human development
index, which combines GNI per capita, life expectancy at birth, and mean years of schooling of adults older than 25. Ln(GDP
pc) is the natural log of GDP per capita in 2019. Hospital beds are per 1 million inhabitants. Covid cases are the one-month
COVID cases per 1 million population for the month ending in late November 2020. Covid deaths are cumulative deaths due
to Covid-19 per 1 million inhabitants through late November 2020. Q2:2020 GDP data are from the sources reported in the
note to Figure 2. Data on stringency, mobility, human development index, Covid cases and Covid deaths were retrieved from
https://www.bloomberg.com/news/articles/2020-11-24/inside-bloomberg-s-covid-resilience-ranking on 11/29/2020. 2019 real
GDP and hospital beds are fromWorld Bank Open Data and population data are from IMF World Economic Outlook. Hospital beds
data are based on WHO figures and is for the most recent year available, which is in the 2010-2015 range for most countries.

3 A Model of the Output-Pandemia Tradeoff

The key feature of the model is the characterization of a pandemia as a large, transitory shock to the

subsistence level of demand for health goods and services (h̄t) in a Stone-Geary utility function that

is directly related to the utilization rate (mt). The value of h̄t is given by:

h̄t = h⋆ + ztf(mtK), (1)

where h⋆ is the “normal” subsistence demand for h goods, zt is a binary variable which equals 0

in normal times and 1 when there is a pandemia, and f(·) is a monotonically increasing function.

A pandemia lasts j periods, so that zt = 1 for t = 0, ..., j and zt = 0 for t > j, and is a fully
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unanticipated, non-recurrent shock.10 In addition, the supply of health goods H is assumed to be

fixed, which is reasonable since the shock is unanticipated and key parts of the provision of health

goods and services rely on forms of capital that are difficult to adjust in the short-run (e.g. hospitals,

equipment, specialists, etc).

3.1 Decentralized Competitive Equilibrium

3.1.1 Households

There are two types of households, which together add up to a unit mass of agents. All agents have

identical utility functions. A fraction γ1 are type-1 agents (entrepreneurs) who own all the wealth,

both the capital stock used to produce non-health goods and the stock of health goods and services.

The optimization problem of an individual of type 1 is to maximize this utility function:

max
{c1t ,l

1
t ,h

1
t ,d

1
t+1}

∞
∑

t=0

βt

(

a ln

(

c1t −
(l1t )

ω

ω

)

+ (1− a) ln(h1t − h̄t)

)

, (2)

subject to the following budget constraint,

c1t + pht h
1
t = wtl

1
t − qtd

1
t+1 + d1t + πt + pht h− τt. (3)

In the above expressions, c1t and h1t are consumption of non-health and health goods by an agent of

type-1, respectively, and l1t is its labor supply. In addition, d1t and d1t+1 are the agent’s holdings of

existing and newly-issuedpublic debt. Non-health goods are the numeraire, so pht is the relative price

of health goods,wt is thewage rate, and qt is the price of government bonds, all in units of non-health

goods. Type-1 agents are the only agents who purchase public debt. They own the endowment of

health goods, with an amount h for each type-1 agent, and they also collect the profits paid by firms

producing non-health goods and pay lump-sum taxes, with amounts πt and τt for each type-1 agent,

respectively, both in units of non-health goods.

The utility function is time-separable, with discount factor β, and period utility is a Stone-Geary

utility function of consumption of h and c. The argument for utility of non-health consumption is of

the Greenwood-Hercowitz-Huffman form (i.e. the subsistence level is determined by the disutility

of labor, which removes the wealth effect on labor supply by making the marginal rate of substi-

tution between l1t and c1t independent of the latter).11 At equilibrium, the parameter a is the share

of expenditure on non-health goods in excess of the disutility of labor relative to income net of the

disutility of labor and subsistence expenditure on health goods. Similarly, (1 − a) is the share of

excess health expenditure above its subsistence level relative to the same net income measure.

10The pandemia could also bemodeled as a stochastic, non-insurable disaster shock, butmodeling it as an unanticipated
shock is a reasonable approximation to howCOVID-19 arrived. Still, modeling it as a disaster shock is worthwhile, because
it would alter precautionary saving behavior and incentivize the accumulation of buffer stocks of health goods.

11This assumption is essential for the result that aggregate allocations and the optimal lockdown are independent of
agent heterogeneity, inequality and optimal transfers.
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Simplifying the first-order conditions of the above problem yields these optimality conditions:

1− a

a

c1t −
(l1t )

ω

ω

h1t − h̄t
= pht (4)

(l1t )
ω−1 = wt (5)

c1t+1 −
(l1t+1)

ω

ω

c1t −
(l1t )

ω

ω

= βRt (6)

where Rt ≡ 1/qt. Condition (4) equates type-1’s marginal rate of substitution between non-health

and health consumption to the corresponding relative price. Condition (5) equates the marginal

disutility of labor supply to the real wage. Condition (6) equates the intertemporal marginal rate of

substitution in consumption to the real return on public debt.

The second type of agents are the workers who are a fraction γ2 ≡ 1 − γ1 of the unit-mass of

agents. The optimization problem of a single type-2 agent is given by:

max
{c2t ,l

2
t ,h

2
t}

∞
∑

t=0

βt

(

a ln

(

c2t −
(l2t )

ω

ω

)

+ (1− a) ln(h2t − h̄t)

)

, (7)

subject to this budget constraint,

c2t + pht h
2
t = wtl

2
t + trt. (8)

Here, c2t and h2t are consumption of non-health and health goods by an agent of type 2, respectively,

and l2t is its labor supply. Type-2 agents collect income only fromwages (wtl
2
t ) and from government

transfers in the amount trt per agent.

The first-order conditions of the above problem reduce to the following optimality conditions:

1− a

a

c2t −
(l2t )

ω

ω

h2t − h̄t
= pht , (9)

(l2t )
ω−1 = wt. (10)

Condition (9) equates type-2’s marginal rate of substitution between non-health and health con-

sumption to pht . Condition (10) equates the marginal disutility of labor supply to the real wage.

3.1.2 Firms

All firms are identical and the representative firm’s optimization problem is:

max
mt,Lt

Πt = (mtK)1−αLα
t − wtLt − χ0

mχ1
t

χ1
K (11)

subject to the technlogical constraint on utilization,

mt ≤ m̄, (12)
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where Lt is aggregate labor demand and m̄ is the technologically-feasible maximum rate of uti-

lization, which is assumed to be nonbinding. Since the capital stock is constant, utilization costs
(

χ0
m

χ1
t

χ1
K
)

can be seen as the standard cost associated to faster depreciation at higher utilization or

as a rental cost that increases with utilization.

The first-order conditions of the above problem yield standardmarginal-productivity conditions

for labor demand and the utilization rate:

(1− α)(mtK)−αLα
t = χ0m

χ1−1
t , (13)

α(mtK)1−αLα−1
t = wt. (14)

The marginal products of utilization and labor equal their marginal costs. For the former, the cost is

determined by the firm’s utilization choice and for the latter the cost is the market wage rate.

3.1.3 Government Budget Constraint

The government budget constraint is the following:

Tt − TRt = Dt − qtDt+1, (15)

The left-hand-side is the primary balance, which equals aggregate tax revenue, Tt, minus total trans-

fer payments, TRt. The right-hand-side equals the repayment of existing debt net of the resources

raised by selling new debt.

The fiscal structure could be simplified by abstracting from public debt so that transfers to type-

2 agents are paid by lump-sum taxes paid by type-1 agents and the government’s budget is bal-

anced each period. Debt is introduced just so that we can highlight some implications of debt-

financed transfers for fiscal solvency, but the two formulations are equivalent because the taxes are

non-distortionary (i.e. debt is Ricardian). For a given policy of transfers funded with lump-sum

taxes, the debt-equivalent formulation (without taxes) is given by the sequence of debt issuance

qtDt+1 = Dt + TRt, starting from a given initial debt D0. The debt formulation requires, however,

that the intertemporal government budget constraint must hold, so the present discounted value of

the primary balance as of any date t must match the outstanding debt as of that date. Hence, if it

is optimal to increase transfers during a pandemia (as we show later) and the transfers are debt-

financed, the debt accumulated during the j periods of the pandemia (Dj+1) is sustainable only if

the stream of primary balances for t > j increases so that their present value equalsDj+1, which can

be accomplished by imposing lump-sum taxes on type-1 agents.

3.1.4 Competitive Equilibrium with and without Pandemia

The decentralized competitive equilibrium (DCE) is defined by sequences of individual allocations

{c1t , c
2
t , h

1
t , h

2
t , l

1
t , l

2
t , d

1
t+1}

∞
t=0, aggregate allocations {mt,Lt,Ct,Πt}

∞
t=0, and prices {Rt, p

h
t , wt}

∞
t=0 such

that: (a) the optimality conditions of type-1 and type-2 agents hold, (b) the optimality conditions
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of the representative firm hold, (c) the following market-clearing conditions:

γ1l
1
t + γ2l

2
t = Lt, (16)

γ1h
1
t + γ2h

2
t = H, (17)

and (d) the following aggregation conditions hold:

γ1d
1
t+1 = Dt+1, (18)

γ1τt = Tt (19)

γ2trt = TRt, (20)

γ1h = H, (21)

γ1πt = Πt (22)

γ1c
1
t + γ2c

2
t = Ct. (23)

The budget constraints of the agents, the definition of profits and the above market-clearing and

aggregation conditions yield the following resource constraint:

Ct = (mtK)1−αLα
t − χ0

mχ1
t

χ1
K. (24)

Since the only shock to the economy is the unanticipated, temporary hike in h̄t during the pan-

demia, and since there are no endogenous mechanisms to induce dynamics, the DCE separates into

pandemia (P) and no-pandemia (NP) phases, and within each prices and allocations are constant.

The DCE has a closed-form solution. To characterize the DCE solution, consider first that, since

preferences are identical, labor is homogeneous, and all agents are paid the same wage, conditions

(5) and (10) imply that all agents offer the same labor supply, which must equal labor demand at

equilibrium: l1t = l2t = Lt. Therefore, using the labor demand and supply conditions, considering

that both must be equal at the equilibrium wage, yields this expression:

Lω−1
t = α(mtK)1−αLα−1

t , (25)

This condition together with the firm’s optimality condition for utilization yields the following ex-

pression for the labor allocation as a function of the utilization rate:

Lt =

(

χ0αK

1− α

)
1
ω

m
χ1
ω
t . (26)

Using the above result, factor allocations can be solved for using conditions (13) and (14):

mt = m⋆ =
(

χα−ω
0 αα(1− α)ω−αKα(1−ω)

) 1
χ1ω+αω−ω−χ1α (27)
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Lt = l1t = l2t = L⋆ =
(

χα−1
0 αχ1+α−1(1− α)1−αK(1−α)(χ1−1)

)
1

χ1ω+αω−ω−χ1α . (28)

Given the above, it is straightforward to obtain equilibrium solutions for output, profits, wages and

aggregate consumption using other optimality conditions and the resource constraint:

Yt = Y ⋆ = (m⋆K)1−αL⋆α (29)

Πt = γ1π
⋆ = (1− α)(1 −

1

χ1
)Y ⋆ > 0 (30)

wt = w⋆ = (L⋆)ω−1 (31)

Ct = C⋆ = Y ⋆ − χ0
(m⋆)χ1

χ1
K. (32)

Note two important properties of the aggregateDCE allocations, profits andwages solved above:

First, they are independent of heterogeneity and inequality in wealth, income and consumption, as

is evident by the fact that γ1 and γ2 do not enter in the solutions. Second, they are the same during

the P and NP phases (i.e. for t = 0, ..., j and for t > j).

In contrast with the aggregate allocations, individual consumption allocations of health and non-

health goods and the relative price of those goods differ in the P and NP phases in the DCE. The

equilibrium prices are:

p⋆hPt =
1− a

a

C⋆ − (L⋆)ω

ω

H − h⋆ − f(m⋆K)
for t=0, ..., j, (33)

p⋆hNP
t =

1− a

a

C⋆ − (L⋆)ω

ω

H − h⋆
for t>j. (34)

Prices are higher during the pandemia because of the direct effect on demand for health goods and

services due to higher h̄t. In turn, this rise in p⋆hPt worsens income inequality because it increases

the value of the endowment of health goods owned by type-1 agents.

The solutions of the consumption allocations across agents are straightforwardapplications of the

linear expenditure system implied by the Stone-Geary preferences. In particular, using conditions

(4) and (9) together with the budget constraints of the two types of agents and the above results for

aggregate variables we can obtain solutions for the individual consumption allocations as functions

of relative prices and the subsistence demand for health:

c⋆1t (p⋆ht , h̄t) = a

[

π⋆ + p⋆ht h− τt + (L⋆)ω − p⋆ht h̄t −
(L⋆)ω

ω

]

+
(L⋆)ω

ω
(35)

c⋆2t (p⋆ht , h̄t) = a

[

trt + (L⋆)ω − p⋆ht h̄t −
(L⋆)ω

ω

]

+
(L⋆)ω

ω
(36)

h⋆1t (p⋆ht , h̄t) =
1− a

p⋆ht

[

π⋆ + p⋆ht h− τt + (L⋆)ω − p⋆ht h̄t −
(L⋆)ω

ω

]

+ h̄t (37)
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h⋆2t (p⋆ht , h̄t) =
1− a

p⋆ht

[

trt + (L⋆)ω − p⋆ht h̄t −
(L⋆)ω

ω

]

+ h̄t (38)

Expressing individual consumption allocations as functions of (p⋆ht , h̄t) is useful because these are

the only two variables that cause the allocations to differ in the P and NP phases. Both h̄t and p⋆ht

are higher in the P phase, affecting individual consumption allocations as explained below.

Assume trt = 0 (i.e. a DCE without transfers either in normal times or during the pandemia),

or alternatively, assume that transfers are unchanged when the pandemia hits. It follows from (36)

that c⋆2P (p⋆hP , h⋆ + f(m⋆K)) < c⋆2NP (p⋆hNP , h⋆), because p⋆ht h̄t rises during the pandemia and the

rest of the variables that determine non-health consumption of type-2 agents are unaffected by the

pandemia. The intuition is that type-2 agents need to redirect some of their income to pay for the

subsistence level of health, which increased both in quantity and in price. Since aggregate consump-

tionC⋆ is unchanged, it must be that c⋆1P (p⋆hP , h⋆+ f(m⋆K)) > c⋆1NP (p⋆hNP , h⋆). For these agents,

the rise in the value of the endowment of health goods exceeds the increase in the cost of the subsis-

tence level of health. Hence, during a pandemia, non-health consumption of type-1 (type-2) agents

rises (falls). The same applies to excess non-health consumption relative to the disutility of labor. It

rises for type-1 agents and falls for type-2 agents.

The responses of health consumption differ from those of non-health consumption. In particu-

lar, h2t rises but h1t falls. The direct effect of higher h̄t on demand for health goods is the same for

both agents, but the income effect of higher pht reducing the real value of income is stronger for en-

trepreneurs as the value of profits from the non-health sector in units of health goods falls. Excess

health consumption (i.e., net of h̄t) falls for both agents, however, because even for type-2 agents the

adverse income effects of higher prices imply that the increase in h̄t exceeds that in h2t . Overall, type-

2 agents suffer more with the pandemia, because they always consume less of all goods than type-1

agents and the pandemia causes their excess consumption of both health and nonhealth goods to

fall, while for type-1 agents excess consumption of non-health goods rises.

The need to keep consumption of all goods above their subsistence levels imposes an upper

bound on the set of p⋆hPt that can be supported as a DCE. In particular, the results in (36) and (38)

imply that, in order for type-2 agents to keep h⋆2t and c⋆2t above h̄t and Lω
t /ω, respectively, their

residual income must satisfy: trt + (L⋆)ω − p⋆ht h̄t −
(L⋆)ω

ω > 0. Solving for p⋆hPt yields:

p⋆hPt < p̂⋆hP ≡
trP + (L⋆)ω

(

ω−1
ω

)

h∗ + f(m⋆K)
(39)

where trP is a given value of exogenous transfers provided during the pandemia. Hence, the jump

in p⋆hPt caused by f(m⋆K) during a pandemia cannot reach p̂⋆hP , because otherwise type-2 agents

hit their subsistence consumption levels triggering the Inada conditions of their preferences. The

market price, which depends on the aggregate demand for health goods, would still be well-defined

by condition (33), but it cannot be an equilibrium because type-2 agents saturate the health system.

Combining the above result with the pricing condition (33) implies that f(·) cannot exceed this
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upper bound:

f(m⋆K) <
H

1 + 1−a
a

c⋆−(L⋆ω)/ω
trP+(ω−1)(L⋆ω)/ω

− h∗, (40)

where c⋆, L⋆,m⋆ are the DCE allocations independent of f(·) (see eqns. (27), (28) and (32)).

If debt is used to pay for transfers, the real interest rate is solved for by plugging the solutions

obtained above in the Euler equation of type-1 agents (eq. (6)). Since L⋆ is constant at all times, and

since consumption of type-1 agents shifts from a higher level in the P phase to a lower level in the

NP phase, the interest rate equals 1/β in all periods except between t+ j and t+ j+1 (the transition

from pandemia to non-pandemia). The interest rate on debt sold that period is:

Rt+j =
c⋆1NP
t+j+1 −

(L⋆)ω

ω

β
(

c⋆1Pt+j − (L⋆)ω

ω

) . (41)

Hence, given that c⋆1P > c⋆1NP , the interest rate falls in the last period of the pandemia.

Finally, to characterize the effects of the pandemia on consumption inequality, it is useful to focus

on the ratio of excess consumption of type-1 to type-2 agents denotedΩ⋆
t . Dividing eq. (35) by (36),

or (37) by (38), yields:

Ω⋆
t =

π⋆ + p⋆ht h− τt + (L⋆)ω − p⋆ht h̄t −
(L⋆)ω

ω

trt + (L⋆)ω − p⋆ht h̄t −
(L⋆)ω

ω

(42)

Across the two types of agents in the DCE, this ratio is the same for non-health consumption or

for health consumption, and the ratio itself satisfies Ω⋆
t > 1. This is clearly true for the DCE with-

out transfers, and when transfers are present it holds because we assume that τt < π⋆ + p⋆ht h (i.e.

per-capita transfers never exceed the non-wage income of type-1 agents). Moreover, the ratio is con-

stant at different levels with and without pandemia, and satisfies Ω⋆P > Ω⋆NP so that consumption

inequality worsens temporarily with a pandemia.

Since both agents supply the same labor, collect the same wages, and have the same h̄, the move-

ments in Ω⋆
t also capture the changes in income inequality due to the pandemia. Type-1 agents own

the firms and the endowment of H , so their income includes, in addition to wages, the profits from

non-health goods production and the sales of health goods. The adverse effect of the pandemia on

income inequality occurs because the hike in the relative price of health goods induces regressive

income redistribution as the income from sales of those goods that type-1 agents collect rises.

3.2 Social Planner’s Problem

The social planner solves the following optimization problem:

max
{cjt ,l

j
t ,h

j
t ,mt}

φ

{

γ1

∞
∑

t=0

βt

[

a ln

(

c1t −
(l1t )

ω

ω

)

+ (1− a) ln(h1t − h̄t)

]

}

+ (1− φ)

{

γ2

∞
∑

t=0

βt

[

a ln

(

c2t −
(l2t )

ω

ω

)

+ (1− a) ln(h2t − h̄t)

]

}

(43)
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subject to resource constraints on labor, health goods, and non-health goods, the technological con-

straint on utilization, and the subsistence demand for health:

γ1l
1
t + γ2l

2
t = Lt,

γ1h
1
t + γ2h

2
t = H,

γ1c
1
t + γ2c

2
t ≡ Ct = (mtK)1−αLα

t − χ0
mχ1

t

χ1
K,

mt ≤ m̄,

h̄t = h⋆ + ztf(mtK).

The social welfare function is standard, with weight φ (1 − φ) on type-1 (type-2) agents, and the

ratio of these weights is denoted Ωsp ≡ φ/(1 − φ). As in the DCE, m̄ is assumed to be nonbinding.

3.2.1 Socially Optimal Allocations

The social planner’s equilibrium (SPE) can be characterized as the set of allocations that satisfy the

constraints of the planner’s problem and the following optimality conditions:

l1t = l2t = Lt =
(

α(mtK)1−α
)

1
ω−α (44)

(1− α)

(

Lt

mtK

)α

= χ0m
χ1−1
t +

1− a

a

(Ct −
Lω
t

ω )

H − h̄t
ztf

′(mtK). (45)

h1t − h̄t
h2t − h̄t

= Ωsp (46)

c1t −
(l1t )

ω

ω

c2t −
(l2t )

ω

ω

= Ωsp (47)

The planner sets allocations at two different constant levels for the P and NP phases. As we show

below, aggregate allocations are lower in the P phase. The conditions in (44) show that the planner

aligns with the DCE in that it allocates the same labor supply to both agents, and the total labor

allocation equates the marginal disutility of labor with the marginal product of labor.

Conditions (45)-(47) are essential to this paper’s argument. Condition (45) determines the plan-

ner’s optimal utilization choice and it drives the planner’s incentive to lockdown the economy. It

differs from its counterpart—equation (13) in the DCE—in that, during a pandemia, the social

marginal cost of utilization in the right-hand-side of (45) exceeds its private counterpart by the

amount ph,spt f ′(mtK) where ph,spt ≡ 1−a
a

(Ct−
Lω
t
ω

)

H−h̄t
is the social price of health goods. Hence, uti-

lization is inefficiently chosen in the DCE during a pandemia, because firms do not internalize the

marginal social cost of utilization. This cost exceeds the private one because of the marginal social

value of lowering utilization to relax the degree of saturation of the health system by hampering the

increase in h̄t due to the pandemia. As a result, the planner reduces utilization and this reduces
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labor demand, output, profits and wages, giving rise to the output-pandemia tradeoff.

The SPE does not have a closed-form solution because of the non-linear nature of condition (45).

Using this condition together with (44), the optimal utilization rate (i.e. the optimal lockdown) can

be represented as the solution to the following non-linear equation inmt:

(1− α)





(

α(mtK)1−α
)

1
ω−α

mtK





α

− χ0m
χ1−1
t =

1− a

a









(mtK)1−α
(

(

α(mtK)1−α
)

α
ω−α

)

− χ0
m

χ1
t

χ1
K −

(

(α(mtK)1−α)
ω

ω−α
)

ω

H − h̄t









ztf
′(mtK). (48)

Without pandemia, zt = 0 and this equation collapses to the closed-form solution for utilization in

the DCE, because there is no externality affecting the choice of mt. Labor, output, and aggregate

consumption are therefore the same as well. During the pandemia, utilization is lower because of its

higher marginal social cost, but notice that it retains the property of the DCE that it is independent

of individual allocations and now also of the planner’s welfare weights. As a result, the planner’s

aggregate allocations for labor and production in the pandemia phase also retain this property.

The above results imply that in this model the utilization externality and the optimal lockdown

do not interact with the planner’s incentives to redistribute (i.e., with inequality and agent hetero-

geneity). The planner’s utilization choice depends on f ′(mtK) and ph,spt , which are determined by

aggregate variables. The planner determines first aggregate utilization and non-health GDP and

then allocates health and non-health GDP to keep the ratios of excess consumption across agents

equal to each other and equal to Ωsp.12 This also implies that the planner‘s aggregate allocations

and the utilization externality are identical in a representative-agent version of the model (i.e., for

γ1 = 1).

Conditions (46) and (47) are important because theydrive the planner’s incentives to redistribute

resources across agents during the pandemia. The planner sets the (inverse) ratios of marginal

utilities of health and non-health consumption across agents equal to the ratio its welfare weights.

The extent to which redistribution is relevant depends on the extent to which Ωsp differs from Ω⋆P

and Ω⋆NP (recall that in the DCE we showed that Ω⋆P > Ω⋆NP > 1).

Consider three scenarios. First, a case with Ωsp = 1 (i.e. φ = 1/2). This corresponds to a

utilitarian social welfare function in which the planner weighs each agent equally.13 The planner

redistributes resources so as to equalize consumption of health and non-health goods across agents.

Second, a case with Ωsp = Ω⋆NP (i.e. φ = Ω⋆NP /(1 + Ω⋆NP )). This is an application of the First

Welfare Theorem in which the DCE without pandemia is supported as an SPE.14 The planner has no

12The resource constraints and conditions (46) and (47) imply also that ph,spt = (cit −
(li

t
)ω)

ω
/(hi

t − h̄t) for i = 1, 2.
13In this case, φ can be ignored because it becomes a common factor for the utility of both agent types in the social

welfare function, and the planner’s allocations become independent of φ.
14This is evident because with Ωsp = Ω⋆NP and zt = 0 for all t the SPE’s optimality conditions are identical to those of

the DCE without pandemia.
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incentive to redistribute without a pandemia, but will still want to redistribute during a pandemia

because Ωsp = Ω⋆NP < Ω⋆P . Third, a case with Ωsp > Ω⋆NP (i.e. Ω⋆NP /(1 + Ω⋆NP ) < φ ≤ 1 ). This

is a case with bias in favor of entrepreneurs, because the planner weighs type-1 agents by more than

what the inequality implicit in Ω⋆NP indicates. We will show later that when this is the case it is

possible for the optimal policies to be Pareto efficient (i.e. the lifetime utility of both agents increases

relative to the DCE). In light of these results, the analysis that follows focuses on Ωsp ∈ [1,∞) (or

φ ∈ [1/2, 1]).

It is worth noting that if φ < Ω⋆NP /(1+Ω⋆NP ), the planner will engage in redistribution in favor

of type-2 agents relative to the DCE even without pandemia. Still, the optimal transfers solely due

to the pandemia can be separated from the those that are optimal in “normal times” so as to focus

on the additional redistribution that is socially desirable when a pandemia hits.

Given the above intuition for the utilization externality and the distributional incentives of the

planner, we can nowcharacterize the solutionof the planner’s problemwhen the pandemia is present.

The solution to the non-linear equation (48) yields the planner’s optimal utilization rate msp
t , and

once it is known it can be used to determine the rest of the SPE allocations: Lsp
t , Csp

t , c1spt , c2spt ,

h1spt , and h2spt . It is evident that there are no distributional incentives affecting the utilization choice

because φ, γ1 and γ2 do not enter in eq.(48). The higher social marginal cost of utilization leads

the planner to reduce msp
t . Condition (44) then implies that aggregate and individual labor alloca-

tions fall, and since both labor and utilization fall, output and Ct also fall. This is again the output-

pandemia tradeoff: The planner internalizes that by reducing utilization it weakens the pandemia,

but it also takes into account that lowering utilization has output and consumption costs.

The drops in utilization, output and consumption chosen by the planner trigger distributional in-

centives, because as Csp
t falls, the planner wants to keep consumption ratios aligned with Ωsp. Given

the SPE’s aggregate allocations, the planner assigns to type-2 agents these consumption allocations:

c2spt =
Csp
t −

(Lsp
t )ω

ω

1 + γ1(Ωsp − 1)
+

(Lsp
t )ω

ω
, (49)

h2spt =
H − h∗ − ztf(m

sp
t K)

1 + γ1(Ωsp − 1)
+ h∗ + ztf(m

sp
t K). (50)

The denominators of the first terms in the right-hand-side of the above expressions are equal to 1 for

the utilitarian planner (since Ωsp = 1), and the solutions give the consumption levels that are com-

mon for all agents. For Ωsp > 1, these expressions yield consumption levels for type-2 agents that

are lower than for type-1 agents. Type-2 (type-1) agents receive “below average” (“above average”)

consumption levels so that market-clearing in health and non-health goods holds. As explained ear-

lier, the size of Ωsp determines the degree of consumption inequality that is optimal for the planner.

For Ωsp = Ω⋆NP (recall Ω⋆NP > 1), this yields the same consumption allocations and the same

inequality as in the DCE so that no redistribution is optimal without a pandemia.
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3.2.2 Decentralization & Optimal Policies

The social planner’s allocations can be implemented as a competitive equilibrium by imposing a

lockdown (i.e. a binding limit on utilization) and providing transfers to type-2 agents. The optimal

design of these two policies is characterized below.

Optimal Lockdown: The planner’s optimal utilization rate can be decentralized using various in-

struments to correct the utilization externality. Since COVID-19 arrived as a large, unexpected shock

that required an urgent response to the threat of saturation of health systems, it is reasonable to

consider a lockdown as the policy instrument, instead of standard policy instruments (e.g. taxes)

that would have been too slow and cumbersome to implement. The optimal lockdown is obtained

by implementing the following policy rule:

mt ≤ msp
t for t=0, ..., j, (51)

mt ≤ m̄ for t>j. (52)

Since the utilization externality increases the marginal cost of utilization relative to the DCE and m̄

is not binding in the DCE, it must be the case that msp
t < m⋆ < m̄ for t = 0, ..., j. Recall also that

in the DCE, m⋆ is the optimal utilization rate with or without pandemia and that, since there is no

utilization externality without pandemia, msp
t = m⋆ for t > j.

Optimal Transfers: By imposing the planner’s health and non-health consumption allocations for

type-2 agents (eqns. (49) and (50)) on these agents’ budget constraint in the DCE solution (eq. (8)),

it follows that the optimal policy rules for government transfers during and post the pandemia are

(53)

TRsp,P
t = γ2

[{

Csp
t −

(Lsp
t )ω

ω

1 + γ1(Ωsp − 1)
+

(Lsp
t )ω

ω
+ ph,spt

(

H − h∗ − f(msp
t K)

1 + γ1(Ωsp − 1)
+ h∗ + f(msp

t K)

)

}

− (Lsp
t )ω

]

for t= 0, ..., j,

(54)TRsp,NP
t = γ2

[{

C⋆ − (L⋆)ω

ω

1 + γ1(Ωsp − 1)
+

(L⋆)ω

ω
+ p⋆h

(

H − h∗

1 + γ1(Ωsp − 1)
+ h∗

)

}

− (L⋆)ω

]

for t>j.

In the expressions inside square brackets, the terms in braces represent the total value of nonhealth

and health consumption of type-2 agents, and the term (Lsp
t )ω is these agents’ wage income. Hence,

the optimal transfer finances the gap between the planner’s desired allocation of total consumption

to type-2 agents and the wages they collect (all in units of nonhealth goods). The optimal transfers

are constant at different levels in the P and NP phases, just like the SPE’s allocations.

The planner takes into account that a pandemia always worsens income inequality (even with

an optimal lockdown), as it increases the market income of type-1 agents relative to that of type-2

agents, since the latter only earn wages while the former collect profits and sales of H in addition
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to wages. The planner internalizes that the relative price of health goods rises, making health-good

purchases costlier and income from selling health goods larger, and that without policy interven-

tion the overall result of these effects would move type-2 agents closer to their subsistence levels of

health and non-health goods. To correct for this, the planner intervenes to redistribute income and

consumption from type-1 to type-2 agents by more than it does in normal times without pandemia.

If Ωsp = Ω⋆NP , there is no redistribution in normal times (TRsp,NP = 0), but the planner still re-

distributes during the pandemia. Hence, the planner has incentives to intervene in the DCE so as to

both reduce utilization (to tackle the utilization externality) and redistribute resources across agents

(to redistribute the decline in aggregate output across agents and maintain their ratio of excess con-

sumptions equal to Ωsp).

The planner choosesmsp
t independently of inequality but it is critical to note that the lockdown

itself contributes to mitigate the effects of the pandemia on inequality. This is because the lockdown

reduces the spike in the price of health goods that drives the regressive effect on income and thereby

mitigates the increase in consumption inequality too. As a result, the lower ph,spt that results from the

lockdown reduces the size of the transfers that the planner needs to provide during the pandemia,

as equation (53) shows.

As explained earlier, the planner can pay for the optimal transfers during the pandemia with

lump-sum taxes on type-1 agents maintaining a balanced budget, or it can finance them by selling

debt to those agents. Using debt, the equilibrium interest rates would be given by Rt = 1/β for t =

0, .., j−1 or t > j andRj = (c1spj+1−
(Lsp

j+1)
ω

ω )/

[

β(c1spj −
(Lsp

j )ω

ω )

]

. Since transfers are constant during the

pandemia and the interest rate differs from 1/β only in period j, the planner would arrive at the end

of the pandemia with a debt stockDsp
j+1 = (1/Rj)

[

TRsp,P
∑j−1

i=0 β
i + βj−1D0

]

. In order to maintain

fiscal solvency after the pandemia (i.e. satisfy the intertemporal government budget constraint),

the government can impose lump-sum taxes Tt for t > j such that the present discounted value of

tax revenue equals Dsp
j+1. The specific sequence of these taxes is undetermined. Any sequence that

satisfies the solvency condition yields the same outcome because the taxes are non-distortionary. For

instance, since Rt = 1/β for t > j, a constant lump-sum tax T̄ = (1 − β)Dsp
j+1 satisfies the solvency

condition. A tax paying all the debt in one period (Tj+1 = Dsp
j+1) is also consistent with solvency,

but is akin to a default in which the government “pays” all the debt at t = j + 1 by simply taxing

away the entire debt repayment. The planner has no reason to prefer either debt or taxes to pay for

transfers during the pandemia, or any particular sequence of taxes post-pandemia consistent with

solvency, since they all yield identical allocations and welfare (i.e. there is Ricardian equivalence).

In contrast, with distortionary taxes, given the pre-pandemia structure of tax rates, the planner’s

problem is more complex because it would consider the optimal structure and time-variation of tax

rates. When further restricted to time-invariant tax rates, it would consider how dynamic Laffer

curves limit sustainable debt levels (see D’Erasmo et al., 2016).
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3.3 Social Welfare & Private Utility Gains:

In order to compare the utility that agents derive under the SPE relative to the DCE, define ∆Ui ≡

USPE
i − UDCE

i for agents of type i = 1, 2 where U1 and U2 are the lifetime utility functions shown

in (2) and (7). Then, denoting excess consumption levels as C̃t ≡ Ct − Lω
t /ω and h̃t ≡ ht − h̄t and

using the results from the SPE and the DCE yields these expressions:

(55)

∆U1 =

j
∑

t=0

βt
[

a
(

ln
(

C̃sp
t

)

− ln
(

C̃⋆
))

+ (1− a)
(

ln
(

h̃spt

)

− ln
(

h̃⋆t

))]

+

[

j
∑

t=0

βt

(

ln

(

Ωsp

1 + γ1(Ωsp − 1)

)

− ln

(

Ω⋆P

1 + γ1(Ω⋆P − 1)

))

+
βj

1− β

(

ln

(

Ωsp

1 + γ1(Ωsp − 1)

)

− ln

(

Ω⋆NP

1 + γ1(Ω⋆NP − 1)

))

]

,

(56)

∆U2 =

j
∑

t=0

βt
[

a
(

ln
(

C̃sp
t

)

− ln
(

C̃⋆
))

+ (1− a)
(

ln
(

h̃spt

)

− ln
(

h̃⋆t

))]

+

[

j
∑

t=0

βt

(

ln

(

1

1 + γ1(Ωsp − 1)

)

− ln

(

1

1 + γ1(Ω⋆P − 1)

))

+
βj

1− β

(

ln

(

1

1 + γ1(Ωsp − 1)

)

− ln

(

1

1 + γ1(Ω⋆NP − 1)

))

]

.

Using these results, the change in social welfare (∆W ) under the SPE allocations with the optimal

lockdown and transfer policies relative to the unregulated DCE allocations can be expressed as:

∆W = φγ1∆U1 + (1− φ)γ2∆U2. (57)

Thus, the change in social welfare attained by the optimal policies equals the valuation of the indi-

vidual lifetime utility changes valued using the social welfare function.

To obtain a cardinal measure of ∆W , we follow the standard procedure of expressing welfare

gains in terms of a compensating variation in consumption. In particular, we calculate the percentage

increase in consumption of non-health goods common across households and time periods (Λ) that

would be needed for the DCE to yield the same social welfare as under the SPE allocations. That is,

we compute the value of Λ that solves this equation:

φ

∞
∑

t=0

βtγ1

(

a ln

(

c1⋆t (1 + Λ)−
(L⋆

t )
ω

ω

)

+ (1− a) ln(h1⋆t − h̄t)

)

+ (1− φ)

∞
∑

t=0

βtγ2

(

a ln

(

c2⋆t (1 + Λ)−
(L⋆

t )
ω

ω

)

+ (1− a) ln(h2⋆t − h̄t)

)

= W sp (58)

whereW sp is given by eq. (43) evaluated at the SPE allocations. Note that, while the duration of the

pandemia does not alter allocations and prices in the DCE and SPE (it only determines when the
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economy switches from the P to the NP phase), it does matter for the size of all of these individual

utility and social welfare effects. In particular, the effects of the pandemia on social welfare and

individual utility are larger for pandemias that last longer.

The term in the first row in the right-hand-side of equations (55)-(56) for ∆U1 and ∆U2 is

the same, because it represents the aggregate effects of the planner’s management of the output-

pandemia tradeoff by neutralizing the utilization externality. Since, as we showed earlier, the SPE’s

aggregate allocations are independent of inequality, this termdepends only on aggregate allocations

and not on their distribution across agents. In the DCE, aggregate labor and consumption of non-

health goods are constant at the same level in the P andNP phases, so that C̃⋆ is constant at all times.

During the pandemia, however, aggregate excess health goods consumption (h̃⋆t ) falls because of the

increase in h̄t for t = 0, .., j. The utilization externality implies that these allocations are suboptimal.

Hence, during the pandemia the planner lowers the utilization rate, which reduces C̃sp
t but props-up

h̃spt . The post-pandemia phase washes out from this term, because, as explained earlier, for all t > j

there is no utilization externality and hence the aggregate allocations of labor, non-health output

and consumption of both goods are the same in the DCE and SPE.

The second and third rows in the right-hand-side of ∆U1 and ∆U2 reflect the distributional ef-

fects, with the parts due to the P and NP phases shown in the second and third rows, respectively.

Ω⋆P > Ω⋆NP ≥ Ωsp is a sufficient condition for these effects to be negative for ∆U1 and positive for

∆U2. These distributional effects are determined by a collection of constant terms that depend on γ1

and the marginal utility ratios of the planner (Ωsp) vis-a-vis those in the DCE (Ω⋆P ,Ω⋆NP ).15 The

terms for the pandemia phase reflect the result justifying increased transfers to type-2 agents during

the pandemia, because the distribution of resources for health and nonhealth consumption is subop-

timal and worsens during the pandemia (since Ω⋆P rises). The terms for the post-pandemia phase

show that, as explained earlier, the planner redistributes resources to type-2 agents even without a

pandemia (as long as Ωsp < Ω⋆NP ).

For quantitative analysis, expressions (55) and (56) provide an intuitive way of separating the

social welfare gain into key components: First, the gains due to correcting the efficiency loss affecting

aggregate allocations via the utilization externality. Second, the gains due to the socially optimal

redistribution during a pandemia (which also depend partially on the utilization externality, since

a larger externality implies more inequality in the DCE). Third, the gains due to redistribution even

without a pandemia, because of the planner’s dislike for inequality in general.

Evaluating∆U1 and∆U2 separately from social welfare is also helpful for assessing whether the

optimal policy is Pareto efficient (i.e. ∆U1,∆U2 ≥ 0). For this to be the case, the utility gain for type-

1 agents from correcting the aggregate effects of the utilization externalitymust exceed their loss due

to the redistribution in favor of type-2 agents. A heuristic argument suggests that, for given social

welfareweights, the SPE can be Pareto efficient if γ1 is sufficiently high. Startwith some γ1 that yields

a particular Ω∗NP (γ1) and assume we set Ωsp = Ω∗NP (γ1). As we increase γ1 keeping Ωsp fixed, the

15In the [1,∞) interval of Ωsp, the utilitarian planner (Ωsp = 1) has the strongest desire for reallocating resources. All
the terms that include Ωsp vanish from∆U1,∆U2, which implies that the second and third rows of∆U1 (∆U2) take their
most negative (positive) values. In particular, comparing the second rows of the two expressions shows that the planner
has the strongest desire to redistribute when the pandemia hits, relative to scenarios with Ωsp > 1.
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utility of type-1 agents rises (locally) because the cost of redistribution falls, since the second row of

∆U1 increases (becomes less negative) and the third row is zero (since Ωsp = Ω∗NP (γ1)). The result

is not general, however, because the redistribution costs and ∆U1 are nonlinear functions of γ1, but

as we verify in the numerical example below, it is possible to have a paremeterization such that for

given Ωsp there is an interval of γ1 values such that ∆U1,∆U2 ≥ 0.

4 Quantitative Analysis

In this section, we study the model’s quantitative predictions by examining numerical solutions

based on a calibration to U.S. data.

4.1 Calibration

Table 4 lists themodel’s calibrated parameter values. The values of all of the parameters, except those

of the Stone-Geary utility and the f(mK) function, are easy to set following a conventional calibra-

tion approach. Themodel is set to a quarterly frequencywith a standard discount factor of β = 0.99.

The Frisch elasticity of labor supply is set to 2, which is also a standard value in the literature, and

since the Frisch elasticity in the model is 1/(ω−1), we obtain ω = 1.5. The labor share in production

is set to α = 0.7, which is a common value based on historical U.S. data. Utilization is normalized so

thatm = 1without pandemia, which is equivalent to full capital utilization. The depreciation (or uti-

lization cost) function is modified slightly to adopt a formulation typical of dynamic macro models

(see Mendoza et al., 2014): δ(mt) = χ0
m

χ1
t

χ1
. Without pandemia, since mt = 1, the capital deprecia-

tion rate satisfies δ = χ0

χ1
, where δ is set to a depreciation rate of 0.0164 per quarter, consistent with

the calibration to U.S. data in Mendoza et al. (2014) and D’Erasmo et al. (2016). The capital stock is

set toK = 6.04, which is consistent with a capital-GDP ratio of 3. The value of χ0 then follows from

the DCE optimality condition for capital utilization, which yields χ0 = (1−α)(L(K,m)/K)α = 0.10,

where L(K,m) is the solution to eq. (25) for K = 6.04 and m = 1, and then the condition that

δ = χ0

χ1
yields χ1 = 6.10. Finally, γ1 = 0.2 because the top quintile of the U.S. wealth distribution

owned nearly 90 percent of the wealth in 2017 (Leiserson et al., 2019), and for simplicity we focus

on the case in which Ωsp = Ω⋆NP , so that the SPE supports the DCE without pandemia and there is

no incentive to redistribute except when a pandemia hits.

To calibrate the Stone-Geary preferences, we normalize the endowment of health goods so that

H = 1. Hence, h⋆ represents the percent of the available supply of health goods that constitutes sub-

sistence demand in normal times. The value of h⋆ is set by estimating a standard linear-expenditure-

system regression of nominal expenditures of health goods and services on nominal expenditures

of non-health goods and services and the price of health goods. This regression follows from the

pricing condition for the NP phase, eq. (34), using the resource constraint for non-health goods and

the market-clearing condition for health goods.16 The value of h⋆ corresponds to the coefficient on

16After simplifying terms, combining these expressions yields phH = 1−a
a

(

1− δ(·)K
Y

− α
ω

)

Y + h⋆ph.
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pht , which yields h⋆ = 0.0948 with a standard error of 0.0235 and a p-value of 0.0002.17

Table 4: Calibration to U.S. Data

Parameter Value Reference
β 0.99 Standard for quarterly frequency
ω 1.5 Frisch Elasticity of labor supply equals 2
α 0.7 Standard labor share
K 6.04 Capital stock to match K/GDP=3
m⋆ 1 Normalization
χ0 0.10 Optimality condition for utilization withm⋆ = 1
χ1 6.10 1.64% depreciation rate, Mendoza et al. (2014)
γ1 0.2 Top quintile owns 90% of U.S. wealth in 2017, Leiserson et al. (2019)
H 1 Normalization
h⋆ 0.0948 Linear-expenditure-system regression
a 0.756 Average nonhealth-to-health consumption and GDP ratios, 2009-2018
θ 0–0.1069 Interval that supports DCE solutions

The share of non-health expenditures a is determined by imposing on the same pricing condition

(34) the estimated value of h⋆ = 0.0948 and the average ratios of non-health to health consumption

and non-health to health GDP for the period 2009-2018, which are 5.01 and 4.73, respectively. We

use 2009-2018 data because they yield stable averages for these ratios, after several years in which

both fell steadily. This yields a = 0.756.

The last item that needs to be specified is the function f(mtK) that maps utilization into sub-

sistence health demand during a pandemia. As noted earlier, the function is assumed to be mono-

tonically increasing. A concave (convex) f(·) would represent an economy in which reductions in

utilization are less (more) effective at reducing the stress on the health system during a pandemia.

For simplicity, we assume a linear function f(mtK) = θmtK , so that the elasticity of h̄ with respect

tomK is equal to θ. We know little about θ, but given the value ofK , equation (40) yields an upper

bound θ̃ at which health demand of type-2 agents equals their subsistence demand and there is no

DCE solution with pandemia. Hence, we will studymodel solutions for θ ∈ [0, θ̃). Moreover, within

this interval, we examine detailed solutions for the value of θ that makes the drop in U.S. non-health

GDP observed during the pandemia consistent with an optimal lockdown. Matching the decline

of 8.8 percent in U.S. non-health GDP in the second quarter of 2020 relative to the first quarter as

part of the SPE solution requires θ = 0.0918. The corresponding utilization rate is 0.848 and hence

f(mK) = 0.0918 × 0.848 × 6.04 = 0.47. Thus, accounting for the observed non-health GDP drop as

the result of an optimal lockdown implies a sharp increase in subsistence demand for health from

9.48 to 9.48 + 47 = 56.4 percent of the available supply.

17The regression uses data for 1960-2018. Expenditures are proxied by GDP of health and non-health goods. The price
index corresponds to the GDP deflator for the health sector (obtained from the BLS). Expenditures are expressed as
indexes with the same base year as the deflator. Other time series used are Total National Health Expenditures, Health
Investment, Health Consumption Expenditures, obtained from the National Health Expenditure database of the Centers
for Medicaid and Medicare Services (CMS), and Nominal GDP and Gross Private Domestic Investment, obtained from
the BLS and BEA, respectively. The regression is estimated in second differences, because non-health expenditures are
integrated of order two, reflecting the sharp growth of the health sector relative to the rest of the U.S. economy.
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4.2 Results

Table 5 shows a set of results for the calibration with θ = 0.0918. Column (I) shows the equilib-

rium without pandemia, for which DCENP = SPENP since DCE and SPE are the same in normal

times. Column (IV) is the SPE solution for the pandemia that rationalizes the observed output drop

as resulting from an optimal lockdown (SPEP ). Columns (II) and (III) show two DCE solutions:

Column (II) is the NL case studied in Section 3, in which utilization is unaffected by the pandemia

(DCEP,NL), and Column (III) is the OL case with an ad-hoc lockdown of the same size as the op-

timal lockdown (DCEP,OL). Tr is unchanged from the normal-times level in both DCE solutions.

Column (I) is in levels and the rest are percent changes relative to NP levels, exceptm and Tr/GDP

for which we show percentage points changes and Ω and h̄which are always in levels.

Table 5: Competitive & Social Planner’s Equilibria for θ = 0.0918

(I) (II) (III) (IV)
Variable Normal Times No Lockdown Observed Lockdown Social Planner

(levels) (percent changes) (percent changes) (percent changes)
DCENP = SPENP DCEP,NL DCEP,OL SPEP

Aggregate variables:
Ω 3.46 16.46 9.54 3.46
h̄ 0.09 0.65 0.56 0.56
GDPNH 2.01 0 -8.84 -8.84
m 1 0 -15.18 -15.18
l 1.26 0 -5.99 -5.99
π 0.5 0 1.85 1.85
c 1.91 0 -6.02 -6.02
w 1.12 0 -3.04 -3.04
ph 0.35 157.76 101.1 101.1
Individual variables:
c1 3.2 51.91 30.54 -4.93
c2 1.59 -26.07 -24.38 -6.57
h1 2.19 -6.02 -4.35 -28.25
h2 0.7 4.71 3.4 22.08
c̃1 2.26 73.49 46.92 -3.3
c̃2 0.65 -63.55 -46.73 -3.3
h̃1 2.1 -32.69 -26.94 -51.92
h̃2 0.61 -85.86 -73.51 -51.92
Transfers & Welfare
Tr/GDP (%) 14.5 -2.74 -1.00 10.85
Welfare Gain (%) n.a. n.a. n.a. 0.82 (0.33)
∆U1 n.a. n.a. n.a. -2.06 (-1.65)
∆U2 n.a. n.a. n.a. 4.08 (2.35)

Notes: The “Normal Times” column shows the equilibrium without pandemia (DCE and SPE are identical because the calibration as-

sumes Ωsp = Ω⋆NP ). Allocations and prices in the Observed Lockdown and No Lockdown scenarios are reported as percent changes

relative to Normal Times, except h̄ and Ω are shown in levels and m and Tr/GDP are differences in percentage points relative to their

normal-times values. Welfare gains, ∆U1 and ∆U2 are as defined in the text. Welfare gains assume the pandemia lasts four quarters

and are relative to the No Lockdown scenario with values in parenthesis relative to the Observed Lockdown scenario.

The aggregate allocations for DCEP,OL and SPEP show that the 8.8 percent output drop during

the pandemia is associated with a cut in m of 15 percentage points and declines in consumption
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and labor of about 6 percent. For the planner, the cut in m is the optimal response to the utilization

externality. Profits of the non-health sector rise 1.9 percent because of reduced utilization costs.

Subsistence health demand climbs from 0.09 to 0.56, as explained earlier, and the relative price of

health goods rises 101.1 percent, because aggregate excess consumption of health goods falls much

more than for non-health goods. Without lockdown, the results for aggregate allocations in the

DCEP,NL differ from the NP phase only in that the relative price rises sharply, by nearly 158 percent.

This is larger than in the OL and planner’s solutions because there is no cut in utilization moderating

the spike in subsistence health demand, which climbs to 0.65 instead of 0.56.

Regarding individual allocations, recall that the planner has weights set so as to match the ra-

tio of excess consumptions across agents without pandemia (Ωsp = 3.46). Hence the planner cuts

excess consumptions of each agent by the same percentage relative to the NP state (−3.3 and −51.9

percent for non-health and health goods, respectively). In levels, however, the planner reduces en-

trepreneurs’ consumption of both goods (−4.9 and −28.3 percent for non-health and health goods,

respectively), while for workers it reduces non-health consumption by −6.6 percent but increases

health consumption by 22.1 percent. The planner spreads the drop in the aggregate supply of non-

health goods triggered by the optimal lockdown relatively evenly across agents, while the contrast

of the large drop it assigns to health consumption for entrepreneurs v. the large increase for workers

is in response to the planner’s strong incentive to redistribute so as to keep Ωsp = 3.46. This redis-

tribution requires an increase in the ratio of transfers to GDP of nearly 11 percentage points, which

would be even larger without the strong valuation effect driving up the relative value of health GDP.

Assuming the pandemia lasts four quarter, the optimal lockdown and transfers policies increase

welfare by 0.82 percent, which is a sizable gain.

Inequality worsens sharply in the NL scenario, with Ω∗P
NL rising to 16.5. This large increase in

excess consumption inequality results from c̃ increasing (falling) by 73.5 (−63.6) percent for type-1

(type-2) agents. Since labor supply and labor disutility are the same for both agents, this implies

that nonhealth consumption also rises sharply for type-1 agents and falls sharply for type-2 agents.

Regarding excess health consumption, h̃ falls much less for type-1 than type-2 agents (−32.7 v. −85.9

percent, respectively). Hence, the pandemia moves workers closer to the subsistence demand for

health at a much faster pace than entrepreneurs. Income inequality also worsens sharply as result of

the large increase in the value of the endowment of health goods that type-1 agents own. Transfers

are unchanged in levels from the NP state, but since the value of GDP rises with ph, transfers as a

share of GDP fall by -2.7 percentage points.

The OL equilibrium with the ad-hoc lockdown (Column (III)) performs better than the NL case

but it is still inferior to the optimal policy scenario. The ad-hoc lockdown yields the same aggregate

allocations and prices as for the planner. Importantly, it also moderates the adverse effects of the

pandemia on inequality. The ratio of excess consumptions rises to Ω∗P
OL = 9.5, instead of 16.5 in the

NL case, and this is possible because both h̄ and ph increase less. The latter implies that income

inequality also worsens less in the OL than the NL case.18 The implied weaker valuation effect also

18Note that wage income falls by the same amount for both agents, since they supply the same labor at the same wage,
and that the small increase in profits worsens income inequality but it is dwarfed by the effect of the smaller hike in ph.
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implies that transfers (which are constant at the NP level) fall less as a share of GDP, by 1 percentage

point instead of 2.7. The SPE yields a welfare gain of 0.33 percent relative to this OL case, and since

the gain relative to the NL case was 0.82, it follows that the lockdown alone yields a welfare gain

of about 50 basis points and the transfers add 32. Thus, roughly 3/5ths of the total welfare gain

produced by the optimal policies is due to the lockdown. Keep in mind, however, that the lockdown

has effects both on aggregate efficiency (by tackling the utilization externality) and on inequality

(by moderating the hikes in h̄ and ph). Thus, the ad-hoc lockdown does help mitigate the adverse

inequality effects of the pandemia but not nearly enough as is socially optimal.

The results in Table 5 are for θ = 0.0918, which was targeted to match the observed 2020Q2 fall

in U.S. non-health GDP. We acknowledge, however, that there is substantial parameter uncertainty

regarding the value of θ. Hence, we turn now to examine the full spectrum of solutions for the

interval of θ values that support competitive equilibria. As noted earlier, this is possible for θ ∈ [0, θ̃)

where θ̃ is the upper bound atwhich health consumption ofworkers hits the subsistence level. Under

the calibration to U.S. data, the DCE with no lockdown yields θ̃ = 0.1069.

Figure 4 shows utilization and non-health GDP. The blue curves show the SPE solutions, the

black lines show the DCE under the NL case (for which aggregate allocations are invariant in θ),

and the red lines show the OL solutions for the DCE with an ad-hoc lockdown of the same size as

the optimal lockdown that matches the drop in U.S. non-health GDP. The black and red dots denote

the solutions shown in Table 5. By construction, the red dots must be at the intersection of the blue

curves with the red lines (i.e., an ad-hoc lockdown of the same size as the optimal lockdown). The

dashed, red vertical lines identify θ̃. The DCE lines are discontinuous at that point because there is

no DCE solution when θ = θ̃.

Figure 4: Utilization and Non-Health Output in Pandemia as θ Varies

Utilization Non-Health GDP
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Figure 4 shows that the planner’s optimal reductions in utilization and non-health GDP are con-

cave in θ. Hence, as the elasticity of subsistence health demand to utilized capital rises, the optimal

lockdown in response to a pandemia increases with θ at a faster rate. Scenarios with low θs are un-
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likely to be relevant. They represent weak pandemias for which h̄ varies little in response to cuts

in m (i.e., social distancing is not that important to alter contagion) and as a result small cuts in

utilization and output, namely weak lockdowns, would suffice to address the utilization externality.

This is captured in the Figure by the small gap between the black lines that correspond to the NL

solutions and the blue curves of the planner’s solutions for θ < 0.05.

Pandemias become relevant as θ rises above 0.05. In this region, the concavity of the planner’s

choices has a key implication: Small “errors” inmeasuring θ result in non-trivial errors in the utiliza-

tion and output cuts adopted to respond to a pandemia. The gaps between the blue and red curves

illustrate how these errors vary as the “true” value of θ varies if the lockdown that would be optimal

for θ = 0.0918 is adopted. If θ is in fact slightly smaller (larger) the lockdown would be too strict

(weak) and non-health GDP would be allowed to fall too much (little) relative to what is truly opti-

mal. For example, if θ = 0.08, the ad-hock lockdown of the OL line would cut utilization and output

by 3.2 and 2.3 percentage points more than what is optimal, respectively. Relative to pre-pandemia

levels, utilization and output would fall by 15.2 and 8.8 percentage points, respectively, compared

with optimal drops of 12 and 6.5 percentage points each.

An alternative interpretation of Figure 4 is as indicative of the implications of cross-country

or cross-region heterogeneity in health systems and other relevant pre-pandemia conditions (like

income per capita, life expectancy, etc.). Countries with weaker pre-pandemia conditions can be

viewed as countries with higher θ, and hence faced with a pandemia they require larger optimal

lockdowns which imply larger output drops. The relative size of the health sector also captures

cross-country differences in health systems. Equation (48) implies that the utilization externality is

weaker in countries where H is larger, and hence for the same θ the optimal lockdown and output

drop would be smaller in these countries. The same applies to countries where a is larger.

The two plots in Figure 5 showhow the rise in ph and the worsening consumption inequality due

to a pandemia vary with θ in the SPE (in blue) and in the DCE cases for no-lockdown (in black) and

the ad-hock lockdown (in red) that matches the observed decline in non-health GDP. Black and red

dots denote again theNL andOL outcomes in Table 5. The planner chooses higher prices for θ values

that would make the optimal lockdown of Table 5 excessive (θ < 0.0918), and lower prices when the

opposite occurs. In contrast, the SPE price hikes are always smaller than those for the no-lockdown

DCE case, because the planner reduces utilization and this moderates the increase in the relative

price. Prices are nearly linear in θ for the planner but they are convex for both DCE cases, and hence

small errors in assessing the value of θ to implement lockdowns would result in large differences in

price hikes during pandemias.

The price hikes are quite large overall, except for θ values that result in negligible drops in uti-

lization and output. In line with the argument that pandemias are weak for θ < 0.05, prices in the

no-lockdown DCE scenario are negligibly different from those produced under the optimal policies

for those θ values. For θ > 0.05, the optimal policy yields price hikes of at least 45 percent and as

much as 105 percent. Price hikes in the no-lockdown DCE case are uniformly higher, ranging from

50 to 230 percent. Hence, the model predicts large relative price movements during pandemias.

The graph for the ratios of excess consumption (plotted in a logarithmic scale) shows a constant
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Ωsp for the planner, which follows from the welfare weights calibrated to match the value of Ω in the

DCE without pandemia (3.46). During the pandemia, consumption inequality is sharply higher in

the DCEs for the NL and OL scenarios than for the planner, and it worsens at an increasing rate as

θ rises driven by the rising ph and the worsening income inequality. For θ ranging between 0.05 and

0.1, the values of Ω in the NL (OL) scenario are in the 6-37 (5-12.5) range, much larger than the 3.46

ratio in normal times. Consumption inequality is higher in the NL than the OL case because the NL

case lacks the effect of the ad-hoc lockdown moderating the increase in ph and the rise of income

inequality in the OL case.

The left panel of Figure 6 shows the optimal transfers and the social welfare gain of the optimal

lockdown and transfers policies as θ varies. Transfers are plotted as the change in the transfers-GDP

ratio relative to normal times (∆Tr/GDP ) andwelfare ismeasured relative to the no-lockdownDCE

assuming a 4-quarter pandemia. ∆Tr/GDP risesmonotonically because consumption inequality in-

creases with θ (see Figure 5) and strengthens the incentives to redistribute income and consumption

across agents so as to maintain the ratio of excess consumptions at Ωsp = 3.46. ∆Tr/GDP is small

for weak pandemias but for θ > 0.05 increases in transfers from 5 to 13 percentage points of GDP are

optimal.19 Similarly, weak pandemias yield negligible welfare gains from implementing the optimal

policies, but for θ > 0.05 the welfare gains are a sharply convex function of θ and grow infinitely

large as θ approaches θ̃, because at that point workers hit the Inada condition for health consump-

tion in the Stone-Geary preferences. This plot also shows that the nonlinear effects of implementing

policies with measurement error in θ discussed earlier have nonlinear welfare implications. For in-

stance, around θ = 0.0918, which is the value that renders the observed GDP decline consistentwith

the optimal policy, if the “true” θ is slightly lower (higher) the welfare gain is much smaller (larger).

Figure 5: Relative Prices and Consumption Inequality in Pandemia as θ Varies

Relative Price of Health Goods Excess Consumption Ratios
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19Recall that ∆Tr/GDP captures both the effect of the exogenous change in transfers and the endogenous response of
GDP to the optimal policies. The valuation effect of higher ph reduces the ratio.
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The right panel of Figure 6 shows a decomposition of the welfare gains in terms of the fractions

due to changes in aggregate allocations and redistribution across agents. The contribution of re-

moving the inefficiency in aggregate allocations is always much smaller than the contribution due

to redistribution, which highlights again the relevance of the effects of pandemias on inequality in

the model. As θ rises, the contribution from changes in aggregate allocations shrinks and that from

redistribution rises, because inequality is also increasing in θ. The aggregate inefficiencies account at

most for about 11 percent of the welfare gains, and that is for very small welfare gains corresponding

to weak pandemias. Redistribution accounts for 88 to 96 percent of the welfare gains. This is again

because type-2 agents move closer to their subsistence level of health consumption as θ rises and as

this happens they approach the Inada condition that makes the marginal utility of allocating health

consumption to them infinitely large. For the optimal policy reported in Table 5, the contribution of

redistribution is close to 92 percent. This result is not inconsistentwith the previous finding showing

that for that same optimal policy the gains from reducingm are larger than those from increasing Tr,

because, as noted earlier, reducing m contributes to both improve aggregate efficiency and reduce

inequality.

Figure 6: Transfers & Welfare Gains as θ Varies

Transfers and Welfare Gains Composition of Welfare Gains
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The role of inequality in these results can be illustrated further by examining the welfare implica-

tions of agent heterogeneity. Figure 7 compares social welfare gains of the optimal policies (relative

to the no-lockdown DCE) as θ varies for the calibrated economy with γ1 = 0.2 and the compara-

ble representative-agent economy with γ1 = 1. In the latter, the welfare gains are only due to the

removal of the utilization externality. The DCE (SPE) aggregate allocations are the same as in the

DCE (SPE)with two agents. Bothwelfare gains display the convex, asymptotic behavior as θ reaches

θ̃. The value of θ̃, however, is about 60 percent bigger in the representative-agent model that has no

inequality (since γ1 = 1). This occurs because, as explained earlier, the pandemia moves workers
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toward their subsistence health demand at a much faster pace than entrepreneurs, and hence the

health system saturates at lower θ when inequality is present. At values of θ for which both models

can be solved, the welfare gains of the optimal policies are negligible for the representative-agent

model. A much stronger utilization externality, driven by higher θ values (above 0.14), would be

needed in order to yield non-trivial welfare gains. At those values, however, the model would pre-

dict much larger falls in output than what has been observed (since the higher θ values would yield

much larger utilization cuts).

Figure 7 also indicates that a pandemia of identical characteristics in terms of the elasticity of

health subsistence to utilized capital is much more damaging for countries with higher levels of

wealth inequality pre-pandemia (lower γ1). The welfare implications of wealth inequality are also

nonlinear, because the upper bound θ̃ at which the health system saturates and the welfare gains of

the optimal policies grow infinitely large is decreasing in γ1.

Figure 7: Welfare Gains as θ Varies with Representative and Heterogeneous Agents
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0
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Notes: Welfare gains are computed relative to the no-lockdown DCE .

We discussed the implications of suboptimal policies resulting from parameter uncertainty or

country heterogeneity related to the values of θ,H and a. We consider next policy errors due to ad-

hoc deviations from the optimal transfers and lockdown policies that could be the result of political

economy considerations, institutional flaws, or other frictions outside the model.

Figure 8 shows welfare costs from policies that deviate from the planner’s optimal policies in

the calibrated model (i.e., those reported in Table 5). To construct this Figure, we solve the DCE

for arbitrary pairs of mandated utilization rates and increases in transfers, calculate the welfare gain

that would be obtained by shifting to the planner’s optimal policies, and plot the negative of that

gain as the welfare cost of each arbitrary policy pair. The transfers policies span the 0-28% interval,

defined in terms of increases relative to transfers in normal times in percent of the GDP of normal

times (∆Tr/GDPNP ). We use a common value of GDP to scale TrP and TrNP in order to isolate
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the change in transfers per-se (which is the policy instrument) from endogenous changes in GDP.

The Figure shows curves for welfare costs as a function of ∆Tr/GDPNP for four utilization rates

m = 0.6, 0.7, 0.85, 1. The percent drops in non-health GDP associated with these utilization rates are

25, 18.2, 8.8 and 0, respectively. The curves are discontinuous because transfers that are too large

would make excess consumption of type-1 agents negative. The SPE’s optimal policies correspond

to msp = 0.85 and ∆Tr/GDPNP
sp = 12.7%. By construction, the maximum value for the curve

corresponding tom = msp = 0.85 is∆Tr/GDPNP
sp = 12.7% and there is zero welfare cost, because

this point in the curve matches the SPE. Any deviation from this policy pair reduces welfare. As

before, the red and blue dots correspond to the DCE solutions for the NL and OL cases in Table 5.

The horizontal line identifies the welfare cost if there is no policy change when the pandemia hits.

Figure 8: Welfare Costs of Deviating from Optimal Policies
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Note: The associated drops in nonhealth output with respect to the no-pandemia level are 8.84% form = msp, 18.2% for

m = 0.7 and 25% form = 0.6 .

This Figure yields two important results. First, deviating from the optimal policies can have non-

trivial welfare costs but, for the set of policy pairs considered, policy intervention is always preferable

to no intervention and mostly by a sizable margin. Relative to the DCE without policy intervention,

welfare is at least 0.35 percent higher with all policy pairs except those with no lockdown (m = 1)

and small transfer hikes (below 5 percentage points).20 Note, however, that the ranking of the poli-

cies is not monotonic, as the crossing of the curves indicates: With low transfers, stricter lockdowns

are better but as transfers increase stricter lockdowns are undesirable.

The second result is that transfers and lockdowns can be traded off widely at a small welfare

cost. For instance, a no-lockdown policy with a transfers hike of 18 percentage points yields about

the samewelfare as one pairing a hike in transfers of about 5 percentagepointswith a strict lockdown

20Policies that reducewelfare below the DCEwithout policy changes require unrealistically large lockdowns (m ≤ 0.3).
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that reduces m to 0.7 and output by 25 percent, and both policy pairs are only about 0.08 percent

below the SPE in terms of welfare. Even in a scenario in which only one instrument can be used,

a hike in transfers of 18 percentage points without a lockdown is only about 0.1 of percent better

than a lockdown settingm = 0.6without increasing transfers. This is possible because either a large

increase in transfers or a strict lockdown reduce the strongadverse effects on inequality caused by the

pandemia. For the same reason, policies that combine weak lockdownswith small hikes in transfers

are undesirable and the interaction of the two is nonlinear. For instance, the welfare loss resulting

from changing from the optimal lockdown to no lockdown (i.e., the gap between the blue and red

curves) grows larger as the size of the increase in transfers is reduced. This is again because both

less strict lockdowns andweaker transfers programs allow the pandemia toworsen inequality more.

These results have important policy implications, because the data show that countries with

high income per-capita have implemented much larger transfers policies and stricter lockdowns

in response to COVID-19 than those with lower income. Data from the IMF Fiscal Monitor show

that, through September 2020, the average increase in transfers for advanced economies reached 9.9

percent while for emerging and less developed countries the averages were 4.4 and 3 percent, re-

spectively.21 For the 53 countries included in the Bloomberg resilience indicator, the log of income

per-capita has a correlation with the community mobility measure of -0.2 while the correlation with

Covid-related transfers is 0.5. Hence, on average, poorer countries responded toCOVID-19with both

weaker lockdowns and smaller fiscal interventions, which is the worst combination in the model.

The last graph, Figure 9, shows an important result regarding Pareto efficiency of the optimal

policies. The plot shows how the lifetime utilities of type-1 and type-2 agents change under the SPE

vis-a-vis the no-lockdown DCE as the fraction of type-1 agents rises. For each value of γ1, we obtain

the SPE and no-lockdown DCE solutions, keeping social welfare weights and θ at the levels used

in Table 5 (i.e., Ωsp = 3.46 and θ = 0.0918), and we plot ∆U1 and ∆U2. At the calibrated value of

γ1 = 0.2, the SPE yields∆U1 < 0 and∆U2 > 0. However, if γ1 is slightly higher so that it falls within

the shaded area in the Figure, both agents are better off under the SPE. Thus, as suggested in the

previous section, given social welfare weights, the SPE can be Pareto efficient if γ1 is sufficiently high

so as to reduce the per-agent cost of redistribution for type-1 enough tomake them better off but also

not too high so that redistribution is insufficient to make type-2 agents better off. The per-agent cost

of redistribution for type-1 agents falls with γ1 because there are more agents of this type to share

the cost and the SPE allocates less consumption of health and non-health goods to type-2 agents as

γ1 rises (see equations (49)-(50)).

21These data include additional and accelerated spending plus foregone and deferred revenue and exclude business
liquidity support (equity injections, loans, asset purchases, debt assumptions, guarantees and quasi-fiscal operations).
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Figure 9: Lifetime Utility Changes and Fraction of Type-1 Agents
(SPE relative to no-lockdown DCE)
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Notes: Utility changes under the SPE allocations relative to the no-lockdown DCE scenario.

5 Conclusions

This paper proposed a model of the macroeconomic effects of pandemias in which the saturation

of the health system is the key driving force. This approach is motivated by evidence we provided

on resouce shortages and capacity constraints of hospitals, sharp increases in the relative prices of

key health goods and services, spikes in excess mortality beyond that explained by COVID-19, and

a cross-country analysis showing that proxies for healtcare system saturation and the stringency of

lockdowns are significant determinants of differences in the size of GDP drops caused by COVID-19,

even after controlling for the effects of COVID infection and mortality.

Healthcare saturation is modeled by introducing Stone-Geary preferences with a jump in the

subsistence demand for health goods and services during pandemias that is positively related to

capital utilization. The model features entrepreneurs and workers in order to capture the effects of

pandemias and lockdowns (i.e., mandated reductions in utilization) on consumption and income

inequality. An output-pandemia tradeoff emerges because firms do not internalize that reducing

utilization during a pandemia moves the healthcare system away from its saturation point. The

pandemia moves workers closer and faster to the subsistence demand for health than entrepreneurs

and it causes a sharp increase in the relative price of health goods and in the excess consumption

ratio of entrepreneurs relative to workers. Lockdowns mitigate these adverse effects on inequality

by mitigating the shock on subsistence health demand and its impact on the relative price of health.

A planner with a standard social welfare function reduces utilization (to tackle the utilization ex-

ternality) and redistributes consumption and income from entrepreneurs to workers (to keep the

excess consumption ratio unchanged). Hence, the optimal policy that decentralizes the planner’s

allocations includes a lockdown and increased transfers to workers.
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We examined the quantitative predictions of the model using numerical solutions for a calibra-

tion to U.S. data. Two key pieces of this calibration related to the subsistence demand for health

are its level in normal times and its elasticity with respect to utilized capital. The former was deter-

mined using a linear-expenditure-system regression with pre-COVID-19 data, and for the latter we

examined results for the interval of elasticity values that support competitive equilibria, since the

elasticity has an upper bound at the level that drives workers to reduce their demand for health to

the subsistence level. Within this interval, we also studied a set of results for which the elasticity

is such that the observed decline in U.S. non-health GDP results from an optimal lockdown, which

requires an elasticity of 0.09. This planner’s solution was then compared with competitive equilibria

in which policies are unchanged (the no-lockdown, NL, case) and in which a lockdown equal to the

optimal one is implemented but transfers remained unchanged (the observed-lockdown, OL, case).

The results are indicative of the potential relevance of the proposedapproach to studypandemias

as a problem of health-system saturation and resource shortages and shed light on the challenges

facing the design of lockdown and transfer policies to deal with pandemias. The effects of the pan-

demia on both aggregate efficiency and inequality are significant. For the scenario that rationalizes

the observed output drop as an optimal policy, the welfare gains relative to the NL and OL cases are

0.82 and 0.33 percent, respectively. The optimal policy requires a cut in utilization of 15 percentage

points (which yields a non-health output drop of 8.8 percent) and an increase in the transfers-GDP

ratio of 10.9 percentage points. The relative price of health rises 101 percent under the optimal poli-

cies and the OL case, and 158 percent in the NL case. Inequality worsens very sharply during the

pandemia, with the excess consumption ratio increasing by factors of 4.8 and 2.8 in the NL and OL

cases, respectively. The difference between the two shows that lockdowns have strong effects on in-

equality, because evenwithout transfers, a lockdown reduces the hike on subsistencehealth demand,

which reduces the rises in relative prices and the excess consumption ratio.

Examining the set of solutions for the entire interval of feasible elasticities of subsistence health

demand to utilized capital shows that the effects of pandemias on macro aggregates and inequal-

ity start to become relevant at elasticities higher than 0.05. The output-pandemia tradeoff yields

concave, negative relationships between either the planner’s optimal utilization or non-health out-

put and that elasticity. Relative prices and excess consumption ratios in the NL and OL solutions,

and the welfare gains under the optimal policies are increasing, convex functions of the elasticity.

Hence, small measurement error in the value of this elasticity results in non-trivial differences on

the magnitude of optimal lockdown and transfer policies and their effects.

The planner undoes the large negative effect of the pandemia on inequality through the direct

effect of the transfers and the indirect effect of the lockdown (which mitigates the relative price

hike and the rise of the excess consumption ratio). The two effects combined contribute over 90

percent of the welfare gains of the optimal policies. The aggregate effect of the lockdown removing

the utilization externality accounts for the other 10 percent. Inequality also makes the model more

plausible. A planner in a representative-agent version of the model only gains by removing the

utilization externality and thus needs larger elasticities of subsistence health demand to utilized

capital (above 0.13) in order to yield nontrivial welfare gains. But these elasticities would yield
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unrealistically large output drops.

Deviating from the optimal policies has nontrivial welfare costs. However, policy intervention is

preferable to no intervention for a large set of lockdown and transfer policy pairs. Moreover, trans-

fers and lockdowns can be traded off widely at a small welfare cost, because either a large increase

in transfers or a strict lockdown reduce the strong adverse effects of the pandemia on inequality.

For the same reason, policies that combine weak lockdowns with small hikes in transfers are the

worst choice. This result has important policy implications, because emerging and least developed

countries responded toCOVID-19 with bothweaker lockdowns and smaller fiscal interventions than

advanced economies. Income per capita has a correlation with lockdown effectiveness of roughly

-0.2 whereas its correlation with Covid-related transfers is 0.5. The mean increase in transfers in ad-

vanced economies has been at least 2.25 times larger than in emerging and least developed countries.

Our results also have important implications for the analysis of cross-country or cross-region re-

sponses to COVID-19. The model predicts that a pandemia is more damaging for countries with

higher wealth inequality and/or weaker health systems or other pre-pandemia conditions (e.g., in-

come per capita, life expectancy, etc.). Weaker pre-pandemia conditions can be viewed as implying

higher elasticities of subsistence health demand to utilized capital which imply larger optimal lock-

downs and output drops. The relative size of the health sector also captures cross-country differ-

ences in health systems. For a given elasticity, the model predicts weaker effects of pandemias in

countries with larger health sectors or larger shares of non-health expenditures.

This study is a first step in a research agenda exploring the saturation of the healthcare sys-

tem as the mechanism driving macroeconomic models of pandemias. The model we presented is

streamlinedwith the intent of highlighting the essential elements of this mechanism, leaving for fur-

ther research enriching the model to explore dynamic and cross-country propagation, particularly

in models with capital accumulation and financial frictions, and to study the interaction of optimal

lockdown and transfer policies with optimal taxation and public debt sustainability.
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We estimate the factors predicting firm failures in the COVID crisis 
based on French data in 2020. Although the number of firms filing for 
bankruptcy was much below its normal level (-36% compared to 2019) 
the same factors that predicted firm failures (primarily productivity and 
debt) in 2019 are at work in a similar way as in 2020. Hence, the selection 
process, although much reduced, has not been distorted in 2020. At this 
stage, partial hibernation rather than zombification characterises the 
selection into firm survival or failure.  We also find that the sectoral 
heterogeneity of the turnover COVID shock (proxied by the change 
in credit card transactions) has been largely (but not fully) absorbed 
by public policy support because it predicts little of the probability of 
bankruptcy at the firm level. Finally, we sketch some potential scenarios 
for 2021-2022 for different sectors based on our empirical estimates of 
predictors of firm failures.
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1 Introduction

The COVID-19 crisis, a global shock ‘like no other’, has had dire consequences on several economic

variables: consumption, production, employment, trade, productivity, business and consumer con-

fidence etc... However, one economic impact that was anticipated very early on (see for example

the simulations by Gourinchas et al....) did not materialise so far: firm bankruptcies. Indeed, the

number of bankruptcy filings has decreased significantly. In France for example, as illustrated in

graph 1 the number of firms filling for bankruptcy is much below its normal level: - 36% at the

end of 2020 (week 52) compared to 2019. The last time the French economy experienced a large

downturn was in 2009 with the GDP contracting by 2.9%. That year, the number of firms filing for

bankruptcy jumped by 14% compared to 2008 (and 23% compared to 2007). This paradoxical situ-

ation is observed in other countries. Even if international comparisons are not easy on bankruptcy

filings, the UK and German situations are similar. In the UK for the third quarter of 2020, filings

are 39% below the same period in 2019 and 9% below the second quarter of 20202. In Germany,

where the obligation to declare insolvency has been suspended on March 1st, the number of firms

filing for bankruptcy has decreased by 10% in the first semester of 2020 relative to 2019. In both

Germany and France, no catching up in the past few months is observed. In the US, a recent study

(Wang et al. (2020)) shows that although there is a sizeable decrease in direct bankruptcies there

is still a substantial increase of Chapter 11 filings by large corporations but which are a small share

of overall bankruptcies.

The main explanation of this unexpected observation is that governments have provided ample

liquidity to firms most affected by the pandemic. They have reduced their wage bill (in Europe

through short time work schemes) and made direct transfers for example to pay for some fixed

costs. The objective was clearly to freeze the economy during the crisis and put firms most at

risk in hibernation. The sharp reduction in bankruptcies in France and Germany suggests this

objective was attained. But did governments go too far? Some concerns in the public debate
3have emerged that these policies may create zombies by reducing the exit of non productive

firms. According to Schumpeter, the least productive firms are more likely to go bankrupt during

recessions and Schumpeterian creative destruction may therefore be put into danger by an over

generous policy response. If so this may have dire consequences on productivity in the following

years as exit of unproductive firms is likely to be a substantial share of aggregate productivity

growth. Foster et al. (2001) find that entry and exit of plants account for around 25 percent of US
2see UK Insolvency Service Quarterly (2020)
3see The-Economist (September 26,2020) or Financial-Times (December 3, 2020)
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Figure 1: Cumulative number of bankruptcy filings (2008-2020)

Reading note: At the end of 2020 the cumulative number of bankruptcy filings had reached 26,779, while at the
end of 2019, the cumulative number of bankruptcy filings had reached 42,687.
Source: BODACC data up to December 2020

manufacturing productivity growth over the period 1977 - 1992 and that the impact of net entry is

probably larger in the service sector. This effect comes from exiting firms that are less productive

- and/or less innovative - than both continuing and entering firms (see Syverson (2011). As in

other countries, entry and exit of firms is a sizeable component of labour productivity growth in

France: David et al. (2020) show that more than 60 percent over the period 2011 - 2017 is caused

by creative destruction 4. This is so even though net entry is a small component of TFP growth

volatility5 . This accounting decomposition of productivity growth does not take into account

the potential negative additional impact of low productivity firms (zombie firms) on the growth

of continuing firms. Adalet-McGowan et al. (2018) find that zombie firms reduce the growth of

more productive firms and might also reduce entry. This further increases the potential burden of

surviving low productivity firms on aggregate productivity. However, Laeven et al. (2020) argue
4see also Turner (2013) who shows that 40% of hourly productivity growth in the retail sector in France over the

period 1997 - 2007 comes from entry and exit of firms.
5see Osotimehin (2019)
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that “the different nature of the crisis means that many firms that normally would be classified as

zombie firms are in fact viable firms”.

The concern that public policies to support firms may impair the cleansing effect of the re-

cession by saving unproductive firms from exit is therefore legitimate. But the opposite concern

that productive firms may go bankrupt because of the COVID crisis is also legitimate. The cleans-

ing effect is based on the implicit assumption that markets efficiently select the most productive

firms. However, several studies show that the probability of firm failure depends not only on their

productivity but also on their access to credit. Barlevy (2002) studies the consequences of credit

frictions on resource allocation during recessions and shows that credit frictions can lead to the

opposite of the cleansing effect during recessions. Fougère et al. (2013) confirm the fundamental

role of credit constraints on the probability of bankruptcy. They find that payment delays and

cash flow difficulties disproportionately affect SMEs. During recessions, these delays are longer,

commercial credit between companies is more risky and SMEs are the first to suffer from this via a

considerable increase in their probability of bankruptcy. However, Osotimehin & Pappadà (2017)

find that there is a cleansing effect of recessions in the presence of credit frictions, despite their

effect on the selection of exiting and entering firms.

The impact of the COVID crisis on productivity through its effect on the firm bankruptcy

process is therefore ambiguous. In this paper, we analyse whether there is early evidence that the

selection process of firms bankruptcies is not only partially frozen but also distorted. We offer a

preliminary answer to this question based on French data. At this stage the answer is only tentative

because the dynamics of firm bankruptcies in 2021-2022 is difficult to anticipate. Although, firm

bankruptcies have been sharply reduced we still observe some (more than 60% of the ”normal”

level) and we can therefore analyse whether the determinants of the mechanism of firm destruction

has been sharply distorted by the crisis. Two risks co-exist that both would reduce aggregate

productivity: that low productivity firms are unduly protected and that high productivity firms

are not protected enough. In both cases, this would point to misguided public policies. Our results,

again at an early stage, are relatively reassuring:

• The risk of an increase in productive firms going bankrupt during the pandemic did not

materialise: in 2020 the firms filing for bankruptcy were in 2018 already less productive

and/or had higher debt. A logit model shows that the main predictors of bankruptcy are at

work in 2020 as in 2019 and 2018: productivity, debt, age are still associated with bankruptcy

probability. Moreover, the coefficients for these variables are not statistically different from
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one year to another. Creative destruction has been partially frozen but not distorted.

• Not surprisingly, the reduction in the number of bankruptcies comes from lower bankruptcy

filing of less productive firms. In the short run however, the impact on the aggregate pro-

ductivity gain is likely to be small. This is only true if the process of creative destruction is

unfrozen once the crisis is over.

• The COVID shock has been very heterogeneous across sectors. This is particularly true for

the commerce sector (e.g. restaurants versus food-stores). We measure the shock for these

sectors by the change in credit card transactions. We find that sectors more affected by the

COVID shock are more likely to file for bankruptcy. However, the predictive power of the

sectoral COVID shock on bankruptcy is much smaller than that of firm productivity or debt.

This suggests that public policies did compensate, in the short term, a very large part of the

sectoral nature of the COVID shock.

• The legacy of the pandemic on firm balance sheets will likely be large. The reduction of

bankruptcies thanks to generous liquidity measures comes at the cost of an increase in

corporate debt especially in sectors that are most affected by the pandemic. For firms in

these sectors, a return to normal of the bankruptcy process would predict a large increase in

bankruptcies from 1.1% in 2019 to 1.8% in 2021 (and after 0.7% in 2020). This is large but

most of the increase comes from a catch up process of bankruptcies that did not take place in

2020. One political economy issue for the government is that this return to normal through

catch-up may be interpreted as a policy failure.

In section 2, we provide an empirical estimate of the determinants of bankruptcies in the French

COVID crisis. Section 3 sketches some potential scenarios for 2021-2022 based on these estimates.

In section 4, we conclude with a discussion of some policy implications.

2 The determinants of bankruptcies in the Covid-19 crisis

2.1 Data sources and summary statistics on bankruptcy filings in the pandemic

We follow bankruptcy filings in France from 2009 to 2020. Our database is based on daily electronic

files of BODACC6, an official online publication that reports all commercial court decisions relative

to French firms and notably all bankruptcy filings. We then merge this database with SirenE, an
6Bulletin Officiel des Annonces Civiles et Commerciales

53

Co
vi

d 
Ec

on
om

ic
s 7

0,
 2

5 
Fe

br
ua

ry
 2

02
1: 

49
-6

9



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

INSEE database that gives information regarding the geographical location of firm headquarter and

their industry. Attrition between these two database is negligible (with a loss of around 4000 firms

for an initial database of 600 000 bankruptcy filings over the period 2009 - 2020). In a second step,

this database is matched with the FARE database, which contains firms accounting information

(balance sheet and income statement). We use this information to compute labour productivity

(EBITDA per worker) and leverage (total debt over total assets).

Since, the crisis (and the reduction of bankruptcies) only started in March 2020, we only

account for the companies that went bankrupt from March 1 to September 30. In order to be

able to compare our results to previous years and since there may be seasonality in insolvency

bankruptcies or commercial court activity, we do the same for all the years in our study. Hence,

all firms that filed for bankruptcy in January, February, October, November or December of any

year are systematically excluded from the sample. Moreover, since we want to analyse what drives

bankruptcy in SMEs (small and medium-size enterprises), we focus on companies with at least one

employee7 and less than 250 employees. Moreover, we exclude from the sample all the companies

that we consider not being in our framework because they have odd debt ratio below 0 or over

1, or because their labour productivity is above 300 thousand euros per worker or under -100

thousand euros. Therefore, the sample consists of 863,162 observations in 2013 and has 1,118,379

observations in 2020. Summary statistics for the 2019 and 2020 samples are presented in Table

1. Since the last income statements and balance sheet available are from 2018, we report labour

productivity, debt ratios, age and number of employees with a two year lag. That is, 2018 firm

characteristics are used for the 2020 sample and 2017 firm characteristics are used for the 2019

sample.

Except for bankruptcy rate, which we comment below, the two samples (2019 and 2020) are

quite similar. This is normal since most firms appear in the two samples and do not change

drastically from one year to the next. The average firms is 15 year old, has 8 employees and an

annual labour productivity slightly below 70 000 euros. The average debt to assets ratio is around

45%. Bank debt is on average around 14% of total asset, supplier debt on average around 12%.

For these firms ”Other debt”, which consist mainly in tax and social security debt is almost 20%

of total assets.

As mentioned in the introduction, bankruptcy filings in 2020 was dramatically lower than in

2019. The default being calculated over March to September was respectively 1.1% in 2013, 0.7%

in 2019 and only 0.4% in 2020. Liquidations and court supervised restructurings in 2020 are 36%
7Self-employed workers and auto-entrepreneurs are excluded from the sample
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Table 1: Summary statistics - 2019 and 2020 samples

N Mean St. Dev. Median D1 D9 Min. Max.
2019 sample
Bankruptcy (0/1) 1,097,795 0.007 0.084 0.000 0.000 0.000 0.000 1.000
Labour productivity (’000 euros) 1,097,795 67 50 56 19 130 -100 300
Total debt (/assets) 1,097,795 0.451 0.237 0.426 0.152 0.802 0.000 1.000
Bank debt (/assets) 1,097,795 0.137 0.170 0.072 0.000 0.383 0.000 1.000
Supplier debt payable (/assets) 1,097,795 0.122 0.126 0.083 0.011 0.285 0.000 1.000
Other debts (/assets) 1,097,795 0.192 0.175 0.135 0.034 0.435 0.000 1.000
Age (in years) 1,097,795 15 14 12 3 32 2 119
Nb of employees 1,097,795 8 20 3 1 18 1 249
2020 sample
Bankruptcy (0/1) 1,118,379 0.004 0.066 0.000 0.000 0.000 0.000 1.000
Labour productivity (’000 euros) 1,118,379 68 52 57 19 135 -100 300
Total debt (/assets) 1,118,379 0.440 0.238 0.412 0.144 0.792 0.000 1.000
Bank debt (/assets) 1,118,379 0.137 0.170 0.072 0.000 0.384 0.000 1.000
Supplier debt payable (/assets) 1,118,379 0.119 0.125 0.080 0.010 0.279 0.000 1.000
Other debts (/assets) 1,118,379 0.184 0.174 0.127 0.031 0.422 0.000 1.000
Age (in years) 1,118,379 15 14 12 4 32 2 127
Nb of employees 1,118,379 8 20 3 1 18 1 249

Source: BODACC, FARE 2017, FARE 2018.

below their 2019 levels. Both the number of direct liquidations and court-supervised restructuring

stands well below year 2019 levels which was already low. Nevertheless, the reduction in court-

supervised restructuring filings is even greater than that of liquidations: reorganisations are 49%

below their 2019 level while liquidations decreased only by 31%. When compared to the 2008-2018

average, liquidations are down by 41% and reorganisations by 53%.

To measure the size of the demand shock that hit firms in the retail and personal service sectors,

we use data from Cartes Bancaires CB, the leading consortium of payment service providers, banks

and e-money institutions. These data have been exploited by Bounie et al. (2020) to measure the

consumption behaviour of French households during and after the first lockdown. Here we use this

data set from the merchant perspective. We have access to the weekly total of CB payments by

merchant category code (MCCs). These MCCs are used by payment brands to classify merchants

and businesses by the type of goods or services provided. Based on the available data, we created

an association between sectors codes of the MCC nomenclature (Merchant Category Code) and the

French NAFRév2 nomenclature (INSEE) to be able to match the credit card spending changes to

the companies of our sample.

2.2 Empirical estimates

There are two potential effects on productivity of the very unusual dynamics of bankruptcies of

2020. First, if this drop was persistent it could affect the productivity level because more firms

(and among them low productivity) would be allowed to remain active. Second, the very process
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of bankruptcy may be distorted by the mix of the financial difficulties faced by firms and the very

large policy response to support firms. It is possible indeed that high productivity firms (but with

high levels of debt) may go more into bankruptcy than in normal circumstances, at the same time

as low productivity firms are allowed to remain active. The answer to the first question ”will a lower

number of bankruptcies generate lower productivity?” depends on whether the drop is persistent

or not. The answer to the second question ”is the bankruptcy process distorted ?” depends on the

characteristics of firms that are still going into bankruptcy.

The second question is the one we focus on. To do this we compare the determinants of

bankruptcies since the COVID crisis and the years before.

Comparing distributions of labour productivity and leverage debt of companies filing for

bankruptcy in different years is a first way to assess whether the characteristics of the Schum-

peterian process have changed. We use labour productivity (added value per worker) and a debt

ratio (overall debt divided by total assets) to measure whether companies that filed for bankruptcy

in 2020 were more or less productive and indebted than those that went bankrupt in 2019 and

companies that neither went bankrupt in 2019 nor 2020 (Figure 2 and 3). Since 2018 is the last

year of available companies’ balance sheet data, we look at 2018 balance data for companies that

filed in 2020 and for companies that never filed for bankruptcy, and 2017 data for companies that

filed for bankruptcy in 2019. We observe that bankrupt companies of 2019 and 2020 had a very

similar productivity and debt ratio distribution two years before whereas non-bankrupt firms were

both more productive and less indebted.

To analyse further this issue we estimate a Logit model to identify the main predictors of

business failures. Logit models are better suited than standard OLS to estimate the probability

of occurrence of rare events, which is the case for bankruptcy as less than 1% of firms filing for

bankruptcy in a given year.

The benchmark model explains the probability of bankruptcy in year t for firm i on the base of

the firm characteristics in year t− 2. The explanatory variables are labour productivity (measured

as it added value by worker), the overall leverage of the firm (measured by the ratio of the firm’s

total debt to its total assets), the age of the firms (a dummy for each subcategory: 0 to 5 years, 6

to 10 years, 10 to 30 years and more than 30 years), its size (measured by the log of the number

of employees) and its industry (with 15 industry dummies - see Figure ??). The equation is the

following:
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Figure 2: Labour productivity distribution

Reading note: the companies that respectively filed for bankruptcy in 2020 and 2019 had a labour productivity
distribution two years before that was on the left of the distribution for firms that neither filed for bankruptcy in 2020
nor before. Around 12.5% of the companies that filed for bankruptcy had a labour productivity comprised between
16 and 24 thousand euros per worker while it represented only a little more than 5% of the companies that never
filed for bankruptcy.

Figure 3: Debt ratio distribution

Reading note: the companies that respectively filed for bankruptcy in 2020 and 2019 had a debt ratio distribution
two years before that was on the right of the distribution for firms that neither filed for bankruptcy in 2020 nor before.
Around 7% of the companies that filed for bankruptcy had a debt ratio comprised between 0.98 and 1 whereas it
represented only around 2.5% of the companies that never filed for bankruptcy.
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Yt = 1
1 + e−(α+Xit−2β+µs) (1)

where µs is the industry fixed effect and Xit−2 contains all other firm characteristics. There is

no time fixed effect as we estimate this equation for each year separately from 2013 to 2020. In

a given year t, the sample considered for the estimation contains all firms for which we have the

balance sheet and income information in the year t − 2 and for which a bankruptcy process was

not started in the year t− 1.

This model is estimated every year since 2013 on the firm sample described above. Results

of these year by year estimations are reported in Tables 2 and 3, the later table presenting an

empirical model with leverage being divided between bank debt, supplier debt and ”other debts”

(mainly fiscal and social security debt).

Table 2: Predictors of the bankruptcy probability (2013-2020) - All sectors - Total debt

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES 2013 2014 2015 2016 2017 2018 2019 2020

Labour Productivity -0.0124*** -0.0134*** -0.0132*** -0.0142*** -0.0147*** -0.0114*** -0.00956*** -0.00919***
(0.000354) (0.000380) (0.000388) (0.000402) (0.000436) (0.000376) (0.000318) (0.000382)

Debt / Assets 2.588*** 3.061*** 3.115*** 2.963*** 2.821*** 2.804*** 2.488*** 2.469***
(0.0527) (0.0560) (0.0573) (0.0583) (0.0617) (0.0572) (0.0529) (0.0653)

ln(Number of employees) -0.00998 0.00567 -0.0480*** -0.0237** -0.0526*** -0.0495*** -0.160*** -0.154***
(0.0107) (0.0110) (0.0116) (0.0119) (0.0129) (0.0124) (0.0112) (0.0142)

Constant -5.181*** -5.603*** -6.024*** -5.143*** -5.195*** -6.347*** -5.222*** -6.328***
(0.359) (0.323) (0.384) (0.310) (0.361) (0.505) (0.359) (0.582)

Observations 863,162 854,087 847,743 859,037 847,294 925,521 1,097,795 1,118,379
Sector FE Yes Yes Yes Yes Yes Yes Yes Yes
Age class FE Yes Yes Yes Yes Yes Yes Yes Yes
Pseudo-R2 0.0782 0.0892 0.0867 0.0907 0.0843 0.0843 0.0713 0.0588
Bankruptcy percentage 0.0110 0.0104 0.00963 0.00900 0.00766 0.00792 0.00709 0.00434

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3: Predictors of the bankruptcy probability (2013-2020) - All sectors - Debt components

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES 2013 2014 2015 2016 2017 2018 2019 2020

Labour productivity -0.0124*** -0.0131*** -0.0130*** -0.0140*** -0.0144*** -0.0112*** -0.00926*** -0.00895***
(0.000354) (0.000383) (0.000392) (0.000408) (0.000441) (0.000379) (0.000321) (0.000386)

Bank debt / assets 2.258*** 2.567*** 2.631*** 2.285*** 2.251*** 2.223*** 1.816*** 1.875***
(0.0656) (0.0693) (0.0716) (0.0741) (0.0806) (0.0753) (0.0729) (0.0899)

Supplier debt / assets 3.108*** 3.492*** 3.489*** 3.421*** 3.285*** 3.220*** 3.004*** 3.029***
(0.0723) (0.0756) (0.0788) (0.0799) (0.0854) (0.0793) (0.0762) (0.0952)

Other debt / assets 2.488*** 3.169*** 3.249*** 3.180*** 2.892*** 2.895*** 2.590*** 2.502***
(0.0653) (0.0668) (0.0681) (0.0690) (0.0730) (0.0668) (0.0636) (0.0789)

ln(Number of employess) -0.0188* 0.00291 -0.0489*** -0.0230* -0.0537*** -0.0477*** -0.156*** -0.154***
(0.0108) (0.0111) (0.0117) (0.0120) (0.0130) (0.0125) (0.0114) (0.0143)

Constant -5.181*** -5.603*** -6.024*** -5.143*** -5.195*** -6.347*** -5.222*** -6.328***
(0.359) (0.323) (0.384) (0.310) (0.361) (0.505) (0.359) (0.582)

Observations 863,162 854,087 847,743 859,037 847,294 925,521 1,097,795 1,118,379
Sector FE Yes Yes Yes Yes Yes Yes Yes Yes
Age class FE Yes Yes Yes Yes Yes Yes Yes Yes
Pseudo-R2 0.0794 0.0909 0.0882 0.0936 0.0862 0.0863 0.0737 0.0607
Bankruptcy percentage 0.0110 0.0104 0.00963 0.00900 0.00766 0.00792 0.00709 0.00434

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

The ability of the model to explain the individual heterogeneity in bankruptcy is - not surpris-
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ingly - low. The Pseudo-R2 varies between 0.094 in 2014 and 0.061 in 2020. The lower explanation

power in the year 2020 model suggests that the usual bankruptcy predictors (size, age, productivity,

leverage) are less informative on individuals’ propensity for bankruptcy in 2020 than in other years.

However, the key finding in these tables is that coefficients for these predictors are very stable over

time, notably when comparing 2019 and 2020.

The main take away from this estimation is that the COVID crisis and the policy measures put

in place by the government have not changed drastically the determinants of bankruptcy, except

the size of the process itself (see the fall in the constant in 2020). Firms that failed in 2020 are less

productive and more financially fragile, just as in 2019. The difference in coefficients across types

of debt (to suppliers, banks and social and fiscal administrations) is also very stable in 2019 and

2020.

2.3 The COVID shock and the role of emergency measures

We cannot directly assess the impact of public emergency measures on the bankruptcy in 2020.

However, we know that both the COVID turnover shock on turnover and the policy measures that

were put into place were heterogeneous across sectors. These policy measures are described in detail

in appendix. Several- but not all - were targeted to firms in sectors most affected by the COVID

crisis. The most important ones are the State-guaranteed loan, short-time work the solidarity fund

for small business, and deferral of payment for social and/or fiscal charge.

The support of public policy to firms lies between two potential extremes. At one extreme,

if public support to firms had not absorbed the COVID shock, bankruptcy rates would be much

larger for firms in sectors hit more strongly by the COVID shock. At the other extreme, if public

policy support had fully absorbed the COVID turnover shock, this shock at the sectoral level would

not have any predictive power on bankruptcies. The net effect of the COVID shock and of the

support measures to absorb the shock would be zero. In this section, we analyse how much of the

sectoral heterogeneity due to COVID was absorbed by the French public policy support.

Our measure of the shock on turnover is based on credit card payments received by firms that

serve consumers/households (as opposed to businesses, for which credit card receipts are not a

large part of their overall receipts). Thus we focus on the retail sectors in the broadest sense (it

includes for example car dealerships, restaurants, hairdressers, beauty salons and funeral services

- amongst others - that are not included in the narrow retail sector). Summary statistics for this

broadly defined retail sector sample for the year 2020 are in Table 4. For the year 2020, there

are 377,334 firms in the retail sector. With an average of 6 employees, firms in this sector smaller
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than the whole sample used in previous section, the labour productivity is also below that of the

whole sample and these firms have marginally lower debt ratio. The default rate from March to

September was 0.44% in 2020, while it was 0.65% in the same months of 2019, a drop of nearly

33% in business bankruptcies.

Table 4: 2020 - Retail sector

N Moyenne St. Dev. Median D1 D9 Min. Max.
Bankruptcy (0/1) 377,334 0.004 0.066 0.000 0.000 0.000 0.000 1.000
Labour productivity (’000 euros) 377,334 60 44 50 18 113. -100 300
Total debt (/assets) 377,334 0.458 0.247 0.434 0.146 0.822 0.000 1.000
Bank debt (/assets) 377,334 0.177 0.194 0.111 0.000 0.473 0.000 1.000
Supplier debt (/assets) 377,334 0.113 0.112 0.079 0.017 0.250 0.000 0.985
Other debt (/assets) 377,334 0.168 0.171 0.105 0.028 0.405 0.000 1.000
Age 377,334 15 12 11 4 31 2 120
Nb of employees 377,334 6 15 2 1 11 1 249

Source: BODACC, FARE 2018.

We proxy the Covid turnover shock by the change in credit card payments (Groupement des

Cartes CB) received by these sectors between 2020 and 2019. As one would expect, the COVID

shock was very heterogeneous across sectors8 depending on the type business: some were very

affected (-61% of credit card transactions for travel agencies for example) and others actually

benefited (+23% for tobacco shops and +18% for bakeries for example). (see table 5).

We include this Covid turnover shock (in a way such that a higher shock means lower turnover)

in the regression for bankruptcy in addition to other predictors of bankruptcy. The regression now

estimated on the sub-sample of firms operating in the retail sectors as defined above9. Results are

shown in Table 6.

The COVID shock as measured by the sectoral decrease in credit card transactions is a very

significant predictor of the probability for a firm to fail. From this point of view we can conclude

that public policy measures did not fully absorb the sectoral heterogeneity of the COVID shock.

However, note that the other predictors of bankruptcy are not much affected by the introduction

of the size of the COVID shock and are not very different either from the recent years without

COVID shock. The comparison between regressions (3) and (4) in table 6 shows a slight increase

in the model accuracy (the pseudo-R2 increased by 0.018). However, the quantitative impact of

the COVID shock on the probability of default compared to the other traditional factors is minor.
8Although this indicator should give us an idea of how the sectors were actually affected at a very fine level,

shopkeepers in some sectors may have adopted new strategies that may have fostered the use of credit cards, among
which pick-and-collect strategies including full credit card payments. For this reason, there may be sectors which
have increased their credit card income while their actual sales level is still below 2019 level. Nevertheless, we cannot
take into account the sectors’ true turnover since we only have high-frequency data on credit card, but we make the
assumption that this indicator provides a good proxy of the heterogeneity of the COVID shock across sectors.

9Summary statistics for this subsample the year 2020 are presented in Table
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Table 5: Change in credit card receipts par sub-sector in retail
Sector change in CB receipts
Activities of travel agencies -61%
Passenger transportation by cab -48%
Beauty care -40%
Retail sales of leather goods and travel goods -29%
Body maintenance -28%
Hotels and similar accomodation -26%
Retail sale of fuel in sepcialized stores -23%
Laundry and dry cleaning -23%
Fast food restoration -21%
Traditional catering -18%
Retail sales of clothing in specialized stores -16%
Retail sale of perfume and cosmetics in specialized stores -15%
Haidressing -15%
Repair of shoes and leather goods -14%
Catering services -12%
Retail sale of watches, clocks and jewelry in specialized stores -11%
Foowear retailing -9%
Repair of watches and jewelry items -7%
Motor vehicle maintenance and repair -2%
Retail sale of automotive equipment -1%
Campground and parks for caravans or recreational vehicles 1%
Repair ofof househod appliance and equipment for home and garden 2%
Beverage outlets 2%
Repair of consumer electronic products 2%
Trade and repair of motorcycles 2%
Retail sale of books in specialized stores 3%
Retail sale of other household equipment in specialized store 3%
Retail sale of of beverages in specialized stores 4%
Trade in motor vehiccles 4%
Retail sale of flowers, plants, seeds, fertilizers, pets and pet food in specialized stores 6%
Optical retail business 9%
Repair of computers an peripheral equipment 10%
Retail sale of information and communication equipment in specialized stores 12%
Retail of pharmaceutical producy in specialized stores 13%
Retail sale in non-specialized stores 15%
Retail sale of bread, pastry and confectionnery in speciaized stores 16%
Funeral services 17%
Other food retailing in specialized stores 18%
Retail sale of tobacco products in specialized stores 23%
Retail sale of medical and orthopaedic articles in sepcialized stores 24%
Retail sale of newspapers and stationery in specialized stores 28%

Reading note: according to credit card data, the funeral services has increased its sales by 17% in 2020.
Source: Groupement Cartes Bancaires CB, authors’ calculations

Figure 4 shows the influence of the different predictors on the pseudo-R2. Quantitatively, debts,

labour productivity and size of the company are much more important predictors of the probability

of failure than the COVID sectoral shock. Hence, we conclude that although public support to the

retail sector in France has not fully absorbed the COVID shock, our estimates suggest that it has

61

Co
vi

d 
Ec

on
om

ic
s 7

0,
 2

5 
Fe

br
ua

ry
 2

02
1: 

49
-6

9



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Table 6: Predictors of the bankruptcy probability + credit card shock (2018-2020) - Retail

(1) (2) (3) (4)
VARIABLES 2018 2019 2020 2020 + Shock

Credit card shock 1.576***
(0.253)

Labour productivity -0.0169*** -0.0127*** -0.0146*** -0.0141***
(0.000818) (0.000695) (0.000839) (0.000844)

Bank debt / Assets 2.551*** 2.247*** 2.132*** 2.143***
(0.121) (0.120) (0.143) (0.143)

Supplier debt / Assets 3.960*** 3.987*** 3.651*** 3.669***
(0.150) (0.144) (0.175) (0.174)

Other debt / Assets 2.541*** 2.429*** 2.167*** 2.128***
(0.125) (0.121) (0.144) (0.144)

ln(Number of employees) -0.307*** -0.340*** -0.327*** -0.329***
(0.0267) (0.0248) (0.0301) (0.0302)

Constant -5.889*** -5.012*** -5.641*** -5.404***
(0.116) (0.114) (0.147) (0.152)

Observations 324,602 374,856 377,334 377,334
Sector FE Yes Yes Yes Yes
Age class FE Yes Yes Yes Yes
Pseudo-R2 0.0831 0.0795 0.0687 0.0705
Bankruptcy percentage 0.00712 0.00655 0.00433 0.00433

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

absorbed a very large share given that the shock explains little of the risk of failure. This suggests

that a large part of the sectoral heterogeneity in turnover variation between 2020 and 2019 has

been compensated by symmetric heterogeneity in public support.

Figure 4: Contributions of different predictors to bankruptcy risk in 2019 and 2020

Reading note: In 2019, including the ratio of bank debt to corporate assets among the explanatory variables
for default increases the explanatory performance of the econometric model by 25% compared to a model
where all the other variables listed here are present, as well as sector fixed effects.
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3 The expected rise in firm failures

Micro simulations (Gourinchas et al. (2020), Guerini et al. (2020), Demmou et al. (2021), predict

a sharp increase in SME failures compared to 2018 and 2019, up to 25% for example in the ac-

commodation and food sector. However, these simulations do not take into account all the public

support measures.

Our empirical model can shed light on this question although it is too simple and incomplete

to offer a forecast of firm failures in 2021-2022. Rather we estimate three scenarios to analyse how

different sectors could be affected. We propose a simple method based on our econometric model

by considering that the increase in insolvencies to be expected in the trade sector for 2021 would

be the sum of 2 effects: 1) the catching up on bankruptcies that did not take place in 2020 and 2)

the turnover fall over the period 2020-2021 and additional debt accumulated by firms.

We focus on the broadly defined retail trade firms and consider 3 plausible scenarios depending

on the impact of the COVID-19 shock on productivity on the two year period (2020-2021) and debt

of companies.

• The least affected firms would experience a 3% drop in labour productivity, but their debt

levels would remain unchanged.

• The intermediate firms would experience a 6 percent drop in labour productivity and a 2.5

point increase in their debt ratio (all debts combined, i.e. bank debt, tax and social security

debt, and supplier debt).

• The most affected firms would see labour productivity decrease by 12 percent and their debt

ratio increase by 5 points.

These scenarios are not meant to be precise but indicative and are based on the following

assumptions:

• Concerning the drop in productivity, the assumption is that all retail trade firms have faced a

drop in labour productivity, if only because of periods of mandatory closure, social distancing

measures and the drop in demand. For companies moderately affected by the shock, the drop

in labour productivity would be 6%, which corresponds roughly to the cumulative annual

growth decline expected over the period 2020-202110. For the least affected companies, the
10In the draft amending finance bill presented at the end of November 2020, the government forecasts a negative

growth rate for the French economy in 2020 (-11%) followed by a rebound of around 6% in 2021, i.e. an average
annual growth rate over the two years of around -3%.
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impact on labour productivity would be half as large (-3%) and twice as large (-12% for the

most affected companies).

• Concerning the increase in indebtedness, to calibrate a plausible shock we observed the distri-

bution of state-guaranteed loans at the end of November 2020 as published on the government

website Etatlab on public data. This information is then used to compute the relative change

in the ratio of overall debt to the total assets at a sectoral level based on balance sheets data

of firms. According to our calculations, the state guaranteed loan corresponds to an increase

in the debt ratio up to 2.7 points (see Table 7). From there we constructed three scenarios.

In the worst-case scenario, the debt ratio at the end of the second lockdown (December 2020)

would increase by 5 points compared to the situation at the end of 2019 due not only to the

state-guaranteed loan scheme, but also to the tax and social security arrears accumulated

thanks to government measures and possible moratorium in supplier invoice payments. For

the companies least affected, the debt ratio would not increase due to the combination of

lockdown periods and strong catching up in post lockdown periods. Finally, the moderately

affected companies would see their debt ratio (all debts combined) increase by 2.5 points

compared to the level at the end of 2019. To give an idea of the magnitude of the simulated

debt shocks, the debt ratio in the wider retail trade sector, which averaged 40 percent at the

end of 2019, would remain unchanged for the least affected retail trade companies and would

rise to 45 percent for the most affected companies.

From the baseline model, we simulate the different scenarios described above on retail trade

companies. We keep the 2019 baseline estimation as the closest to the conditions that would be

those of year 2021 without government support measures. Based on three different scenarios for the

three types of sectors, we estimate the increase in bankruptcy based on the logit estimation where

we estimate the in-sample individual probability to go bankrupt using the actual characteristics of

each company. We then simulate the individual changes in debt and labour productivity depending

on the three scenarios explained above, and we measure how the probability of each individual is

affected by those changes according to the model. We finally compute the variation of the average

probability of bankruptcy before and after the simulated changes in characteristics. These are

shown in table 8

The impact is quantitatively large for the most affected sectors but is small for the other sectors.

Note also that the productivity fall has a larger quantitative impact than the increase in debt. In

table 9 we translate this increase in failure probability in failure rates for the year 2021-2022. As
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Table 7: Bank debt ratio increase by sector

Sector State Guaranteed Loan
over Total Assets

Extraticves Indsutries 0.17
Manufacturing 0.57
Construction 1.43
Wholesale and Retail Trade; Repair of Motor Vehicles and Motorcycles 1.38
Transportation and Warehousing 0.72
Lodging and Catering 2.71
Information and Communication 0.32
Financial and Insurances Activities 0.39
Real Estates Activities 0.10
Specialized, Scientific and Technical Activities 0.52
Administrative and Support Service Activities 0.62
Education 2.51
Human Health and Social Action 1.92
Arts, Entertainment and Recreation 2.05
Other Service Activities 2.09

Reading note: the take up of the state-guaranteed in the construction sector amounts to an increase of 1.43 point
of the debt ratio.
Source: FARE 2018, Etalab

Table 8: 3 plausible scenarios for retail trade companies and bankruptcy increase

Sector shock low intermediate high
Shock 1 : Labour productivity fall -3% -6% -12%
Impact on bankruptcy +2,3% + 4,8% +9,9%
Shock 2 : Debt ratio increase +0pt +2,5pt +5pt
Impact on bankruptcy 0% +6,9% +14,4%
Combined shocks
Impact on bankruptcy +2,3% 12,1% 25,7%

Table 9: COVID-19 crisis and bankruptcy catch-up : Predicted bankruptcy rate in 2021-2022

Sector shock low intermediate high
Bankruptcy rate in 2019 (1) 1,1% 1,1% 1,1%
Bankruptcy rate in 2020 (2) 0,7% 0,7% 0,7%
Bankruptcy rate in 2021 = (1) + (3) + (4) 1,53% 1,63% 1,78%
2020 catch-up (3) = (1) - (2) 0,4% 0,4% 0,4%
Covid combined shocks (4) 0,03% 0,13% 0,28%

a starting point, in 2019, 1.1% of the firms in those sectors filed for bankruptcy. For example,

in the most affected sectors the 25% increase in failure rate due to the combined effect of lower

productivity and higher debt would translate into 0.28% of firms failing in the next two years.The

catch-up effect (firms that would normally have failed in 2020 but did not and would normally

fail in 2021-2022) would actually be much larger as it would involve 0.4% of firms. Overall the

bankruptcy rate would increase from 1.1% to almost 1.8% in the most affected sectors an increase
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that would be due in majority (around 60%) to the catch-up effect. These scenarios should be taken

with great caution given the huge uncertainty on the validity of our assumptions. They suggest

however that the policy challenge in 2021-2022 may be to manage as much the wave of ”normal”

failures that did not occur in 2020 as the failures due to the COVID shock itself. Another challenge

will be for commercial courts to deal with the wave of bankruptcies. Iverson (2018) shows that in

the US, the insolvency framework becomes less efficient when courts are congested with a higher

risk for viable firms to be liquidated.

The limitations of our scenarios should however be stressed:

• Our scenarios for retail trade companies implicitly assume that there will be no further

deterioration of the economic situation nor additional public support.

• Our econometric model used lacks crucial features.

– It does not take into account general equilibrium effects. In the case of business failures,

these can be of two kinds: on the one hand, an increase in bankruptcies can lead to the

weakening of other businesses through supply chain effects; on the other hand - and this

has the opposite impact - a business can benefit from the difficulties of its competitors.

– It does not take into account the endogeneity issue that potentially leads to overestimate

the increase in insolvencies due to the COVID crisis. A firm with low productivity is

likely to make low or negative profit and to accumulate debt because of low productivity.

In this case, the accumulation of debt is more the symptom than the cause of the firm’s

problems. However, in the COVID crisis, the increase in debt is of different nature.

This debt is a result of the shock suffered and not a symptom of the deterioration of the

firm’s ability to generate profits. Taking into account firms’ labour productivity helps

reduce this endogeneity, but we may still exaggerate the role of debt on firm failure in

the present crisis. However, remember that our estimates of productivity and debt as

predictors of firm failures in 2020 were very similar to those of 2019.

4 Conclusion

This paper is the first, to our knowledge, to estimate the factors predicting firm failures in the

COVID crisis based on actual data in 2020. Although we are very aware of the limits of our exercise,

we believe that several interesting messages emerge from it. First, at this stage Schumpeter has not

catched COVID in the sense that the normal selection process in firm failure has not been distorted
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in 2020. The same factors that predicted firm failures (productivity and debt) in 2019 are at work

and in a similar way in 2020. The reduction of firm failures is very large and is due to policy

measures to support firms but it has so far generated a partial ”hibernation” of the destructive

creation process rather than a massive ”zombification” of the French economy. Of course, this early

reassuring message should be taken with caution. The catch-up of failures in 2021-2022 will be

large and will constitute a policy issue as it may be interpreted as a policy failure rather than a

return to normal. The policy challenge will therefore be to continue support to productive and

viable firms (but with potentially high debt due to the COVID shock) while at the same time

progressively discontinue support to firms that are not viable.
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Appendix

Economic support measures for companies during Covid-19 crisis

• State-guaranteed loan (SGL): it allows firms to ask for a credit to commercial banks that
is guaranteed from 70% up to 90% by the French public investment bank (BPIFrance) in case
of default. All companies are eligible since May and they can ask for a SGL until June, 30th of
2021 with low interest rates going from 1% to 2.5% according to the duration of the repayment
(from 1 to 5 years). The amount obtained cannot exceed 25% of the 2019 sales of the company
or two years of payroll. Firms have been granted access to such loans 638 034 times since the
beginning of this aid, for a total amount of 130 040 million euros credited until now. For firms
that do not find any bank willing to lend, some loans can directly be granted by the state. The
idea behind such an economic measure is that SGL provides incentive to banks to lend and
allows to enhance access to credit for financially distressed firms and to smooth the shock on
liquidity, avoiding chain defaults.

• Short time work measures: it offers firms the possibility to a subsidy for temporary reduc-
tions in the number of hours worked in case the activity of the company is subject to temporary
closure, significant decrease or difficulties to supply access or impossibility to prevent the em-
ployees from being exposed to the virus. This support mechanism allows that the employee to
receive 70% of his gross wage (85% of net salary), and the firm receives an amount of 85% of the
employee cost, up to an amount equivalent to 4.5 minimum wages. In some sectors (tourism,
hotels, restaurants, sports, culture, air transport and entertainment), the firm could receive
full compensation. An overall number of 189 455 requests have been compensated, accounting
for 936 960 employees and more than 49 million hours.

• Solidarity fund: This fund changed several times since the beginning of the crisis. It is aimed
at supporting small businesses, micro-entrepreneurs and self-employed workers particularly af-
fected by the economic consequences of Covid-19. Initially, only companies below 10 employees
could request this fund up to a 1500€ threshold whenever they justified administrative closure
or decrease in sales of more than 50%. However, it evolved by increasing the employee threshold
up to 20 employees first and 50 then for some sectors, while also raising the amount possibly
received from 1500 up to 10 000 and 200 000 at the group level. Although the eligibility re-
quirements is sector dependent, the support is a transfer without any need to be paid back for
all the beneficiaries. Until now, the overall amount of the aid account for 11 870 million euros
given to more than 1.9 million businesses.

• Deferrals of payment of social and/or fiscal charges: this deferral of employer contri-
butions was available for all self-employed workers and auto-entrepreneurs belonging to sectors
considered to be affected by the crisis according to a list defined by the URSSAF, companies
of less than 250 employees in sectors highly affected, and to companies in other sectors em-
ploying less than 10 people but that were forced to close. The conditions for eligibility were
then loosened in October. In addition, other fiscal contributions also benefited from deferrals
such as the property tax, or corporate income tax, or value-added tax credits. The deferral of
payment amounted to 3 199 million euros by January 13th, 2021.
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This paper empirically examines how the opening of K-12 schools and 
colleges is associated with the spread of COVID-19 using county-level 
panel data in the United States. Using data on foot traffic and K-12 
school opening plans, we analyze how an increase in visits to schools 
and opening schools with different teaching methods (in-person, hybrid, 
and remote) is related to the 2-weeks forward growth rate of confirmed 
COVID-19 cases. Our debiased panel data regression analysis with a set 
of county dummies, interactions of state and week dummies, and other 
controls shows that an increase in visits to both K-12 schools and colleges 
is associated with a subsequent increase in case growth rates. The 
estimates indicate that fully opening K-12 schools with in-person learning 
is associated with a 5 (SE = 2) percentage points increase in the growth 
rate of cases. We also find that the positive association of K-12 school 
visits or in-person school openings with case growth is stronger for 
counties that do not require staff to wear masks at schools. These results 
have a causal interpretation in a structural model with unobserved 
county and time confounders. Sensitivity analysis shows that the baseline 
results are robust to timing assumptions and alternative specifications.
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1. Introduction

Does opening K-12 schools and colleges lead to the spread of COVID-19? Do mitigation
strategies such as mask-wearing requirements help reduce the transmission of SARS-CoV-2
at school? These are important policy relevant questions. If in-person school openings
substantially increase COVID-19 cases, then local governments could promote enforcing
mitigation measures at schools (universal and proper masking, social distancing, and hand-
washing) to lower the risk of COVID-19 spread. Furthermore, the government could prior-
itize vaccines for education workers in case of in-person school openings. This paper uses
county-level panel data on K-12 school opening plans and mitigation strategies together
with foot traffic data to investigate how an increase in the visits to K-12 schools and col-
leges/universities is associated with a subsequent increase in the growth rates of COVID-19
cases in the United States.

We begin with simple suggestive evidence. Fig. 1 provides visual evidence for the asso-
ciation of opening K-12 schools with the spread of COVID-19 as well as the role of school
mitigation strategies. Fig. 1(a) and (b) plot the evolution of average weekly cases and
deaths per 1000 persons, respectively, against days since school opening across different
teaching methods as well as mask requirements for staff. In Fig. 1(a), the average num-
ber of weekly cases starts increasing after 2 weeks of opening schools in-person or hybrid,
especially for counties with no mask mandates for staff. This possibly suggests that mask
mandates at school reduce the transmissions of SARS-CoV-2. In Fig. 1(b), the number
of deaths starts increasing after 3 to 5 weeks of opening schools, especially for counties
that adopt in-person/hybrid teaching methods with no mask mandates. Alternative miti-
gation strategies of requiring mask-wearing to the student, prohibiting sports activities, and
promoting online instruction also appear to help reduce the number of cases after school
openings (see SI Appendix, Fig. S1(i)-(p)).

Fig. 1(c) shows that opening K-12 schools in-person or hybrid increases the number
of per-device visits to K-12 schools more than opening remotely, especially when no mask
mandates are in place. Fig. 1(d) and SI Appendix, Fig. S1(e)-(f) show that visits to
full-time and part-time workplaces increase after school openings with in-person teaching,
suggesting that the opening of schools allow parents to return to work. On the other hand,
we observe no drastic changes in per-device visits to restaurants, recreational facilities, and
churches after school openings (SI Appendix, Fig. S1(b)-(d)).

Fig. 2 and SI Appendix, Fig. S2 provide further descriptive evidence that opening colleges
and universities with in-person teaching lead to the spread of COVID-19 in counties where
the University of Wisconsin(UW)-Madison, the University of Oregon, the University of
Arizona, the Michigan State University, the Pennsylvania State University, the Iowa State
University, and the University of Illinois-Champaign are located.

What happened in Dane county, WI, is also illustrative. The left panel of Fig. 2 presents
the evolution of the number of cases by age groups, the number of visits to colleges and
universities, and the number of visits to bars and restaurants in Dane county, WI. The first
panel shows that the number of cases for age groups of 10-19 and 20-29 sharply increased
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Figure 1. The evolution of cases, deaths, and visits to K-12 schools and
restaurants before and after the opening of K-12 schools

(a) Cases by K-12 Opening Modes (b) Deaths by K-12 Opening Modes
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Notes: (a)-(b) plot the evolution of weekly cases or deaths per 1000 persons averaged across counties within each
group of counties classified by K-12 school teaching methods and mitigation strategy of mask requirements against

the days since K-12 school opening. We classify counties that implement in-person teaching as their dominant

teaching method into “In-person/Yes-Mask” and “In-person/No-Mask” based on whether at least one school district
requires staff to wear masks or not. Similarly, we classify counties that implement hybrid teaching into

“Hybrid/Yes-Mask” and “Hybrid/No-Mask” based on whether mask-wearing is required for staff. We classify

counties that implement remote teaching as “Remote.” (c) and (d) plot the evolution of per-device visits to K-12
schools and full-time workplaces, respectively, against the days since K-12 school opening using the same

classification as (a) and (b).

in mid-September while few cases were reported for other age groups. The second to
the fourth panels suggest that this sharp increase in cases among the 10-29 age cohort
in mid-September is associated with an increase in visits to colleges/universities, bars, and
restaurants in late August and early September. The fall semester with in-person classes at
the UW-Madison began on September 2, 2020, when many undergraduates started living
together in residential halls and likely visited bars and restaurants. This resulted in increases
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in COVID-19 cases on campus; according to the letter from Dane County Executive Joe
Parisi to the UW-Madison Parisi (2020), nearly 1,000 positive cases were confirmed on the
UW-Madison campus by September 9, 2020, accounting for at least 74 percent of confirmed
cases from September 1 to 8, 2020 in Dane county.

Figure 2. The number of cases by age groups and the number of visits to
colleges/universities and bars in Dane county, WI, and Lane county, OR
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Notes: The first, the second, and the third figures in the left panel show the evolution of the number of cases by age
groups, the number of visits to colleges/universities, and bars, respectively, in Dane County, WI. The right panel

shows the corresponding figures for Lane County, OR.

73

Co
vi

d 
Ec

on
om

ic
s 7

0,
 2

5 
Fe

br
ua

ry
 2

02
1: 

70
-1

08



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

While Fig. 1-2 as well as SI Appendix, Fig. S1-S2 are suggestive, the patterns observed
in them may be driven by a variety of confounders. Therefore, we analyze the effect of
opening K-12 schools and colleges/universities by panel data regression analysis with fixed
effects to capture unobserved confounding.

We conduct the analysis using county-level data in the United States. As an outcome vari-
able, we use the weekly growth rate of confirmed cases approximated by the log-difference
in reported weekly cases over two weeks, where the log of weekly cases is set to be −1 when
we observe zero weekly cases. The main explanatory variables of interest are 2-weeks lagged
per-device visits to K-12 schools and colleges/universities from SafeGraph foot traffic data
(SI Appendix, Fig. S3. (3)(6)).

We also consider the variable for school openings with different teaching methods (in-
person, hybrid, and remote) from MCH Strategic Data (SI Appendix, Fig. S3(11)). Foot
traffic data has the advantage over school opening data in that it provides more accurate
information on the actual visits to schools over time, possibly capturing unrecorded changes
in teaching methods and school closures beyond the information provided by MCH Strategic
Data. Furthermore, foot traffic data covers all counties while there is missing information
for some school districts in MCH Strategic Data, which may possibly cause sample selection
issues.

To investigate the role of mitigation strategies at school on the transmission of SARS-
CoV-2, we examine how the coefficients of K-12 school visits and K-12 school opening de-
pend on the mask-wearing requirement for staff by adding an interaction term, for example,
between K-12 school visits and mask-wearing requirements for staff at schools.1

As confounders, we consider a set of county fixed effects as well as interaction terms
between state and week fixed effects to control for unobserved time-invariant county-level
factors as well as unobserved time-varying state-level factors. County fixed effects control
permanent differences across counties in unobserved personal risk-aversion and attitude
toward mask-wearing, hand washings, and social distancing. Interaction terms between
state dummy variables and week dummy variables capture any change over time in people’s
behaviors and non-pharmaceutical policy interventions (NPIs) that are common within a
state; they also control for changes in weather, temperature, and humidity within a state.
We also include county-level NPIs (mask mandates, ban gathering of more than 50 per-
sons, stay-at-home orders) lagged by 2 weeks to control for the effect of people’s behavioral

1MCH Strategic Data provides the school district level data on whether each school district adopts the
following mitigation strategies: (i) mask requirements for staff, (ii) mask requirements for students, (iii)
prohibiting sports activities, and (iv) online instruction increases, among other measures. We decided to use
mask requirements for staff as the main variable for school mitigation strategy because it has a relatively
smaller number of missing values. For regression analysis with the mask requirement variable, we drop
counties from the sample when more than 50 percent of students in a county attend school districts of
which mask requirements for staff is unknown or pending. Similarly, for specification with different teaching
methods, we drop counties from the sample when more than 50 percent of students in a county attend school
districts of which teaching methods are unknown or pending.
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changes driven by policies on case growths beyond the effect of state-level policies.2 Further-
more, the logarithm of past weekly cases with 2, 3, and 4 weeks lag lengths are included to
capture people’s voluntarily behavioral response to new information of transmission risks.
The growth rate of the number of tests recorded at the daily frequency for each state is also
added as a control for case growth regression.

Because the fixed effects estimator with a set of county dummies for dynamic panel
regression could be severely biased when the time dimension is short (Nickell, 1981), we
employ the debiased estimator by implementing bias correction (e.g., Chen, Chernozhukov,
and Fernández-Val, 2019). Our empirical analysis uses 7-day moving averages of daily
variables to deal with periodic fluctuations within a week. Our data set contains 3144
counties for regression analysis using foot traffic data but some county observations are
dropped out of samples due to missing values for school opening teaching methods and staff
mask requirements in some regression specifications.3 Our sample period is from April 1,
2020, to December 2, 2020. The analysis was conducted using R software (version 4.0.3).

Results

Table 1 reports the debiased estimates of panel data regression. Clustered standard
errors at the state level are reported in the bracket to provide valid inference under possible
dependency over time and across counties within each state. The results suggest that an
increase in the visits to K-12 schools and colleges/universities as well as opening K-12
schools with in-person learning mode is associated with an increase in the growth rates of
cases with 2 weeks lag when schools implement no mask mandate for staff.

In column (1), the estimated coefficient of per-device visits to colleges is 0.14 (SE =
0.07) while that of per-device visits to K-12 schools is 0.47 (SE = 0.07). The change in
top 5 percentile values of per-device visits to colleges/universities and K-12 schools between
June and September among counties are around 0.1 and 0.15, respectively, in SI Appendix,
Fig. S4(d)(e). Taking these values as a benchmark for full openings, fully opening col-
leges/universities may be associated with (0.14×0.1=) 1.4 percentage points increase in the
growth rates of cases while fully opening K-12 schools may have contributed to (0.47×0.15=)
7 percentage points increase in case growth rates. Column (3) indicates that openings of
K-12 schools with the in-person mode are associated with 5 (SE = 2) percentage point in-
creases in weekly case growth rates. It also provides evidence that openings of K-12 schools
with remote learning mode are associated with a decrease in case growth, perhaps because
remote school opening induces more precautionary behavior to reduce transmission risk.

In column (2), the estimated coefficient of the interaction between K-12 school visits and
no mask-wearing requirements for staff is 0.24 (SE=0.07), providing some evidence that
mask-wearing requirements for staff may have reduced the transmission of SARS-CoV-2

2The decision to reopen schools in some states such as California and Oregon depended on trends in local
case counts or hospitalizations (Goldhaber-Fiebert, Studdert, and Mello, 2020).

3Our regression analysis uses 2788 counties for specification with K-12 school opening with different
teaching modes while the sample contains 2204 counties for specification with mask requirements for staff.
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at schools. Similarly, in column (4), the coefficients on the interaction of in-person and
hybrid school openings with no mask mandates are positively estimated as 0.04 (SE=0.02)
and 0.05 (SE=0.02), respectively. These estimates likely reflect not only the effect of mask-
wearing requirements for staff but also that of other mitigation measures. For example,
school districts with staff mask-wearing requirements frequently require students to wear
masks.

Other studies on COVID-19 spread in schools have also pointed to the importance of
mitigation measures. In contact tracing studies of cases in schools, Gillespie et al. (2021)
found that 6 out of 7 traceable case clusters were related to clear noncompliance with
mitigation protocols, and Zimmerman et al. (2021) found that most secondary transmissions
were related to absent face coverings. Hobbs et al. (2020) find that children who tested
positive for COVID-19 are considerably less likely to have had reported consistent mask use
by students and staff inside their school.

Consistent with evidence from U.S. state-level panel data analysis in Chernozhukov,
Kasahara, and Schrimpf (2021), the estimated coefficients of county-wide mask mandate
policy are negative and significant in columns (1)-(4), suggesting that mandating masks
reduces case growth. The estimated coefficients of ban gatherings and stay-at-home orders
are also negative. The negatively estimated coefficients of the log of past weekly cases are
consistent with a hypothesis that the information on higher transmission risk induces people
to take precautionary actions voluntarily to reduce case growth. The table also highlights
the importance of controlling for the test growth rates as a confounder.

Evidence on the role of schools in the spread of COVID-19 from other studies is mixed.
Papers that focus on contract tracing of cases among students find limited spread from
student infections Zimmerman et al. (2021), Brandal et al. (2021), Ismail et al. (2020),
Gillespie et al. (2021), Falk et al. (2021), Willeit et al. (2021). There is also some evidence
that school openings are associated with increased cases in the surrounding community.
Bignami et al. (2021) provides suggestive evidence that school openings are associated with
increased cases in Montreal neighborhoods. Auger et al. (2020) use US state-level data to
argue that school closures at the start of the pandemic substantially reduced.

Two closely related papers also examine the relationship between schools and county-
level COVID-19 outcomes in the US. Goldhaber et al. (2021) examine the relationship
between schooling and cases in counties in Washington and Michigan. They find that in-
person schooling is only associated with increased cases in areas with high pre-existing
COVID-19 cases. Similarly, Harris, Ziedan, and Hassig (2021) analyze US county-level
data on COVID-19 hospitalizations and find that in-person schooling is not associated with
increased hospitalizations in counties with low pre-existing COVID-19 hospitalization rates.
As discussed in SI Appendix, our regression specification is motivated by a SIRD model,
and the dependent variable in our analysis is case growth rates instead of new cases or
hospitalizations. Consistent with Goldhaber et al. (2021) and Harris, Ziedan, and Hassig
(2021), our finding of a constant increase in growth rates implies a greater increase in cases
in counties with more pre-existing cases.
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Table 1. The Association of School/College Openings and NPIs with Case
Growth in the United States: Debiased Estimator

Dependent variable: Case Growth Rates
(1) (2) (3) (4)

College Visits, 14d lag 0.139∗ 0.070 0.132∗∗ 0.010
(0.071) (0.073) (0.064) (0.076)

K-12 Visits, 14d lag 0.467∗∗∗ 0.386∗∗∗

(0.070) (0.070)
K-12 Visits × No-Mask 0.297∗∗∗

(0.070)
K-12 In-person, 14d lag 0.047∗∗∗ 0.023

(0.017) (0.021)
K-12 Hybrid, 14d lag −0.008 −0.037∗∗∗

(0.014) (0.013)
K-12 Remote, 14d lag −0.082∗∗∗ −0.102∗∗∗

(0.016) (0.015)
K-12 In-person × No-Mask 0.041∗∗

(0.019)
K-12 Hybrid × No-Mask 0.049∗∗∗

(0.017)
Mandatory mask, 14d lag −0.113∗∗∗ −0.123∗∗∗ −0.128∗∗∗ −0.128∗∗∗

(0.018) (0.017) (0.020) (0.019)
Ban gatherings, 14d lag −0.124∗∗∗ −0.136∗∗∗ −0.135∗∗∗ −0.137∗∗∗

(0.033) (0.044) (0.033) (0.042)
Stay at home, 14d lag −0.264∗∗∗ −0.260∗∗∗ −0.261∗∗∗ −0.268∗∗∗

(0.031) (0.039) (0.034) (0.040)
log(Cases), 14d lag −0.101∗∗∗ −0.101∗∗∗ −0.098∗∗∗ −0.099∗∗∗

(0.009) (0.010) (0.010) (0.010)
log(Cases), 21d lag −0.061∗∗∗ −0.060∗∗∗ −0.060∗∗∗ −0.059∗∗∗

(0.005) (0.005) (0.005) (0.005)
log(Cases), 28d lag −0.030∗∗∗ −0.033∗∗∗ −0.031∗∗∗ −0.034∗∗∗

(0.003) (0.003) (0.004) (0.004)
Test Growth Rates 0.009∗∗ 0.008∗ 0.009∗∗ 0.009∗∗

(0.004) (0.004) (0.004) (0.004)
County Dummies Yes Yes Yes Yes
State× Week Dummies Yes Yes Yes Yes

Observations 690,297 545,131 612,963 528,941
R2 0.092 0.093 0.092 0.094

Notes: Dependent variable is the log difference in weekly positive cases across 2 weeks. Regressors are 7-days

moving averages of corresponding daily variables and lagged by 2 weeks to reflect the time between infection and
case reporting except that we don’t take any lag for the log difference in test growth rates. All regression

specifications include county fixed effects and state-week fixed effects to control for any unobserved county-level

factors and time-varying state-level factors such as various state-level policies. The debiased fixed effects estimator is
applied. The results from the estimator without bias correction is presented in SI Appendix, Table S1. Asymptotic

clustered standard errors at the state level are reported in bracket. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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We next provide sensitivity analysis with respect to changes to our regression specification
and assumption about delays between infection and reporting cases as follows:

(1) Baseline specifications in columns (1) and (2) of Table 1.
(2),(3) Alternative time lags of 10 and 18 days for visits to colleges and K-12 schools as

well as NPIs.
(4) Setting the log of weekly cases to 0 when we observe zero weekly cases to compute

the log-difference in weekly cases for outcome variable.
(5) Add the log of weekly cases lagged by 5 weeks and per-capital cumulative number

of cases lagged by 2 weeks as controls.
(6) Add per-device visits to restaurants, bars, recreational places, and churches lagged

by 2 and 4 weeks as controls.
(7) Add per-device visits to full-time and part-time workplaces and a proportion of

devices staying at home lagged by 2 weeks as controls.
(8) All of (5)-(7).

Because the actual time lag between infection and reporting cases may be shorter or
longer than 14 days, we consider the alternative time lags in (2) and (3). Specification (4)
checks the sensitivity of handling zero weekly cases to construct the outcome variable of the
log difference in weekly cases.

A major concern for interpreting our estimate in Table 1 as the causal effect is that a
choice of opening timing, teaching methods, and mask requirements may be endogenous.
Our baseline specification mitigates this concern by controlling for county-fixed effects,
state-week fixed effects and the log of past cases but a choice of school openings may be still
correlated with time-varying unobserved factors at the county-level. Therefore, we estimate
a specification with additional time-varying county-level controls in (5)-(8).

Fig. 3(a) takes column (1) of Table 1 as a baseline specification and plots the estimated
coefficients for visits to colleges and K12 schools with the 90 percent confidence intervals
across different specifications using the debiased estimator; the estimates using the standard
estimator without bias correction are qualitatively similar and reported in SI Appendix, Fig.
S3. The estimated coefficients of K-12 school visits and college visits are all positive across
different specifications, suggesting that an increase in visits to K-12 schools and colleges
is robustly associated with an increase in case growth. On the other hand, the estimated
coefficients often become smaller when we add more controls. In particular, relative to
the baseline, adding full-time/part-time workplace visits and staying home devices leads to
somewhat smaller estimated coefficients for both K-12 school and college visits, suggesting
that opening schools and colleges is associated with people returning to work and/or going
outside more frequently.

In Fig. 3(b), the estimated interaction term of K-12 school visits and no mask-wearing
requirements for staff in column (2) of Table 1 are all positive and significant, robustly
indicating a possibility that mask-wearing requirement for staff may have helped to reduce
the transmission of SARS-CoV-2 at schools when K-12 schools opened with the in-person
teaching method.
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Association between School Openings and Mobility. As highlighted by a modeling
study for the United Kingdom (Panovska-Griffiths et al., 2020), there are at least two
reasons why opening K-12 schools in-person may increase the spread of COVID-19. First,
opening K-12 schools increases the number of contacts within schools, which may increase
the risk of transmission among children, parents, education workers, and communities at
large. Second, reopening K-12 schools allow parents to return to work and increase their
mobility in general, which may contribute to the transmission of COVID-19 at schools and
workplaces.

To give insight on the role of reopening K-12 schools for parents to return to work and
to increase their mobility, we conduct panel data regression analysis by taking visits to
full-time workplaces and a measure of staying home devices as outcome variables and use
a similar set of regressors as in Table 1 but without taking 2 weeks time lags.

Table 2(a) shows how the proportion of devices at full-time workplaces and that of staying
home devices are associated with visits to K-12 schools as well as their in-person openings.
In columns (1) and (2), the estimated coefficients of per-device K-12 school visits and
opening K-12 schools for full-time work outcome variables are positive and especially large
for in-person K-12 school opening. Similarly, the estimates in columns (3) and (4) suggest
the negative association of per-device K-12 school visits and opening K-12 schools with the
proportion of devices that do not leave their home. This is consistent with a hypothesis
that opening K-12 school allows parents to return to work and spend more time outside.
This result may also reflect education workers returning to work.

Table 3 presents regression analysis similar to that in Table 1 but including the proportion
of devices at full-time/part-time workplaces and those at home as additional regressors,
which corresponds to specification (7) in Fig. 3. The estimates indicate that the proportion
of staying home devices is negatively associated with the subsequent case growth while the
proportion of devices at full-time workplaces is positively associated with the case growth.
Combined with the estimates in Table 2(a), these results suggest that school openings may
have increased the transmission of SARS-CoV-2 by encouraging parents to return to work
and to spend more time outside. This mechanism can partially explain the discrepency
between our findings and various studies that focus on cases among students. Contract
tracing of cases in schools, such as Falk et al. (2021), Zimmerman et al. (2021), Willeit
et al. (2021), Brandal et al. (2021), and Ismail et al. (2020), often finds limited direct
spread among students. On the other hand, Vlachos, Herteg̊ard, and B. Svaleryd (2021)
finds that parents and teachers of students in open schools experience increases in infection
rates.

In columns (1)-(2) of Table 3, the estimated coefficients on K-12 school visits remain
positive and large in magnitude even after controlling for the mobility measures of returning
to work and being outside home which are mediator variables to capture the indirect effect
of school openings on case growth through its effect on mobility. The coefficient on K-12
school visits are approximately 75% as large in Table 3 as in Table 1. This suggests that
within-school transmission may be the primary channel through which school openings
affect the spread of COVID-19.
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One likely reason why college openings may increase cases is that students go out for bars
(KA et al., 2020; Chang et al., 2021), where properly wearing masks and practicing social
distancing are difficult. Table 2(b) presents how visits to restaurants and bars are associated
with colleges/universities from panel regressions using per-device visits to restaurants and
bars as outcome variables. These results indicate that bar visits are positively associated
with college visits, consistent with a hypothesis that the transmission of SARS-CoV-2 may
be partly driven by an increase in visits to bars by students.

Death Growth Regression. Many county-day observations report zero weekly deaths in
our data set (SI Appendix, Table S4 and Fig. S4(4)). We approximate the weekly death
growth rate by the log difference in weekly deaths, where the log of weekly deaths is replaced
with −1 when we observe zero weekly deaths. We also consider an alternative measure of
death growth rates by replacing the log of weekly deaths by 0 for zero weekly deaths. For
death growth regression, we use the sub-sample of larger counties by dropping 10 percent of
the smallest counties in terms of their population size for which zero weekly death happens
more frequently.

Fig. 4 illustrates the estimated coefficients of visits to colleges and K-12 schools across
different specifications for death growth regressions. SI Appendix, Table S3 presents the
estimates of death growth regression under baseline specification with a time lag of 21 days.4

Fig. 4(a) shows that the coefficient of visits to colleges and K-12 schools are positively
estimated for (1) baseline, (3) an alternative time lag of 35 days, (4) an alternative measure
of death growth, and adding more controls in (5)-(8), providing evidence that an increase
in visits to colleges and K-12 schools is positively associated with the subsequent increase
in weekly death growth rates. The magnitude of the estimated coefficient of K-12 school
visits becomes smaller when the time lag is set to 28 days in (2). Fig. 4(b) shows that the
association of K-12 school visits with death growth is stronger when no mask mandate for
staff is in place.

Limitations. Our study has the following limitations. First, our study is observational
and therefore should be interpreted with great caution. It only has a causal interpretation
in a structural model under exogeneity assumptions that might not hold in reality (see
the Model and Method in SI Appendix). While we present sensitivity analysis with a
variety of controls including county dummies and interactions of state dummies and week
dummies, the decisions to open K-12 schools and colleges/universities may be endogenous
and correlated with other unobserved time-varying county-level factors that affect the spread
of COVID-19. For example, people’s attitudes toward social distancing, hand-washing, and
mask-wearing may change over time (which we are not able to observe in the data) and their

4The time lag of 21 days is taken as a baseline to take into account the time lag of infection and death
reporting but we also report the estimates for the time lag of 28 and 35 days in specifications (2) and
(3). These choices of time lags are motivated by the numbers reported in Table 2 of https://www.cdc.

gov/coronavirus/2019-ncov/hcp/planning-scenarios.html. For the age group above 65, the days from
exposure to onset range up to 6 days; the interquartile range of days from symptom onset to death is given
by 8 and 21 days; the interquartile range of days from death to reporting is 5 and 44 days.
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changes may be correlated with school opening decisions beyond the controls we added to
our regression specifications.

Our analysis is also limited by the quality and the availability of the data as follows.
The reported number of cases is likely to understate true COVID-19 incidence, especially
among children and adolescents because they are less likely to be tested than adults given
that children exhibit milder or no symptoms.5 County-level testing data is not used because
of a lack of data although state-week fixed effects control for the weekly difference across
counties within the same state and we also control daily state-level test growth rates.

Because foot traffic data is constructed from mobile phone location data, the data on K-
12 school visits likely reflects the movements of parents and older children who are allowed
to carry mobile phones to schools and excludes those of younger children who do not own
mobile phones.6

Because COVID-infected children and adolescents are known to be less likely to be hospi-
talized or die from COVID, the consequence of transmission among children and adolescents
driven by school openings crucially depends on whether the transmission of SARS-CoV-2
from infected children and adolescents to the older population can be prevented.7 Our
analysis does not provide any empirical analysis on how school opening is associated with
the transmission across different age groups due to data limitations.8 Vlachos, Herteg̊ard,
and B. Svaleryd (2021) show that teachers in open schools experience higher COVID-19
infection rates compared to teachers in closed schools. They also show that this increase in
infection rate also occurs in partners of teachers and parents of students in open schools,
albeit to a lesser degree.

The impact of school openings on the spread of COVID-19 on case growth may be different
across counties and over time because it may depend not only on in-school mitigation
measures but also on contact tracing, testing strategies, and the prevalence of community
transmissions (Goldhaber-Fiebert, Studdert, and Mello, 2020; Ziauddeen et al., 2020). We
do not investigate how the association between school openings and case growths depends
on contact tracing and testing strategies at the county-level.

5This is consistent with CDC data which shows the lower testing volume and the higher rate of positive
test among children and adolescents than adults (Leidman et al., 2021).

6We also focus on limited Points-Of-Interest: K-12 schools, colleges and universities, restaurants, drinking
places, other recreational places including gyms, and churches. We check the robustness by including visits
to assisted living facilities for the elderly as well as nursing care facilities as additional controls but the
results are not sensitive to their inclusion.

7In the meta-analysis of 54 studies on the household transmission of SARS-CoV-2 Madewell et al. (2020),
estimated household secondary attack rate to child contacts was 16.8%. Miyahara et al. (2021) reports that
household secondary attack rate from children and adolescence to other family members was 23.8% and
higher than other age groups in Japan.

8CDC collects the data on the number of reported cases by age groups from each state whenever such
data is available. However, for many counties, the reported cases by age groups are missing or there exists a
substantial gap between the sum of cases across different age groups reported by CDC and the total number
of cases reported in NYT case data (see, for example, the case of Ingham, MI, in SI Appendix, Fig. S2).
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The result on the association between school opening and death growth in Fig. 4 is sug-
gestive but must be viewed with caution because the magnitude of the estimated coefficient
of K-12 school visits is sensitive to the assumption on the time lag from infection to death
reporting. The time lag between infection and death is stochastic and spreads over time,
making it difficult to uncover the relationship between the timing of school openings and
subsequent deaths. Furthermore, while we provide sensitivity analysis for how to handle
zero weekly deaths to approximate death growth, our construction of the death growth
outcome variable remains somewhat arbitrary.

Finally, our result does not necessarily imply that K-12 schools should be closed. Closing
schools have negative impacts on children’s learning and may cause declining mental healths
among children. The decision to open or close K-12 schools requires careful assessments of
the cost and the benefit.
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Figure 3. Sensitivity analysis for the estimated coefficients of K-12 visits
and college visits of case growth regressions: Debiased Estimator

(a) Case Growth Estimates

School
Visits

College
Visits

0.0 0.4 0.8 1.2
Estimated Coefficients

model

(1) Baseline

(2) Lag = 10

(3) Lag = 18

(4) Alt. Case Growth

(5) Past Cases

(6) Bars etc.

(7) Fulltime + Home

(8) All of (5)-(7)

(b) Case Growth Estimates with School Visits × No Mask

School
Visits

x No-Mask

School
Visits

College
Visits

0.0 0.4 0.8 1.2
Estimated Coefficients

model

(1) Baseline

(2) Lag = 10

(3) Lag = 18

(4) Alt. Case Growth

(5) Past Cases

(6) Bars etc.

(7) Fulltime + Home

(8) All of (5)-(7)

Notes: (a) presents the estimated of college visits and K-12 school visits with the 90 percent confidence intervals

across different specifications taking the column (1) of Table 1 as baseline. (b) presents the estimates of college visits

, K-12 school visits, and the interaction between K-12 school visits and no mask wearing requirement for staff taking
column (2) of Table 1 as baseline. The results are based on the debiased estimator. SI Appendix, Fig. S3 presents

the results based on the estimator without bias correction.
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Figure 4. Sensitivity analysis for the estimated coefficients of K-12 visits
and college visits of death growth regressions: Debiased Estimator

(a) Death Growth Estimates

School
Visits

College
Visits

0.00 0.25 0.50
Estimated Coefficients

model

(1) Baseline, Lag = 21

(2) Lag = 28

(3) Lag = 35

(4) Alt. Death Growth

(5) Past Deaths

(6) Bars etc.

(7) Fulltime + Home

(8) All of (5)-(7)

(b) Death Growth Estimates with School Visits × No Mask

School
Visits

x No-Mask

School
Visits

College
Visits

-0.25 0.00 0.25 0.50
Estimated Coefficients

model

(1) Baseline, Lag=21

(2) Lag = 28

(3) Lag = 35

(4) Alt. Death Growth

(5) Past Deaths

(6) Bars etc.

(7) Fulltime + Home

(8) All of (5)-(7)

Notes: (a) presents the estimated of college visits and K-12 school visits with the 90 percent confidence intervals
across different specifications taking the column (1) of SI Appendix, Table S3 as baseline. (b) presents the estimates

of college visits , K-12 school visits, and the interaction between K-12 school visits and no mask wearing requirement

for staff taking column (2) of SI Appendix, Table S3 as baseline.
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Materials and Methods

Data. Cases and the deaths for each county are obtained from the New York Times. Safe-
Graph provides foot traffic data based on a panel of GPS pings from anonymous mobile
devices. Per-device visits to K-12 schools, colleges/universities, restaurants, bars, recre-
ational places, and churches are constructed from the ratio of daily device visits to these
point-of-interest locations to the number of devices residing in each county. Full-time and
part-time workplace visits are the ratio of the number of devices that spent more than 6
hours and between 3 to 6 hours, respectively, at one location other than one’s home loca-
tion to the total number of device counts. Staying home device variable is the ratio of the
number of devices that do not leave home locations to the total number of device counts.

MCH Strategy Data provides information on the date of school openings with different
teaching methods (in-person, hybrid, and remote) as well as mitigation strategies at 14703
school districts. We link school district-level MCH data to county-level data from NYT
and SafeGraph using the file for School Districts and Associated Counties at US Census
Bureau. School district data is aggregated up to county using the enrollment of students
at the district level. Specifically, we construct the proportion of students with different
teaching methods for each county-day observation using the district level information on
school opening dates and teaching methods. We also construct a county-level dummy
variable of “No mask requirement for staff” which takes a value of 1 if there exists at least
one school district without any mask requirement for staff and 0, otherwise. Our regressors
are 7 days moving averages of these variables. A substantial fraction of school districts
report “unknown” or “pending” for teaching methods and mask requirements. We drop
county observations for which more than 50 percent of students attend school districts that
report unknown or pending for teaching methods or mask requirements when these variables
are included in regressors.

NPIs data on stay-at-home orders and gathering bans is from Jie Ying Wu Killeen et al.
(2020) while the data on mask policies is from Wright et al. (2020). These NPI data contain
information up to the end of July; in our regression analysis, we set the value of these policy
variables after August to be the same as the value of the last day of observations. Cases by
age groups for Fig. 2 is from CDC. SI Appendix, Tables S5-S6 present summary statistics
and correlation matrix. Fig. S4. presents the evolution of percentiles of these variables over
time.

Methods. Our research design closely follows Chernozhukov, Kasahara, and Schrimpf
(2021). Fig. 5 is a causal path diagram for our model that describes how policies, be-
havior, and information interact together:

• The forward health outcome, Yi,t+`, is determined last after all other variables have
been determined;
• The policies, Pit, affect health outcome Yi,t+` either directly, or indirectly by altering

human behavior Bit, which may be only partially observed;
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Figure 5. The causal path diagram for our model

Pit

Iit Yi,t+`

Bit

Iit

Wit

1

• Information variables, Iit, such as lagged values of outcomes can affect human be-
havior and policies, as well as outcomes;
• The confounders Wit, which vary across counties and time, affect all other variables;

these include unobserved but estimable county, time, state, state-week effects.

The index i denotes the county i, and t and t+` denotes the time, where ` represents the
time lag between infection and case confirmation or death. Our health outcomes are the
growth rates in Covid-19 cases and deaths and policy variables include school reopening in
various modes, mask mandates, ban gathering, and stay-at-home orders, and the informa-
tion variables include lagged values of outcome (as well as other variables described in the
sensitivity analysis).

The causal structure allows for the effect of the policy to be either direct or indirect.
For example, school openings not only directly affect case growth through the within-school
transmission but also indirectly affect case growth by increasing parents’ mobility. The
structure also allows for changes in behavior to be brought by the change in policies and
information. The information variables, such as the number of past cases, can cause people
to spend more time at home, regardless of adopted policies; these changes in behavior, in
turn, affect the transmission of SARS-CoV-2.

Our measurement equation will take the form:

∆ log(∆Cit) = X ′i,t−14θ + δT∆ log(Tit) + εit,

where i is county, t is day, ∆Cit is weekly confirmed cases over 7 days, Tit is the number
of tests over 7 days, ∆ is a 7-day differencing operator, εit is an unobserved error term.
Xi,t−14 collects other behavioral, policy, and confounding variables, where the lag of 14
days captures the time lag between infection and confirmed case (see MIDAS (2020)). In
SI Appendix, we relate this specification to the SIRD model.

The main regressors of interest are the visits to K-12 schools and colleges/universities
as well as the K-12 school opening variables with different teaching methods together with

86

Co
vi

d 
Ec

on
om

ic
s 7

0,
 2

5 
Fe

br
ua

ry
 2

02
1: 

70
-1

08



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

their interactions with mask requirements for staff. As confounders, Xi,t−14 includes a set
of county dummies and a set of all interaction terms between state dummies and week
dummies. We also consider 2, 3, and 4 weeks lagged log values of weekly cases as well as
three NPI policy variables. The growth rate of tests, ∆ log(Tit), is captured by the observed
growth rate of tests at state-level as well as interaction terms between state dummy variables
and week dummy variables. The standard errors are computed by clustering at the state-
level, where its rationale is that the county-level stochastic shocks may be correlated across
counties especially within the state.

Our specification effectively contains the lagged dependent variables in a set of regressors
because the log of past weekly cases with different lag lengths can be transformed into the
log-differences of past weekly cases. Our model is a dynamic panel regression model in
which the fixed effects estimator with a set of county dummies may result in the Nickell
bias (Nickell, 1981). To eliminate the bias, we construct an estimator with bias correction
as follows.

Given our panel data with sample size (N,T ), denote a set of counties byN = {1, 2, ..., N}.
We randomly and repeatedly partition N into two sets as N j

1 and N j
2 = N \ N j

1 for

j = 1, 2, ..., J , where N j
1 and N j

2 (approximately) contain the same number of counties. For
each of j = 1, ..., J , consider two sub-panels (where i stands for county and t stands for the

day) defined by Sj1 = Sj11 ∪ Sj22 and Sj2 = Sj12 ∪ Sj21 with Sj1k = {(i, t) : i ∈ Nk, t ≤ dT/2e}
and Sj2k = {(i, t) : i ∈ Nk, t ≥ bT/2 + 1c} for k = 1, 2, where d.e and b.c are the ceiling and
floor functions. We form the estimator with bias correction as

β̂BC := β̂ − (β̂ − β̃)︸ ︷︷ ︸
bias estimator

= 2β̂ − β̃ with β̃ :=
1

J

J∑
j=1

β̃
Sj1∪S

j
2
,

where β̂ is the standard estimator with a set of N county dummies while β̃
Sj1∪S

j
2

denotes the

estimator using the data set Sj1∪Sj2 but treats the counties in Sj1 differently from those in Sj2
to form the estimator— namely, we include approximately 2N county dummies to compute

β̃
Sj1∪S

j
2
. We choose J = 2 in our empirical analysis.9 We report asymptotic standard errors

with state-level clustering, justified by the standard asymptotic theory of bias-corrected
estimators.

9For some specifications, we also experimented with J = 5 and obtained the results similar to those with
J = 2.
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Table 2. The Association of School/College Openings with Mobility in the
United States: Debiased Estimator

(a) Full-time Workplace Visits and Staying Home Devices

Dependent variable
Full Time Full Time Stay Home Stay Home

(1) (2) (3) (4)

College Visits −0.080∗∗∗ −0.098∗∗∗ −0.207∗∗∗ −0.207∗∗∗

(0.004) (0.006) (0.024) (0.026)
K-12 School Visits 0.078∗∗∗ −0.061∗∗

(0.006) (0.026)
Open K-12 In-person 0.999∗∗∗ −2.271∗∗∗

(0.125) (0.382)
Open K-12 Hybrid 0.509∗∗∗ 0.094

(0.051) (0.186)
Open K-12 Remote 0.211∗∗∗ 0.159

(0.048) (0.307)

Observations 670,909 595,886 670,909 595,886
R2 0.870 0.853 0.889 0.888

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

(b) Visits to Restaurants and Bars

Dependent variable
Restaurants Restaurants Bars Bars

(1) (2) (3) (4)

College Visits 0.064 0.034 0.016∗∗∗ 0.012∗∗

(0.053) (0.051) (0.006) (0.005)
K-12 School Visits 0.006 0.008

(0.046) (0.006)
Open K-12 In-person −1.367∗∗∗ −0.177∗∗∗

(0.404) (0.041)
Open K-12 Hybrid −1.162∗∗∗ −0.097∗∗∗

(0.272) (0.038)
Open K-12 Remote −0.512∗ 0.031

(0.295) (0.056)

Observations 670,909 595,886 670,909 595,886
R2 0.881 0.883 0.807 0.807

Notes: All regression specifications include county fixed effects, state-week fixed effects, three NPIs variables, and

the log of cases without lag, lagged by 1 and 2 weeks. See SI Appendix, Table S1 for the estimated coefficients for

NPIs and the log of current and past cases. The debiased estimator is used. Clustered standard errors at the state
level are reported in the bracket. SI Appendix, Table S2 reports the estimates for NPIs and past cases. ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01
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Table 3. The Association of School/College Openings, Full-time/Part-time
Work, and Staying Home with Case Growth in the United States: Debiased
Estimator

Dependent variable: Case Growth Rates
(1) (2) (3) (4)

College Visits, 14d lag 0.060 0.012 0.114∗ 0.010
(0.071) (0.072) (0.065) (0.075)

K-12 Visits, 14d lag 0.393∗∗∗ 0.283∗∗∗

(0.075) (0.087)
K-12 Visits × No-Mask 0.287∗∗∗

(0.071)
K-12 In-person, 14d lag 0.015 −0.007

(0.016) (0.020)
K-12 Hybrid, 14d lag −0.028∗∗ −0.055∗∗∗

(0.013) (0.013)
K-12 Remote, 14d lag −0.094∗∗∗ −0.115∗∗∗

(0.015) (0.014)
K-12 In-person × No-Mask 0.034∗

(0.020)
K-12 Hybrid × No-Mask 0.043∗∗∗

(0.017)
Full-time Work Device, 14d lag −0.117 0.186 0.956∗∗ 0.967∗∗

(0.417) (0.490) (0.384) (0.436)
Part-time Work Device, 14d lag 0.262 0.466 0.820∗∗∗ 0.915∗∗∗

(0.259) (0.305) (0.276) (0.309)
Staying Home Device, 14d lag −0.290∗∗∗ −0.283∗∗∗ −0.352∗∗∗ −0.332∗∗∗

(0.057) (0.069) (0.061) (0.067)
Observations 690,297 545,131 612,963 528,941
R2 0.092 0.093 0.092 0.094

Notes: Dependent variable is the log difference in weekly positive cases across 2 weeks. All regression specifications

include county fixed effects and state-week fixed effects, three NPIs, and 2, 3, and 4 weeks lagged log of cases. See SI

Appendix, Table S3 for the estimated coefficients for NPIs and the log of current and past cases. The debiased fixed
effects estimator is applied. Asymptotic clustered standard errors at the state level are reported in the bracket.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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2. Supplementary Information Appendix

The Model and Methods.

The Structural Causal Model. Our approach draws on the framework presented in our previ-
ous paper Chernozhukov, Kasahara, and Schrimpf (2021). Here we summarize the approach
for completeness, highlighting the main difference (here we do not assume that all relevant
social distancing behavioral variables are observed).

We begin with a qualitative description of the model via a causal path diagram shown
in Figure 6, which describes how policies, behavior, and information interact together:

• The forward health outcome, Yi,t+`, is determined last, after all other variables have
been determined;
• The adopted vector of policies, Pit, affect health outcome Yi,t+` either directly, or

indirectly by altering individual distancing and other precautioanry behavior Bit,
which may be only partially observed;
• Information variables, Iit, such as lagged values of outcomes and other lagged ob-

servable variables (see robustness checks) can affect human behavior and policies,
as well as outcomes;
• The confounding factors Wit, which vary across counties and time, affect all other

variables; these include unobserved though estimable county, time, state, state-week
effects.

The index i denotes observational unit, the county, and t and t+ ` denotes the time, where
` represents the typical time lag between infection and case confirmation or death.

Pit

Iit Yi,t+`

Bit

Iit

Wit

Figure 6. The causal path diagram for our model.

Our main outcomes of interest are the growth rates in Covid-19 cases and deaths and
policy variables include school reopening in various modes, mask mandates, ban gathering,
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and stay-at-home orders, and the information variables include lagged values of outcome
(as well as other variables described in the sensitivity checks).

The role of behavioral variables in the model is two-fold. First, the presence of these vari-
ables in the model requires us to control for the information variables – even when informa-
tion variables affect outcomes only through policies or behavior. In this case conditioning
on the information blocks the backdoor path (see, Pearl (2009)) creating confounding

Yi,t+` ←− Bit ←− Iit −→ Pit.

Therefore conditioning on the information is important even when there is no direct effect
Iit −→ Yi,t+`. This observation motivates our main dynamic specification below, where
information variables include lagged growth rates and new cases or new deaths per capita.
Second, while not all behavioral variables may be observable, we can still study as the matter
of supporting analysis, the effects of policies on observed behavioral variables (the portion of
time in workplace, restaurants, and bars) and of behavioral variables on outcomes, thereby
gaining insight as to whether policies have changed private behavior and to what extent
this private behavior changed the outcomes (for the analysis, of early pandemic data in this
vein, see our previous paper).

The causal structure allows for the effect of the policy to be either direct or indirect.
The structure also allows for changes in behavior to be brought by the change in policies
and information. These are all realistic properties that we expect from the context of
the problem. Policies such as closures and reopenings of schools, closures or reopening of
non-essential business, and restaurants, affect the behavior in strong ways. In contrast,
policies such as mandating employees to wear masks can potentially affect the Covid-19
transmission directly. The information variables, such as recent growth in the number of
cases, can cause people to spend more time at home, regardless of adopted policies; these
changes in behavior, in turn, affect the transmission of Covid-19.

The causal ordering induced by this directed acyclical graph is determined by the follow-
ing timing sequence:

(1) information and confounders get determined at t,
(2) policies are set in place, given information and confounders at t;
(3) behavior is realized, given policies, information, and confounders at t;
(4) outcomes get realized at t+` given policies, behavior, information, and confounders.

The model also allows for direct dynamic effects of information variables on the outcome
through autoregressive structures that capture persistence in growth patterns. We do not
highlight these dynamic effects and only study the short-term effects (longer-run effects get
typically amplified; see our previous paper Chernozhukov, Kasahara, and Schrimpf (2021)
for more details.)
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Our quantitative model for causal structure in Figure 6 is given by the following econo-
metric structural equation model:

Yi,t+`(b, p, ι) :=α′b+ π′p+ µ′ι+ δ′YWit + εyit,

Bit(p, ι) :=β′p+ γ′ι+ δ′BWit + εbit,

Pit(ι) :=p(η′ι,Wit, ε
p
it),

(SEM)

which is a collection of structural potential response functions (potential outcomes), where
the stochastic schocks are decomposed into an observable part δ′W and unobservable part
ε. Lower case letters ι, b and p denote the potential values of information, behavior, and
policy variables. The restrictions on shocks are described below.

The observed outcomes, policy, and behavior variables are generated by setting ι = Iit
and propagating the system from the last equation to the first:

Yi,t+` :=Yi,t+`(Bit, Pit, Iit),

Bit :=Bit(Pit, Iit),

Pit :=Pit(Iit).

The orthogonality restrictions on the stochastic components are as follows: The stochastic
shocks εyit and εpit are centered and furthermore,

εyit ⊥ (εbit, Pit,Wit, Iit),

εbit ⊥ (Pit,Wit, Iit),

εpit ⊥⊥ (Wit, Iit),

(O)

where we say that V ⊥ U if EV U = 0. This is a standard way of representing restrictions
on errors in structural equation modeling. The last equation states that variation in policies
is exogenous conditionally on confounders and information variables.

The system above together with orthogonality restrictions (O) implies the following col-
lection of stochastic equations for realized variables:

Yi,t+` = α′Bit + π′Pit + µ′Iit + δ′YWit + εyit, εyit ⊥ Bit, Pit, Iit,Wit (BPI→Y)

Bit = β′Pit + γ′Iit + δ′BWit + εbit, εbit ⊥ Pit, Iit,Wit (PI→B)

As discussed below, the information variable includes case growth. Therefore, the or-
thogonality restriction εyit ⊥ Pit holds if the government does not have knowledge on future
case growth beyond what is predicted by the information set and the confounders; even
when the government has some knowledge on εyit, the orthogonality restriction may hold if
there is a time lag for the government to implement its policies based on εyit.

We stress that our main analysis does not require all components of Bit to be observable.

Main Implication. The model stated above implies the following projection equation:
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Yi,t+` = a′Pit + b′Iit + c′Wit + ε̄it, ε̄it ⊥ Pit, Iit,Wit, (PI→Y)

where

a′ := (α′β′ + π′), b′ := (α′γ′ + µ′), c′ := (α′δ′B + δ′Y )

This follows immediately from plugging equation (PI → B) to equation (BPI → Y) and
verifying that the composite stochastic shock ε̄it obeys the orthogonality condition stated
in (PI→Y).

The main parameter of interest is the structural causal effect of the policy:

a′ = (α′β′ + π′).

It comprises direct policy effect π′ as well as the indirect effect α′β′, realized by the policy
changing observed and unobserved behavior variables Bit. This coefficient a and b can
estimated directly using the dynamic panel data methods described in more detail below.

As additional analysis, we can estimate the determinants for the observed behavioral
mobility measures– the observed part of Bit.

Identification and Parameter Estimation. The orthogonality equations imply that the main
equation is the projection equation, and parameters a and b are identified if Pit and Iit have
sufficient variation left after partialling out the effect of controls:

Ỹi,t+` =a′P̃it + c′Ĩit + ε̄it, ε̄it ⊥ P̃it, Ĩit, (1)

where Ṽit = Vit−W ′itE[WitW
′
it]
−E[WitVit] denotes the residual after removing the orthogonal

projection of Vit on Wit. The residualization is a linear operator, implying that (1) follows
immediately from the above. The parameters of (1) are identified as projection coefficients
in these equations, provided that residualized vectors have non-singular variance matrix:

Var(P̃ ′it, Ĩ
′
it) > 0. (2)

Our main estimation method is the fixed effects estimator, where the county, state, state-
week effects are treated as unobserved components of Wit and estimated directly from the
panel data, so they are rendered (approximately) observable once the history is sufficiently
long. The stochastic shocks {εit}Tt=1 are treated as independent across states and can be
arbitrarily dependent across time t within a state. In other words, the standard errors will
be clustered at the state level. When histories are not long, substantial biases emerge from

working with the estimated version Ŵit of Wit (known as the Nickel bias (Nickell, 1981)) and
they need to be removed using debiasing methods. In our context, debiasing changes the
magnitudes of the original biased fixed effect estimator but does not change the qualitative
conclusions reached without any debiasing.
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Formulating Outcome and Key Confounders via SIR model. Letting Cit denote
the cumulative number of confirmed cases in county i at time t, our outcome

Yit = ∆ log(∆Cit) := log(∆Cit)− log(∆Ci,t−7) (3)

approximates the weekly growth rate in new cases from t − 7 to t.10 Here ∆ denotes the
differencing operator over 7 days from t to t− 7, so that ∆Cit := Cit−Ci,t−7 is the number
of new confirmed cases in the past 7 days.

We chose this metric as this is the key metric for policymakers deciding when to relax
Covid mitigation policies. The U.S. government’s guidelines for state reopening recommend
that states display a “downward trajectory of documented cases within a 14-day period”
(White House, 2020). A negative value of Yit is an indication of meeting these criteria for
reopening. By focusing on weekly cases rather than daily cases, we smooth idiosyncratic
daily fluctuations as well as periodic fluctuations associated with the days of the week.

Our measurement equation for estimating equations (BPI→Y) and (PI→Y) will take the
form:

∆ log(∆Cit) = X ′i,t−14θ + δT∆ log(Tit) + εit, (M-C)

where i is county, t is day, Cit is cumulative confirmed cases, Tit is the number of tests over
7 days, ∆ is a 7-days differencing operator, εit is an unobserved error term. Xi,t−14 collects
other behavioral, policy, and confounding variables, depending on whether we estimate
(BPI→Y) or (PI→Y), where the lag of 14 days captures the time lag between infection and
confirmed case (see MIDAS (2020)). Here

∆ log(Tit) := log(Tit)− log(Ti,t−7)

is the key confounding variable, derived from considering the SIR model below. We describe
other confounders in the empirical analysis section.

Our main estimating equation (M-C) is motivated by a variant of SIR model, where we
add confirmed cases and infection detection via testing. Let S, I, R, and D denote the
number of susceptible, infected, recovered, and dead individuals in a given state. Each of
these variables are a function of time. We model them as evolving as

Ṡ(t) = −S(t)

N
β(t)I(t) (4)

İ(t) =
S(t)

N
β(t)I(t)− γI(t) (5)

Ṙ(t) = (1− κ)γI(t) (6)

Ḋ(t) = κγI(t) (7)

where N is the population, β(t) is the rate of infection spread, γ is the rate of recovery or
death, and κ is the probability of death conditional on infection.

10We may show that log(∆Cit) − log(∆Ci,t−7) approximates the average growth rate of cases from t− 7
to t.
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Confirmed cases, C(t), evolve as

Ċ(t) = τ(t)I(t), (8)

where τ(t) is the rate that infections are detected.

Our goal is to examine how the rate of infection β(t) varies with observed policies and
measures of social distancing behavior. A key challenge is that we only observed C(t) and
D(t), but not I(t). The unobserved I(t) can be eliminated by differentiating (8) and using
(5) as

C̈(t)

Ċ(t)
=
S(t)

N
β(t)− γ +

τ̇(t)

τ(t)
. (9)

We consider a discrete-time analogue of equation (9) to motivate our empirical specification

by relating the detection rate τ(t) to the number of tests Tit while specifying S(t)
N β(t) as a

linear function of variables Xi,t−14. This results in

∆ log(∆Cit)

C̈(t)

Ċ(t)

= X ′i,t−14θ + εit

S(t)
N

β(t)−γ

+ δT∆ log(T )it
τ̇(t)
τ(t)

which is equation (M-C), where Xi,t−14 captures a vector of variables related to β(t).

Structural Interpretation. The component X ′i,t−14θ is the projection

of βi(t)Si(t)/Ni(t)− γ on Xi,t−14 (including testing variable).

Growth Rate in Deaths as Outcome. By differentiating (7) and (8) with respect to
t and using (9), we obtain

D̈(t)

Ḋ(t)
=
C̈(t)

Ċ(t)
− τ̇(t)

τ(t)
=
S(t)

N
β(t)− γ. (10)

Our measurement equation for the growth rate of deaths is based on equation (10) but
account for a 21 day lag between infection and death as

∆ log(∆Dit) = X ′i,t−21θ + εit, (M-D)

where

∆ log(∆Dit) := log(∆Dit)− log(∆Di,t−7) (11)

approximates the weekly growth rate in deaths from t−7 to t in state i. Sensitivity analysis
also provides results for the case of 28 and 35 lag.

Debiased Fixed Effects Dynamic Panel Data Estimator. We apply Jackknife bias
corrections; see Chen et al. (2020) and Hahn and Newey (2004) for more details. Here, we
briefly describe the debiased fixed effects estimator we use.

Given our panel data with sample size (N,T ), denote a set of counties byN = {1, 2, ..., N}.
We randomly and repeatedly partition N into two sets as N j

1 and N j
2 = N \ N j

1 for

j = 1, 2, ..., J , where N j
1 and N j

2 (approximately) contain the same number of counties. For
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each of j = 1, ..., J , consider two sub-panels (where i stands for county and t stands for the
day) defined by

Sj1 = Sj11 ∪ Sj22 and Sj2 = Sj12 ∪ Sj21

with Sj1k = {(i, t) : i ∈ Nk, t ≤ dT/2e} and Sj2k = {(i, t) : i ∈ Nk, t ≥ bT/2+1c} for k = 1, 2,

where d.e and b.c are the ceiling and floor functions. Each of these two subpanels, Sj1 and

Sj2, includes observations for all cross-sectional units and time periods.

We form the estimator with bias-correction as

β̂BC := 2β̂ − β̃ with β̃ :=
1

J

J∑
j=1

β̃
Sj1∪S

j
2
,

where β̂ is the standard estimator with a set of N county dummies while β̃
Sj1∪S

j
2

denotes

the estimator using the data set Sj1 ∪Sj2 but treats the counties in Sj1 differently from those

in Sj2 to form the estimator— namely, we include approximately 2N county dummies to

compute β̃
Sj1∪S

j
2
. Thus, (β̂ − β̃) is the approximation to the bias of β̂, subtracting which

from β̂ gives the formula given above. We set J = 2 in our empirical analysis. When we
choose J = 5 for some specifications, we obtained similar results.

An alternative jacknife bias-corrected estimator is β̂CBC = 2β̂ − 1
J

∑J
j=1(β̃

Sj1
+ β̃

Sj2
)/2,

where β̃
Sjk

denotes the fixed effect estimator using the subpanel Sjk for k = 1, 2. In our

empirical analysis, these two cross-over jackknife bias corrected estimators give similar re-
sult; in simulation experiments, the first form performed somewhat better, so we settled
out choice on it.

We report asymptotic standard errors with state-level clustering, justified by the standard
asymptotic theory of bias corrected estimators. The rationale for state-level clustering is
that the stochastic shocks in the model can be correlated across counties, especially within
the state. A simple way to model this is to allow for the arbitrary within-state correlation
and adjust the standard errors to account for this (state-level clustering).
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Table S1. The Association of School/College Openings and NPI Policies
with Case Growth in the United States: Standard Fixed Effects Estimator
without Bias Correction

Dependent variable: Case Growth Rates
(1) (2) (3) (4)

College Visits, 14d lag 0.359∗∗∗ 0.412∗∗∗ 0.326∗∗∗ 0.371∗∗∗

(0.071) (0.073) (0.064) (0.076)
K-12 Visits, 14d lag 0.393∗∗∗ 0.429∗∗∗

(0.070) (0.070)
K-12 Visits × No-Mask 0.100

(0.070)
K-12 In-person, 14d lag 0.062∗∗∗ 0.062∗∗∗

(0.017) (0.021)
K-12 Hybrid, 14d lag 0.040∗∗∗ 0.033∗∗

(0.014) (0.013)
K-12 Remote, 14d lag 0.030∗ 0.027∗

(0.016) (0.015)
K-12 In-person × No-Mask 0.009

(0.019)
K-12 Hybrid × No-Mask 0.032∗

(0.017)
Mandatory mask 14d lag −0.006 −0.006 −0.015 −0.017

(0.018) (0.017) (0.020) (0.019)
Ban gatherings 14d lag −0.066∗ −0.068 −0.068∗∗ −0.067

(0.033) (0.044) (0.033) (0.042)
Stay at home 14d lag −0.203∗∗∗ −0.198∗∗∗ −0.200∗∗∗ −0.200∗∗∗

(0.031) (0.039) (0.034) (0.040)
log(Cases), 14d lag −0.088∗∗∗ −0.092∗∗∗ −0.088∗∗∗ −0.092∗∗∗

(0.009) (0.010) (0.010) (0.010)
log(Cases), 21d lag −0.042∗∗∗ −0.043∗∗∗ −0.043∗∗∗ −0.043∗∗∗

(0.005) (0.005) (0.005) (0.005)
log(Cases), 28d lag −0.017∗∗∗ −0.020∗∗∗ −0.018∗∗∗ −0.021∗∗∗

(0.003) (0.003) (0.004) (0.004)
Test Growth Rates 0.009∗∗ 0.008∗ 0.009∗∗ 0.009∗

(0.004) (0.004) (0.004) (0.004)
County Dummies Yes Yes Yes Yes
State× Week Dummies Yes Yes Yes Yes
Observations 690,297 545,131 612,963 528,941
R2 0.092 0.093 0.092 0.094

Notes: Dependent variable is the log difference in weekly positive cases across 2 weeks. Regressors are 7-day moving

averages of corresponding daily variables and lagged by 2 weeks to reflect the time between infection and case

reporting except that we don’t take any lag for the log difference in test growth rates. All regression specifications
include county fixed effects and state-week fixed effects to control for any unobserved county-level factors and

time-varying state-level factors such as various state-level policies as well as 2, 3, and 4 weeks lagged log of cases.

The standard fixed effects estimator without bias-correction is applied. Asymptotic clustered standard errors at the
state level are reported in the bracket. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure S1. Average weekly cases and deaths are associated with different
modes of opening K-12 schools, visits to K-12 schools, and visits to col-
leges/universities

(a) K-12 School Visits (b) Restaurant Visits (c) Recreation Facilitiy Visits (d) Church Visits
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Notes: (a)-(h) plot the evolution of corresponding variables in the title before and after the day of school openings

and corresponding to figures reported in Fig. 1(c)(d) in the main text. (i)-(p) corresponds to Fig.(a)(b) and plot the

evolution of weekly cases or deaths per 1000 persons averaged across counties within each group of counties classified
by K-12 school teaching methods and different mitigation strategies (mask requirements for students, mask

requirements for staffs, allowing for sports activities, and increase in online instructions) against the days since K-12

school opening. In (i) and (m), counties that implement in-person teaching are classified into “In-person/Yes-Mask”
and “In-person/No-Mask” based on whether at least one school district requires students to wear masks or not. In

(k) and (o), counties that implement in-person teaching are classified into “In-person/Yes-Sports” and

“In-person/No-Sports” based on whether at least one school district requires students to allow sports activities or
not. In (l) and (p), counties that implement in-person teaching are classified into “In-person/No-Online” and

“In-person/Yes-Online” based on whether at least one school district answer that no increase in online instruction.
(q)-(x) are similar to (i)-(p) but classify counties by the volume of per-device K-12 school visits and take the

calendar dates instead of the days since opening schools as x-axis, where ”Low,” ”Middle,” and ”High” are

county-day observations of which 14 days lagged per-device K-12 school visits less than the first quartile, between
the first and the third quartiles, and larger than the third quartile, respectively. In (q) and (u), ”Low/No-Mask,”

”Middle/No-Mask,” and ”High/No-Mask” are a subset of low, middle, and high visits groups of counties for which

at least one school district does not require students to wear masks.
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COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Figure S2. The number of cases by age groups and the number of visits
to colleges/universities, bars, restaurants, recreation facilities, K-12 schools,
and a comparison of reported cases between CDC and NYT data
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Notes: Figure corresponds to Fig. 2 in the main text but for Pima, AZ, Ingham, MI, Centre, PA, Story, IA, and

Champaign, IL. Across various counties, we also report the evolution of visits to recreation facilities and K-12 school

visits. The last panel at the bottom compares the sum of weekly cases across all age groups reported in CDC
dataset with the weekly reported case in NYT dataset.
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COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Figure S3. Sensitivity analysis for the estimated coefficients of K-12 vis-
its and college visits of case growth regressions: Estimator without Bias
Correction

(a) Case Growth Estimates
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(b) Case Growth Estimates with School Visits × No Mask
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Notes: These figures corresponds to Fig. 3 of the main text but report the result of the
(standard) fixed effects estimator without bias correction.
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COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Figure S4. Evolution of Cases/Deaths per 1000 Persons, Case/Death
Growth, Visits to K-12 Schools, Colleges, Restaurants, Bars, Gyms,
Churches, K-12 School Opening Modes, and NPIs across U.S. counties
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Notes: (1)-(10) report the evolution of various percentiles of corresponding variables in
the title over time. (10) reports the proportion of counties that open K-12 schools with
different teaching methods including “Unknown” over time while (11) reports the
proportion of counties that implement three NPIs over time.
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Table S2. The Association of School/College Openings with Mobility in
the United States: All Estimates

(a) Full-time Workplace Visits and Staying Home Devices

Dependent variable
Full Time Full Time Stay Home Stay Home

(1) (2) (3) (4)
College Visits −0.080∗∗∗ −0.098∗∗∗ −0.207∗∗∗ −0.207∗∗∗

(0.004) (0.006) (0.024) (0.026)
K-12 School Visits 0.078∗∗∗ −0.061∗∗

(0.006) (0.026)
Open K-12 In-person 0.999∗∗∗ −2.271∗∗∗

(0.125) (0.382)
Open K-12 Hybrid 0.509∗∗∗ 0.094

(0.051) (0.186)
Open K-12 Remote 0.211∗∗∗ 0.159

(0.048) (0.307)
Mandatory mask −0.152∗∗∗ −0.306∗∗∗ 0.204 0.222

(0.042) (0.053) (0.260) (0.250)
Ban gatherings 0.067 0.097∗ 0.870 0.754

(0.047) (0.051) (0.561) (0.521)
Stay at home −0.039 −0.028 2.881∗∗∗ 2.895∗∗∗

(0.031) (0.033) (0.330) (0.340)
log(Cases), 14d lag 0.004 0.007 0.273∗∗∗ 0.273∗∗∗

(0.004) (0.005) (0.028) (0.028)
log(Cases), 21d lag 0.002 −0.001 0.283∗∗∗ 0.281∗∗∗

(0.002) (0.003) (0.019) (0.017)
log(Cases), 28d lag 0.006∗∗∗ 0.005∗ 0.221∗∗∗ 0.215∗∗∗

(0.002) (0.002) (0.023) (0.024)
County Dummies Yes Yes Yes Yes
State× Week Dummies Yes Yes Yes Yes
Observations 670,909 595,886 670,909 595,886
R2 0.870 0.853 0.889 0.888

(b) Visits to Restaurants and Bars

Dependent variable
Restaurants Restaurants Bars Bars

(1) (2) (3) (4)
College Visits 0.064 0.034 0.016∗∗∗ 0.012∗∗

(0.053) (0.051) (0.006) (0.005)
K-12 School Visits 0.006 0.008

(0.046) (0.006)
Open K-12 In-person −1.367∗∗∗ −0.177∗∗∗

(0.404) (0.041)
Open K-12 Hybrid −1.162∗∗∗ −0.097∗∗∗

(0.272) (0.038)
Open K-12 Remote −0.512∗ 0.031

(0.295) (0.056)
Mandatory mask 0.542 0.037 0.191∗∗∗ 0.113

(0.371) (0.403) (0.067) (0.069)
Ban gatherings 0.067 0.135 −0.066 −0.070

(0.920) (0.897) (0.117) (0.118)
Stay at home −2.232∗∗∗ −2.170∗∗∗ −0.228∗∗∗ −0.204∗∗∗

(0.203) (0.241) (0.025) (0.025)
log(Cases), 14d lag −0.096∗∗ −0.072 −0.010∗ −0.004

(0.047) (0.050) (0.006) (0.007)
log(Cases), 21d lag −0.084∗∗∗ −0.087∗∗∗ −0.011∗∗ −0.009∗

(0.032) (0.032) (0.005) (0.005)
log(Cases), 28d lag −0.150∗∗∗ −0.161∗∗∗ −0.014∗∗ −0.015∗∗∗

(0.043) (0.042) (0.005) (0.005)
County Dummies Yes Yes Yes Yes
State× Week Dummies Yes Yes Yes Yes
Observations 670,909 595,886 670,909 595,886
R2 0.881 0.883 0.807 0.807

Notes: These tables report the omitted estimates of Table 2 in the main text. All regression specifications include
county fixed effects and state-week fixed effects. The debiased estimator is used. Clustered standard errors at the

state level are reported in the bracket. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S3. The Association of School/College Openings, NPI Policies, Full-
time/Part-time Work, and Staying Home Devices with Case Growth in the
United States: Debiased Fixed Effects Estimator

Dependent variable: Case Growth Rates
(1) (2) (3) (4)

College Visits, 14d lag 0.060 0.012 0.114∗ 0.010
(0.071) (0.072) (0.065) (0.075)

K-12 Visits, 14d lag 0.393∗∗∗ 0.283∗∗∗

(0.075) (0.087)
K-12 Visits × No-Mask 0.287∗∗∗

(0.071)
K-12 In-person, 14d lag 0.015 −0.007

(0.016) (0.020)
K-12 Hybrid, 14d lag −0.028∗∗ −0.055∗∗∗

(0.013) (0.013)
K-12 Remote, 14d lag −0.094∗∗∗ −0.115∗∗∗

(0.015) (0.014)
K-12 In-person × No-Mask 0.034∗

(0.020)
K-12 Hybrid × No-Mask 0.043∗∗∗

(0.017)
Full-time Work Device, 14d lag −0.117 0.186 0.956∗∗ 0.967∗∗

(0.417) (0.490) (0.384) (0.436)
Part-time Work Device, 14d lag 0.262 0.466 0.820∗∗∗ 0.915∗∗∗

(0.259) (0.305) (0.276) (0.309)
Staying Home Device, 14d lag −0.290∗∗∗ −0.283∗∗∗ −0.352∗∗∗ −0.332∗∗∗

(0.057) (0.069) (0.061) (0.067)
Mandatory mask 14d lag −0.114∗∗∗ −0.124∗∗∗ −0.128∗∗∗ −0.128∗∗∗

(0.018) (0.017) (0.019) (0.019)
Ban gatherings 14d lag −0.120∗∗∗ −0.127∗∗∗ −0.125∗∗∗ −0.126∗∗∗

(0.034) (0.044) (0.034) (0.043)
Stay at home 14d lag −0.246∗∗∗ −0.241∗∗∗ −0.232∗∗∗ −0.239∗∗∗

(0.033) (0.040) (0.034) (0.040)
log(Cases), 14d lag −0.100∗∗∗ −0.101∗∗∗ −0.096∗∗∗ −0.098∗∗∗

(0.009) (0.010) (0.010) (0.010)
log(Cases), 21d lag −0.060∗∗∗ −0.059∗∗∗ −0.059∗∗∗ −0.058∗∗∗

(0.004) (0.005) (0.005) (0.005)
log(Cases), 28d lag −0.030∗∗∗ −0.033∗∗∗ −0.030∗∗∗ −0.033∗∗∗

(0.003) (0.003) (0.004) (0.003)
Test Growth Rates 0.009∗∗ 0.008∗ 0.009∗∗ 0.009∗∗

(0.004) (0.004) (0.004) (0.004)
County Dummies Yes Yes Yes Yes
State× Week Dummies Yes Yes Yes Yes
Observations 690,297 545,131 612,963 528,941
R2 0.092 0.093 0.092 0.094

Notes: Dependent variable is the log difference in weekly positive cases across 2 weeks. All regression specifications
include county fixed effects and state-week fixed effects to control for any unobserved county-level factors and

time-varying state-level factors such as various state-level policies. The debiased fixed effects estimator is applied.
Asymptotic clustered standard errors at the state level are reported in the bracket. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S4. The Association of School/College Openings and NPI Policies
with Death Growth in the United States: Debiased Fixed Effects Estimator

Dependent variable: Death Growth Rates
(1) (2) (3) (4)

College Visits, 21d lag 0.142∗∗∗ 0.181∗∗∗ 0.189∗∗∗ 0.170∗∗∗

(0.047) (0.057) (0.058) (0.055)
K-12 Visits, 21d lag 0.160∗∗∗ 0.060

(0.048) (0.066)
K-12 Visits × No-Mask 0.174∗∗

(0.073)
K-12 In-person, 21d lag −0.002 −0.012

(0.019) (0.019)
K-12 Hybrid, 21d lag 0.013 0.014

(0.014) (0.014)
K-12 Remote, 21d lag 0.018 0.015

(0.015) (0.017)
K-12 In-person × No-Mask 0.050∗∗∗

(0.016)
K-12 Hybrid × No-Mask 0.017

(0.015)
Mandatory mask, 21d lag −0.019∗∗ −0.018∗∗ −0.028∗∗∗ −0.023∗∗

(0.009) (0.009) (0.009) (0.009)
Ban gatherings, 21d lag −0.044 −0.056∗∗ −0.053∗∗ −0.055∗∗

(0.027) (0.025) (0.027) (0.025)
Stay at home, 21d lag −0.087∗∗∗ −0.076∗∗ −0.078∗∗∗ −0.067∗∗

(0.032) (0.030) (0.030) (0.029)
log(Deaths), 21d lag −0.053∗∗∗ −0.049∗∗∗ −0.052∗∗∗ −0.047∗∗∗

(0.004) (0.005) (0.004) (0.006)
log(Deaths), 28d lag −0.036∗∗∗ −0.041∗∗∗ −0.037∗∗∗ −0.042∗∗∗

(0.004) (0.005) (0.005) (0.005)
log(Deaths), 35d lag −0.031∗∗∗ −0.032∗∗∗ −0.032∗∗∗ −0.033∗∗∗

(0.004) (0.005) (0.004) (0.005)
County Dummies Yes Yes Yes Yes
State× Week Dummies Yes Yes Yes Yes
Observations 628,061 490,568 557,219 476,794
R2 0.049 0.050 0.050 0.051

Notes: Dependent variable is the log difference in weekly reported deaths across 2 weeks. Regressors are 7-day

moving averages of corresponding daily variables and lagged by 3 weeks to reflect the time between infection and

case reporting. All regression specifications include county fixed effects and state-week fixed effects to control for any
unobserved county-level factors and time-varying state-level factors such as various state-level policies. The debiased

fixed effects estimator is applied. Asymptotic clustered standard errors at the state level are reported in the bracket.

Estimates are based on the sample of counties after dropping the smallest 10 percent in population sizes because the
number of reported deaths is zero for many observations in small counties. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table S5. Summary Statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Case Growth Rate 698,278 0.099 0.901 −8.107 −0.288 0.495 8.002
Death Growth Rate 698,278 0.023 0.790 −6.170 0.000 0.000 6.170
log(Cases) 703,702 2.829 2.140 −1.000 1.386 4.331 10.488
log(Deaths) 703,702 −0.269 1.147 −1.000 −1.000 0.000 6.479
College Visits 728,228 0.010 0.031 0.000 0.000 0.008 1.827
K-12 School Visits 728,228 0.074 0.072 0.000 0.024 0.103 1.167
K-12 opening, in-person 646,816 0.079 0.207 0.000 0.000 0.000 1.000
K-12 opening, Hybrid 646,816 0.224 0.357 0.000 0.000 0.424 1.000
K-12 opening, Remote 646,816 0.078 0.227 0.000 0.000 0.000 1.000
No-Mask for Staffs 577,680 0.293 0.455 0.000 0.000 1.000 1.000
Mandatory Mask 728,944 0.461 0.495 0 0 1 1
Ban Gathering 728,944 0.658 0.472 0 0 1 1
Stay at Home 728,944 0.143 0.345 0 0 0 1
Full Time Workplace Visits 728,206 0.054 0.018 0.010 0.042 0.061 0.484
Part Time Workplace Visits 728,206 0.101 0.025 0.023 0.084 0.113 0.567
Staying Home Devices 728,206 0.342 0.116 0.021 0.267 0.393 3.657
Recreational Place Visits 728,228 0.017 0.022 0.000 0.000 0.026 0.786
Church Visits 728,228 0.025 0.018 0.000 0.014 0.032 0.583
Drinking Place Visits 728,228 0.012 0.024 0.000 0.0001 0.015 1.461
Restaurant Visits 728,228 0.250 0.175 0.000 0.150 0.315 4.261
Test Growth Rates 698,278 0.067 1.099 −13.616 −0.051 0.178 13.111
Population in 2018 (millions) 706,966 0.104 0.331 0.0002 0.012 0.071 10.106

Notes: Based on observations from April 15, 2020 to December 2, 2020 for the maximum of 3142 counties.
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Table S6. Correlation across variables
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College Visits 1.00
K-12 School Visits 0.09 1.00
Open K-12 In-person 0.05 0.43 1.00
Open K-12 Hybrid 0.11 0.44 0.04 1.00
Open K-12 Remote 0.05 0.09 -0.06 -0.06 1.00

No-Mask for Staffs 0.01 0.16 0.15 -0.02 -0.10 1.00
Mandatory mask 0.09 0.10 0.03 0.24 0.23 -0.31 1.00
Ban gatherings -0.03 -0.14 -0.09 -0.06 0.00 -0.03 -0.09 1.00
Stay at home -0.06 -0.24 -0.14 -0.21 -0.13 -0.08 -0.19 0.20 1.00
Full-time Workplace Visits 0.04 0.56 0.37 0.36 0.10 0.12 0.05 -0.17 -0.21 1.00

Part-time Workplace Visits 0.06 0.60 0.32 0.34 0.04 0.20 -0.01 -0.12 -0.31 0.71 1.00
Staying Home Devices -0.04 -0.27 -0.18 -0.23 -0.02 -0.10 0.01 -0.00 0.27 0.06 -0.19 1.00
Bar Visits 0.05 0.08 0.02 -0.02 0.01 0.08 0.01 -0.06 -0.08 0.12 0.11 0.15 1.00
Restaurant Visits 0.17 0.02 -0.10 0.00 0.06 -0.10 0.14 0.10 -0.08 -0.07 0.07 0.04 0.34 1.00
Rec. Facilities Visits 0.15 -0.00 -0.07 0.03 0.11 -0.08 0.18 0.03 -0.08 -0.05 -0.03 0.09 0.26 0.52 1.00

Church Vists 0.06 0.32 0.13 0.08 -0.03 0.17 -0.06 -0.07 -0.16 0.15 0.37 -0.18 0.11 0.18 0.03 1.00

Notes: Based on observations from April 15, 2020 to December 2, 2020 for the maximum of 3142 counties.
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In this paper, I study a simple SIR-Macro model to examine Japan's 
second soft lockdown, starting on January 2021. The model's parameters 
are calibrated to capture both infection and economic fluctuations 
in 2020. I find that the government should extend this lockdown long 
enough to avoid another future lockdown, given the country's medical 
capacity. In addition, I consider the ICU targeting policy that keeps the 
number of severe patients at a constant level, mimicking the monetary 
policy's inflation targeting. These macro-level containment policies can 
help develop age-dependent strategies using the timing differences of 
vaccinations between the young and the old.
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1 Introduction

Reacting to the first wave of the COVID-19 pandemic, numerous countries imposed containment

policies, such as curfews, school closures, and quarantines in the spring of 2020. The infection rate

stayed at low levels in the summer, but most countries experienced their second or third waves

in the autumn or winter. As of January 2021, many countries have returned to lockdowns to a

greater or lesser extent, mainly due to their medical capacities. The spread of infection in some

countries has been suppressed enough to lift such containment measures. However, these countries

are also concerned about the necessity of deploying a recurrent lockdown in a future pandemic wave.

Although the COVID-19 crisis may be in its final stage given the arrival of vaccines, containment

policies remain adrift.

This paper aims to provide policy implications of Japan’s 2021 lockdown policy regarding the

economy and infection. The COVID-19 pandemic in Japan has been milder than in European

and American countries; however, its economic impacts have been comparable to those of these

countries. In April and May 2020, the Japanese government declared a state of emergency to stop

the growing first wave of infections. This policy is called a soft lockdown or voluntary lockdown

(Watanabe and Yabu, 2020) since the restrictions were much weaker than those of the severe

lockdowns in most countries1. However, this soft lockdown significantly slowed the exponential

increase of infections. Since the fall of 2020, Japan has been under the third wave of the pandemic.

In January 2021, the Japanese government declared a second state of emergency to limit social

activities and reduce the spread of the new coronavirus.

In this paper, to study Japan’s 2021 lockdown, I construct a simple SIR-Macro model follow-

ing Eichenbaum et al. (2020a). This model includes agents’ optimizations of economic behaviors,

which are in line with empirical findings of voluntary behavioral changes in people (Goolsbee and

Syverson (2020); Watanabe and Yabu (2020); Sheridan et al. (2020)) and market equilibrium. I

incorporate two factors into the SIR-Macro model. The first one is a decreasing trend of people’s

subjective perceptions about COVID-19 infection, which is crucial to capturing Japan’s initial eco-

nomic downturn in the spring of 2020 and sustaining recovery in the fall. The second is two divided

sectors, where one is associated with infection such as service, and the other one is independent of

virus transmission, such as online shopping. This model does a reasonable job of capturing both

infection trends and economic dynamics during the first soft lockdown in April and May 2020 and

1The Japanese government enacted new legislation to levy fines against those breaking lockdown rules in February
2021.
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the long-run trends throughout 2020.

On top of that, my model conducts policy exercises about the second soft lockdown, starting

from January 2021. It measures the policy e�ciency as the dominance relationship on the pandemic

possibility frontiers, which describe the tradeo↵s between economic welfare costs and mortality

rate, following Kaplan et al. (2020). It is a conservative policy evaluation method independent of

normative judgment about the values of life.

The first policy I consider involves extensions of the second soft lockdown, which began in

January 2021. If the government lifts this lockdown too early, the number of severely ill patients

treated in the ICU will spike. Thus, the government needs to impose one more lockdown, given the

medical capacity constraint. These recurrent lockdowns have been observed in many countries since

2020. In this study, the first quantitative policy implication is that the government should extend

the soft lockdown to su�ciently reduce the infections so that Japan can avoid another lockdown

until vaccine distribution occurs. In SIR models, after lifting lockdowns, infections again begin to

increase. Accelerating and breaking the infection repeatedly by the recurrent lockdowns has almost

no impact on the overall process of the pandemic (Moll, 2020). Therefore, lockdown should be a

one-time event, keeping society safe until a vaccine is available for all.

I also considered one other policy, called ICU targeting, that keeps the number of severe patients

treated in the ICU at a constant level. It is similar to inflation targeting in monetary policy, in

which the policy instrument is the nominal interest rate, and the goal is to control the inflation rate.

Under this ICU targeting policy, the policy tool becomes the method of containment, and the goal

is to keep the number of ICU patients. It is a variant of Miclo et al. (2020)’s filling-the-box strategy,

designed to maintain ICU constraints until herd immunity is achieved. This ICU targeting policy

can lead to less economic damage than the extensions of the soft lockdowns can attain under the

capacity constraint. This is accomplished by keeping the ICU target close to the limit. However,

I also show that the ICU targeting policy is less e�cient than a one-time lockdown of su�cient

length. It is because ICU targeting tends to sustain behavioral restrictions for too long.

Although these two rules are conducted at the macro level, they also impose di↵erent levels of

restrictions on the young and the old. The degree of behavioral restriction is relatively stringent

at first. Next, the initial phase of delivering vaccinations to the elderly reduces the fear of hitting

ICU capacity constraints. After enough older people are immunized, the containment policy can

be completely lifted. After that, the economy rapidly recovers to the pre-pandemic level, and the

new coronavirus drastically spreads among the young. However, the number of deaths is limited,
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given this population’s low mortality rate. Eventually, the pandemic ceases after the young also get

vaccinated. Several pieces of research demonstrate the e�ciency of individual-level, age-dependent

policies (for example, Acemoglu et al. (2020), Favero et al. (2020)). In my simulation, both the

extension of soft lockdowns and ICU targeting can impose di↵erent degrees of social distancing by

age given vaccination time di↵erences. Therefore, the economic costs of these policies are limited

in the COVID-19 exit period.

This research contributes to the rapidly growing literature of incorporating epidemiological SIR

models into economics analysis. The closest paper to my research is Fujii and Nakata (2021)2. They

also study Japan’s soft lockdown using a reduced-form epidemiological model and consider future

recurrent lockdowns. My model complements their analyses by a SIR model with economic agents’

rational behaviors and equilibrium3 with the age-dependence of the COVID-19 exit strategies ac-

cording to the timing of vaccinations. In addition, the ICU capacity constraint and its implications

on lockdowns are studied by Miclo et al. (2020) and Moll (2020). My model’s basic structure fol-

lows the work of Eichenbaum et al. (2020a). The formulation of the substitution between the two

sectors is borrowed from Krueger et al. (2020). The subjective perception of the infection is also

introduced in the work of Aum et al. (2020), von Carnap et al. (2020), and Hamano et al. (2020). In

addition, there are many SIR-macro models focusing on time-varying optimal containment policies,

age-dependent lockdowns, and testing and case-dependent quarantines4. Furthermore, this paper

is related to pure epidemiological models with economic costs studying lockdown policies, such as

the model developed by Alvarez et al. (2020).

This model is introduced in Section 2. Section 3 provides calibration, computation methods,

and the model’s quantitative fits in 2020 data. The policies are discussed in Section 4, and the

conclusion appears in Section 5.

2 Model

I extend the SIR-macro model presented in Eichenbaum et al. (2020a) to include two sectors,

following the work of Krueger et al. (2020), and subjective perception about the infection, following

2The authors provide real-time updates of the COVID-19 infection and output loss.
https://covid19outputjapan.github.io

3To bolster the Japanese policy discussion, I summarize both qualitative and quantitative di↵erences between my
model and that of Fujii and Nakata (2021) in Appendix.

4Bethune and Korinek (2020), Farboodi et al. (2020), Makris and Toxvaerd (2020), and Toxvaerd (2020) study
abstract models, Brotherhood et al. (2020), Eichenbaum et al. (2020b,c), Giagheddu and Papetti (2020), Glover
et al. (2020), Hsu et al. (2020), and Kaplan et al. (2020) construct general equilibrium models. In addition, Kapicka
and Rupert (2020) and Kang and Wang (2021) consider search markets.
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studies by Aum et al. (2020), von Carnap et al. (2020), and Hamano et al. (2020).

2.1 Economic Environment

I consider a weekly model of discrete periods, t = 0, 1, 2, . . . . There is a unit mass of agents, and

each maximizes the following discounted sum of utilities:

1X

t=0

�t

ln ct � ✓

n2
t

2

�
, (1)

where ct is aggregated consumption and nt is hours of work. There are two types of goods: Good

1, which a↵ects the infection such as service good, and Good 2, including activities such as online

shopping. The aggregated consumption ct is a bundle of two goods defined by the CES function

with the elasticity of substitution ⌘:

ct =


1

2
(c1,t)

1�1/⌘ +
1

2
(c2,t)

1�1/⌘

� ⌘
⌘�1

. (2)

For simplicity, I assume the share of each good to be 1/2. As Krueger et al. (2020) emphasize,

this two-sector assumption helps to capture the low infection rate in Japan, resulting from the

substitution of Good 1 for Good 2. Moreover, this helps to explain the large drop observed in

consumption under the first soft lockdown in April and May 2020.

The production of each good is linear in labor with the same productivity, A. Furthermore, the

labor inputs are perfect substitutes between the two sectors; thus, the the wage becomes constant.

I normalize the wage as 1. The good markets are also perfectly competitive, and the prices of both

goods are equal to the marginal productivity A.

2.2 Infection

The infection follows the basic SIR epidemiology model. People are divided into four groups within

each period t. The first one is susceptible at a mass of St, who are not yet infected but could

potentially get sick in the future. The next one is infected at a mass of It, who are currently sick.

After It, people enter the recovered group at a mass of Rt, or dead, a population of Dt.
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Given the mass of new infections, Tt, each population evolves as

St+1 = St � Tt � �tSt, (3)

It+1 = It + Tt � (⇡r + ⇡d) It, (4)

Rt+1 = Rt + ⇡rIt + �tS(t), (5)

Dt+1 = Dt + ⇡dIt, (6)

where ⇡r and ⇡d are the recovery rate and death rate, respectively, and the fraction of vaccinated

people among those susceptible is �t. I assume the time-dependent rate to consider a realistic

vaccination schedule in 2021.

I use superscripts j for each type: j = s is for susceptible, j = i for infected, and j = r for the

recovered. The allocation of each type j is a bundle of consumption and labor of Good 1 and Good

2,
�
(cj1,t, c

j
2,t), (n

j
1,t, n

j
2,t)

�
. In this model, I assume that the mass of new infections depend only on

the aggregate consumption of susceptible and infected population. Specifically,

Tt = ⇡c
�
Stc

s
1,t

��
Itc

i
1,t

�
, (7)

where ⇡c is the degree of infection through the economic interaction. This assumption is made

for both simplicity and catching Japanese data. Eliminating infection through labor simplifies

the equations of the dynamic system, whereas this assumption does not significantly alter the

quantitative results. Regarding data fit, the elimination of autonomous infection outside economic

activities is used for magnifying the reduction of infection during Japan’s state of emergency in

April and May 2020. One interpretation is that all social activities inevitably involve some level of

spending.

The infection probability of each susceptible person consuming cs1,t amount of Good 1 is repre-

sented by the function ⌧t that

⌧t(c
s
1,t) = ⇡c

�
Itc

i
1,t

�
cs1,t, (8)

given the macro-level variables It and ci1,t. The e↵ective reproduction number in this model is

defined as follows:

R0
t =

Tt

(⇡r + ⇡d)(St + It +Rt)It
. (9)
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2.3 Decision Problems

Susceptible To match Japan’s data, I introduce the susceptibles’ subjective perception about

the total infected population, It. This subjective perception is represented as an exogenous variable

 t, which shows how much higher people believe the number of new infections is compared with the

actual or reported number. That is, a susceptible person’s perception rate ⌧t(cs1,t) is replaced by

 t⌧t(cs1,t) in her or his optimization problem. In the simulation,  t is initially assumed to be large

because of people’s anxiety about the new coronavirus. As time goes by, however, people acquire

better information, and then  t gradually decreases. This process follows a logistic function:

 t+1 =  t �  ̂
(1�  t) 2

t

 ̄
, (10)

where  ̄ is the initial value equivalent to  0, and  ̂ controls the speed of reduction. This perception

factor  t is necessary to capture Japan’s large economic downturn under the backdrop of the small

number of infections in March and April 2020. Moreover, the decreasing  t also traces out the

recovery of consumption in the fall of 2020. A similar variable, called the fear factor, is also

introduced by Aum et al. (2020) to capture the economic drop before in the United Kingdom and

South Korea in the spring of 2020. von Carnap et al. (2020) assumes  (t) to be a time-invariant

parameter to explain the voluntary reduction of Uganda’s economic activities, and Hamano et al.

(2020) discuss its implications for welfare-maximizing policies.

The following Bellman equation describes the optimization problem of each susceptible person:

U s
t =

⌘

⌘ � 1
ln


1

2
(cs1,t)

1�1/⌘ +
1

2
(cs2,t)

1�1/⌘

�
� ✓

(ns
t )

2

2

+ �
�
 t⌧t(c

s
1,t)U

i
t+1 + �tU

r
t +

⇥
1�  t⌧t(c

s
1,t)� �t

⇤
U s
t+1

 
, (11)

where U s
t is the discounted sum of utilities of a susceptible person, and U i

t is that of an infected

person. A susceptible person believes that he or she gets infected with probability  t⌧t(cs1,t) in-

stead of ⌧t(cs1,t). If vaccines are distributed, she directly acquires immunization and joins Rt with

probability �t. Each susceptible person maximizes her lifetime utility in Equation (11) under the

budget constraint:

(1 + µt) c
s
1,t + cs2,t = Ans

t . (12)
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The consumption tax rate of Good 1, µt, represents Japan’s soft lockdown in this model. The

lockdown burdens the costs of infection-related economic activities5. In this paper, I focus on

economiy-wide policies, where µt is independent of type j = s, i, r. The interpretation assuming

this one sector shock to be lockdown may be debatable. In Western countries, strict lockdowns shut

down almost all sectors, but the Japanese policy is a voluntary lockdown. The government asks

for a reduction of operations in restaurants and bars, but many people still go outside to purchase

necessities.

The optimality conditions for a susceptible person’s decision are obtained as follows:

(cs1,t)
�1/⌘

(cs1,t)
1�1/⌘ + (cs2,t)

1�1/⌘
= (1 + µt)

✓
✓

A

◆
ns
t + �⇡c t

⇥
(U s

t+1 � U i
t+1)Itc

i
1,t

⇤
, (13)

(cs2,t)
�1/⌘

(cs1,t)
1�1/⌘ + (cs2,t)

1�1/⌘
=

✓
✓

A

◆
ns
t . (14)

Infected The problem of an infected person is much simpler because this person will not become

reinfected. Each infected person solves the following equation:

U i
t =

⌘

⌘ � 1
ln


1

2
(ci1,t)

1�1/⌘ +
1

2
(ci2,t)

1�1/⌘

�
� ✓

(ni
t)
2

2

+ �
⇥
⇡rU

r
t+1 + ⇡d ⇥ 0 + (1� ⇡r � ⇡d)U

i
t+1

⇤
(15)

s.t. (1 + µt) c
i
1,t + ci2,t = Ani

t. (16)

An infected person will be recovered at probability ⇡r and obtain the discounted sum of utility

U r
t+1. The value of death is normalized as 0, following Eichenbaum et al. (2020a). With probability

1�⇡r�⇡d, such as a person remains as infected. For simplicity, I do not assume a labor productivity

decline due to infection, which makes the dynamic system drastically simple, as shown by Krueger

et al. (2020). The first-order conditions are

(ci1,t)
�1/⌘

(ci1,t)
1�1/⌘ + (ci2, t)1�1/⌘

= (1 + µt)

✓
✓

A

◆
ni
t, (17)

(ci2, t)�1/⌘

(ci1, t)1�1/⌘ + (ci2, t)1�1/⌘
=

✓
✓

A

◆
ni
t. (18)

5This burden is purely an economic loss. Since there is no tax revenue from the lockdown, I excludes the government
budget constraint.
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Contrary to the susceptible person’s problem, the choice of ci1,t does not a↵ect future values. Given

the two first-order conditions and the budget constraint, the infected person chooses the allocation

(ci1,t, c
i
2,t, n

i
t).

Recovered Finally, the decision problem of each recovered person is similarly defined as

U r
t =

⌘

⌘ � 1
ln


1

2
(cr1,t)

1�1/⌘ +
1

2
(cr2,t)

1�1/⌘

�
� ✓

(nr
t )

2

2
+ �U r

t+1 (19)

s.t. (1 + µt) c
r
1,t + cr2,t = Anr

t . (20)

A recovered person retains this recovered status. As the infected person’s problem, Good 1 con-

sumption of recovered person, cr1,t, is also independent of future values. Next, as in Krueger et al.

(2020), the allocation of a recovered person becomes the same as that of an infected patient6:

(ci1,t, c
i
2,t, n

i
t) = (cr1,t, c

r
2,t, n

r
t ). Therefore, this model’s dynamic system includes only (ci1,t, c

i
2,t, n

i
t).

2.4 Equilibrium

Given the perfect substitution of labor inputs between Sector 1 and 2 and the equal linear labor

productivity, the equilibrium conditions of both goods are integrated into

(1 + µt)St(c
s
1,t + cs2,t) + (1 + µt)(It +Rt)(c

i
1,t + ci2,t) = AStn

s
t +A(It +Rt)n

i
t. (21)

It is redundant7 given the budget constraints of the three types: Equation (12), (16), and (20).

Finally, the dynamic system of the equilibrium equations is summarized by

8
><

>:

15 variables: cs1,t, c
s
2,t, n

s
t , c

i
1,t, c

i
2,t, n

i
t, ⌧t, Tt, St, It, Rt, Dt, U s

t , U
i
t , U

r
t

15 equations: (3), (4), (5), (6), (7), (8), (11), (12), (13), (14), (15), (16), (17), (18), (19).

given the exogenous path of  t following Equation (10), and exogenous shocks of µt and �t.

6This property is violated if the infection status declines the labor productivity. However, given the large number
of patients who exhibit no symptoms, this assumption may be plausible.

7By Walras law, the labor market clearing condition can be ignored. Moreover, the prices of the two goods are
already determined as A.
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3 Calibration and Model’s Evaluation

3.1 Calibration

I use Our World in Data COVID-19 database maintained by Max Roser and Hasell (2020) for

infection. The daily data are summed up on a weekly basis, and the consumption statistics are taken

from the Survey of Household Economy. I use a seasonally adjusted monthly series, normalize the

level as 1 in January 2020, and covert to weekly data through linear interpolation. The estimated

e↵ective reproduction number is taken from Toyo-Keizai Online8. Following Eichenbaum et al.

(2020a), the discount factor � is (0.96)1/52. I assume 18 weeks for average infection periods. At

the end of 2020, the number of total deaths in Japan is 3292 out of 235811 total cases. By

0.014 = 3292/235811, I set9 ⇡d = (7/18) ⇥ 0.014, and ⇡r = (7/18) ⇥ [1 � 0.014]. The elasticity of

substitution is assumed to be ⌘ = 3 from the lower case number of Krueger et al. (2020)10. Next,

A and ✓ are calculated from the equations in the pre-pandemic steady state, when all people are

susceptible and c1s,0 = c2s,0 = 1/cs,0. In the Survey on Time Use and Leisure Activities in 2016, the

average hours of paid work are 241 minutes among the entire population over age 10. Following

this, weekly hours of work in the pre-pandemic steady state are ns,0 = 241 ⇥ 7/60. From the

World Bank data, the Japanese GDP per capita in 2016 is 52 ⇥ cs,0 = 39289 to the US dollar.

Then, A = cs,0/ns,0 = 26.8729. The labor disutility weight ✓ is obtained from the pre-pandemic

steady-state condition ✓ = 1/(ns
0)

2 = 0.001264, which is derived from Equation (12), (13), and

(14).

The exogenous path of the perception rate,  ̄ is calibrated to roughly capture the observed

reduction of consumption before the soft lockdown in April and May 2020. Moving forward,  ̂ is

decided so that  t becomes about 1 at the end of 2021. It is reasonable that people perceive the

infection rate almost correctly around the end of the pandemic. I choose11  ̄ = 15 and  ̂ = 0.015.

Finally, I set ⇡c = 0.00000416 to roughly match the total number of deaths at the end of 202012.

To explain the consumption drop during the first soft lockdown, from the second week of April

8https://toyokeizai.net/sp/visual/tko/covid19/en.html
9This assumption does not perfectly fit the simulation results of the cumulative number of total cases and death

to data possibly because of the reporting lag, infection periods until death, and the rapid increase in the number of
new infection cases from November 2020.

10Krueger et al. (2020)’s baseline case is ⌘ = 10. In my model, this makes the total consumption response to the
soft lockdown too small to catch data.

11Given the low reported number of cases due to the limited capacity of PCR tests in Japan,  ̄ = 15 may still
carry a lower expectation than the potential number of infections.

12I use only the time-series data in 2020 as the calibration target; otherwise, the parameter settings are also a↵ected
by the second soft lockdown, starting in January 2021.
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Figure 1: Infection and Economy in 2020
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until the third week of May 2020, I set µt = 0.35.

This simulation begins from the exogenous initial infection shock I1 = 0.00001 in the second

week of January13. This economy follows the perfect foresight path until it converges to the new

steady state in 150 weeks14.

3.2 Japan’s COVID-19 Infection and Economy in 2020

Figure 1 shows the simulation results both with and without the soft lockdown and data in 2020.

Given the only two exogenous variables µt and  t, the simulation with the soft lockdown captures

13It may be a bit higher number given the low infection rate in Japan. However, if I assume a lower number,
numerical simulation fails due to a floating-point precision error. In the same week, I also introduce a 1% reduction
of  1, otherwise  t stays at the constant number  .

14I use Dynare for the computation, following Krueger et al. (2020) and Eichenbaum et al. (2020b).
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both the infection and economic paths of Japan from January to December 2020. In addition, this

model explains the impacts of the soft lockdown in April and May on new infections, consumption,

and the e↵ective reproduction number. Beyond this, the model shows the number of the cumulative

deaths at the end of 2020. However, it fails to describe the second wave of infection and the short-

term fluctuation of consumption in the summer and fall of 2020. This may be caused by the

cash-transfer policy called the Special Fixed Benefits or the subsidy for travel called the ”GoTo

Travel” program. I do not include these factors in the model to concentrate on analyzing the soft

lockdown and avoid risks due to the uncertain quantitative impacts of these policies15. Additionaly,

this simulation implies that, if there had been no soft lockdown, the cumulative death total would

have been nearly twiced as high in 2020.

3.3 Medical Environment for Policy Analysis in 2021.

Beyond the calibrations using 2020 data, I introduce the ICU capacity constraint and vaccine plans.

They are redundant in 2020 but crucial for the policy exercise in 202116.

The ICU Capacity Constraint The total number of severely ill patients must be below the

maximum level that the available medical facilities can accommodate. In January 2021, during the

second soft lockdown, the actual number of ICU patients was about 1000. Although Japan’s o�cial

total ICU capacity is 3600, hospitals in urban areas had di�culty accepting severe patients needing

immediate treatment. Given these conditions, I set Japan’s ICU capacity constraint at 1200.

Because the model does not explicitly include the stage of severe illness, I calculate the number

of ICU patients in simulation from the observed relationship between the number of patients and

the number of deaths in data. Using the nonlinear least square regression for a quadratic equation

using the data between the fourth week of October and the second week of January, I obtain

ICUt = 0.66506 ⇤ (Dt �Dt�1) + 636620 ⇤ (Dt �Dt�1)
2, (22)

where ICUt is the number of ICU patients in Week t and Dt �Dt�1 is the number of new deaths

given the normalized population 1. The constant term is omitted because ICUt = Dt = Dt�1 = 0

15Kubota et al. (2020) estimate the marginal propensity to consume using a large bank’s individual-level de-
identified large bank’s account data. They capture the transfer of money after the cash payment well, but the final
e↵ects on consumption remain unclear.

16Since the model is solved under agents’ perfect-foresight expectations, the scenarios in 2021 a↵ect the equilibrium
path in 2020 as well. However, since the model excludes the intertemporal saving decision, the 2021 plans are
quantitatively negligible in the infection and economic paths in 2020.
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in the pre-pandemic steady state.

Two Vaccine Scenarios The new coronavirus infection eventually disappears due to the intro-

duction of a vaccine in 2021. Thus, I conduct policy exercises under the following opportunistic

and pessimistic scenarios.

• Vaccine 1: This is an opportunistic scenario, following the government’s ideal vaccine dis-

tribution plan as of January 2021. In the first week of April, the vaccine administration to

the elderly and people with underlying conditions begins. Given that each vaccine requires

two shots with a three-week interval, they begin to get immunized in the third week of April.

The government finishes their second shots at the end of June, and then immunization begin

for other people. Because the total elderly population is about 36 million, I assume 4 million

people obtain immunization per week. Moreover, the vaccination rate continues to increase;

that is, 4 million people get vaccinated after July as well. As a result of the vaccination of

the elderly, the death rate declines from 0.014 to 0.0035 between the first week of April and

the end of June17.

• Vaccine 2: This is a relatively pessimistic but realistic scenario roughly following Fujii and

Nakata (2021). It is based on the evidence of countries showing when vaccination begins in

Japan and the observed delays from their original plans. As in the opportunistic scenario,

people begin getting immunized during the third week of April. The weekly number of people

obtaining immunization linearly and gradually increases from 0.1 million in the third week of

April to 1.6 million at the end of June. After that, the weekly number stays constant at 1.6

million. The elderly becomes immunized beginning in the third week of April, and it takes

23 weeks (until the last week of September) for 80% of them to acquire immunity. In these

23 weeks, the death rate linearly declines from 0.014 to 0.0035, as in the opportunistic case.

4 Policy Exercise in 2021

In this section, I consider two policies following the second soft lockdown originally planned to be

lifted in the first week of February. The first one is extending the soft lockdown with the same

degree of stringency. Under this policy, if the government stops the behavioral restrictions too

17The death rate of patients under 65 is about 0.001. I choose a higher value by taking into account the elderly
who refuse vaccine into account, following the estimation of Fujii and Nakata (2021).
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early, it will need to declare one more lockdown due to the ICU capacity constraint. The second

case is beginning a new policy during the second week of February that keeps the number of ICU

patients at a constant level, below the ICU capacity.

4.1 Extending Soft Lockdown

The first policy I consider is a prolonged soft lockdown, starting in January. By matching the model

and the observed number of new infections at the end of January, I calculate the second lockdown’s

tax rate as half of the first one, µt = 0.175. The government maintains the same stringency in

the extended periods as well. If the government lifts the second lockdown quickly, another one

will be required to maintain the ICU capacity constraint. I assume that the government imposes a

four-week lockdown with µt = 0.175 if the patients fill more than 70% of the ICU capacity. In the

simulation, this simple rule keeps the medical capacity at a favorable margin.

Two Examples of Equilibrium Paths Figure 2 shows two examples of the equilibrium paths

in 2021 with Vaccine 1 for illustration. One is a short soft lockdown lifted in the first week of

February, as the original government policy plan, and the other is a long lockdown with and

eight-week extension. In the first case, the number of ICU patients increases after the release

and reaches the 1200 ICU capacity constraint in April. Next, the government imposes one more

lockdown for four weeks. The consumption almost fully recovers in the summer of 2020 because the

risk of infection declines due to the lockdowns and vaccines. In the second case, the soft lockdown

in January stays the infection low enough to avoid filling all the ICU beds. The consumption

also recovers quickly. A key feature of this plan is that the number of new infections increases

drastically in the summer, while the number of ICU patients drops down due to vaccination among

the older population. By allowing the virus to flourish among the young, the economy quickly

recovers but limits the number of deaths. These combinations of a lockdown before the vaccine and

no restriction after could be e↵ective. They implicitly implement age-dependent policies, which

significantly reduce the economic costs while keeping the high-risk elderly safe (Acemoglu et al.,

2020; Favero et al., 2020).

Pandemic Possibility Frontiers These policies are evaluated using the dominance relationship

in terms of both the health and economic damages on the pandemic possibility frontiers, following

Kaplan et al. (2020). Specifically, I illustrate a tradeo↵ between the number of total deaths at the
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Figure 2: Extending the soft lockdown under Vaccine 1
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end of 2021 and the economic welfare costs of living people in 202118. I measure the latter as the

consumption equivalence, which is defined as the solution x to the following equation:
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; , (23)

18In the model, each agent evaluates the value of death as sudden termination of his or her utility flow. In this
sense, the individual-level costs of death are already included in the model. However, this could be di↵erent from
society-level costs; for example, this excludes a family’s sadness over a member’s death. Because the normative costs
vary, this paper takes a conservative approach, providing only pandemic possibility frontiers.
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Figure 3: Pandemic possibility frontier under the extension of soft lockdown
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where c0 and n0 are the pre-pandemic steady state total consumption and labor, respectively, and

the period ⌧ is normalized as the first week of January 2021.

Figure 3 shows the frontiers of the soft lockdown extensions with Vaccine 1 and Vaccine 2. These

two are quantitatively di↵erent due to di↵ering speeds of vaccine distribution, but their qualitative

implications are similar. In particular, both show the ine�ciency of the recurrent lockdowns. If the

soft lockdown lifts before the fourth week of February under Vaccine 1 or the first week of April

under Vaccine 2, the government will need to impose one more lockdown given the ICU capacity

constraint. Next, su�ciently long lockdowns achieve both lower economic losses and fewer deaths

than the recurrent cases in certain regions on the diagram. In general, lockdowns are similar to

time machines; that is, they push the state of infection back to the level before the policy. In
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Figure 4: ICU targeting under Vaccine 1
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other words, the infection rate similarly grows again after lifting lockdowns. The primary role

of lockdowns is not eliminating the entire pandemic but postponing the exponential increase of

infections to allow for the arrival of vaccine. Thus, if there is a repeating expansion and contraction

of infections caused by recurrent lockdowns, the time machine just goes to the past and comes

back. It has almost no impact on the spread of the new coronavirus or on the economy. Therefore,

the lockdowns should be one-time events to keep the number of ICU patients below the capacity

until the arrival of vaccine.

4.2 ICU Targeting

Next, ICU targeting is another policy rule that keeps the number of patients in the ICU at a constant

level ICU below the 1200 capacity. To keep this target, the government flexibly adjusts the tax
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rate µt. This idea is similar to the inflation targeting in monetary policy. In many countries, central

banks adjust the nominal interest rates to achieve the target rate of inflation. In ICU targeting,

the policy goal is changed to the number of severe patients, and the policy tool becomes the degree

of the restrictions.

In my scenario, the government lifts the soft lockdown in the first week of February according

to the original plan and changes the policy rule to ICU targeting, beginning from the second week

of February. To keep the number of ICU patients ICUt around the target ICU , the government

adjusts the tax rate following the equation below:

µt = min

⇢
0.1,

40

(ICU)2
⇥
max{0, ICUt � 0.95 · ICU}

⇤2
�
. (24)

This equation means that the tax rate µt increases from 0% to 10%, while ICUt increases from 5%

below ICU to ICU . If ICUt > ICU , the tax rate µt is constant at 10%. Although this policy does

not precisely maintain the ICUt at ICU exactly, it reasonably achieves the goal. I do not impose

the exact targeting to avoid the critical non-linearity in the computation.

Two ICU Targeting Examples Figure 4 describes two equilibrium paths under ICU targeting

policy, where ICU = 600 and ICU = 1200. The latter decides the target at the capacity. The tax

rate µt is flexibly adjusted to keep the number of severe patients at 600 or 1200 in the spring of 2021.

Because of the rapid decline of the death rate in the summer, the government ends the behavioral

restrictions, allowing ICUt to decline. As in the case of the extension of the soft lockdown, the rise

in the number of new infections in May and June implements an age-dependent policy. In addition,

the consumption quickly recovers in the summer while limiting the deaths.

Pandemic Possibility Frontiers Figure 5 shows the pandemic possibility frontiers under the

ICU targeting policies in Vaccines 1 and 2, as well as those of soft lockdown extensions, which

appear in Figure 3 for comparison. From the upper-left to the bottom-right, I move the target

level from the maximum 1200 down to 200 and illustrate the consequences of economic losses and

deaths as a locus. Thus, the ICU targeting policy can achieve less economic damage that is not

obtained by the soft lockdown. The ICU targeting is necessary to push the economic welfare costs

lower than about 1.1% under Vaccine 1 or 1.5% under Vaccine 2. This is achieved if the Japanese

government keeps the number of ICU patients close to the limit. This can be justified if the society
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Figure 5: ICU targeting under Vaccine 1
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values the life less than a certain level19. However, the ICU targeting is inferior to the one-time

prolonged lockdown, in which the time of lifting is between the fourth week of February and the

third week of March under Vaccine 1 and the first week of April and fourth week of April under

Vaccine 2. This is because the ICU targeting tends to continue restrictions for too long after the

start of vaccination, which distorts the young’s economic activities.

The pandemic possibility frontiers also illustrates substantial economic and health benefits by

hastening the vaccine distribution. If the Japanese society chooses the economic damage as 1.5%

of the consumption under both vaccine cases, the number of deaths can be reduced from about

19, 000 with Vaccine 2 to 9, 000 with Vaccine 1. On the other hand, if the number of deaths is

19Given Japan’s significantly lower number of deaths than that of other countries, the corner solutions with the
lowest economic damage may be realistic. On these pandemic possibility frontiers, the corner solutions are selected
if the value of a statistical life (VSL) is less than about 240 years of annual GDP per capita under Vaccine 1 and 120
years under Vaccine 2. For a comparison, Hall et al. (2020) derive a realistic VSL of approximately 50 years, and
Alvarez et al. (2020) assume this figure to be 40 years.
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fixed at 13, 000, the economic damage can be reduced from about 2.2% to less than 0.9% in the

consumption. For comparison, Japan’s total budget of both the central and local governments for

the vaccine distribution is about only 0.25% of the GDP20. By accelerating only the vaccine supply,

the economic damage can be improved by 1.3% of the consumption. Acharya et al. (2020) estimate

a greater economic value by studying stock price reactions to the development progress indicator

and yielding an even higher value.

5 Conclusion

I use a tractable SIR Macro model to quantitatively examine Japan’s second soft lockdown, starting

in January 2021. The results are summarized by the pandemic possibility frontiers between the

economic welfare loss and the total number of deaths. Thus, the Japanese government should

continue the soft lockdown for long enough to avoid recurrent lockdowns. To achieve lower economic

damage, the government can adopt another strategy, accepting more ICU patients.

20The central government’s plan is about 500 billion yen. Among local municipalities, Yokohama city, which has
about 3.7 million population out of 125 million total population in Japan, plans 25 billion yen for vaccine. Thus, the
total budget of all municipalities is estimated to be 850 billion yen. The total of the central and local, 1350 billion
yen, is about 0.25% of Japan’s GDP, which is approximately 550 trillion yen.
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Appendix

A note on the di↵erence between structural and reduced-form SIR models

This note compares structural SIR models, including optimization and economy, as in my model,

and reduced-form SIR models, such as those shown by Fujii and Nakata (2021). Both models

analyze Japan’s COVID-19 infection rate, output, and policies. I discuss both the similarities and

di↵erences between these factors for policy discussion. In this appendix, I follow almost all of

the same notation as Fujii and Nakata (2021). Suppose that the true state is described as this

present paper’s model with no perception bias (8t, t = 1). Let the percentage decline of output be

Ỹt = 1� Yt/Y t. I first simulate a toy economy with the soft lockdown between Periods 20 and 30

and between Periods 50 and 60. It derives the the true equilibrium path of (Nt, St, It, Ỹt)100t=1. Next,

following Fujii and Nakata (2021), I estimate their output-infection relation parameter h from the

true model’s results between Periods 10 and 49. My goal is to evaluate the reduced-form model’s

prediction using an estimation including past data and one experience of the soft lockdown.

The modified infection rate becomes

�̃t = �t(1� hỸt)

Given a unit population, the new infection is

Nt = �̃tItSt = �t(1� hỸt)ItSt.

I estimate h using the nonlienar OLS, given the following equation:

ln

✓
Nt

ItSt

◆
= �0 + ln

�
1� hỸt

�
+ "t,

where ln�t is divided into the constant term and error term: ln �t = �0 + "t. I assume that

�t = exp(�0) for all t and the true path of
�
Ỹt
�100
t=50

. Next, given the estimated h, I back out
�
Nt, It, St

�100
t=50

using SIR equations.

The results are shown in Figure A.1. Overall, there is only a small di↵erence. In general,

reduced-form models capture only the correlation between infection and economy, which could

include two-way causalities. However, the causality is almost solely one-way when considering

lockdowns. The soft lockdowns first change economic activities and then a↵ect infections. Thus,

132

Co
vi

d 
Ec

on
om

ic
s 7

0,
 2

5 
Fe

br
ua

ry
 2

02
1: 

10
9-

13
3



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

the estimated reduced-form correlation mainly capturing the causality from economy to infection

is su�cient.

On the other hand, the estimated model predicts a slightly larger decline in the new infections.

The true model includes a smoothing in the event of a large shock, given the causality from

infection to economy. Under the containment policy, households consume less and mitigate the

infection. This e↵ect makes less linearity under a large fluctuation than models estimated in

relatively moderate periods. Nevertheless, the magnitudes look negligible.

Structural models may be required by some exercises in which causalities are crucial. For

example, distributing masks is associated with a reverse causality that reduces infection first and

enhances economic activities second. It improves both infection and economy, which cannot be

explained by reduced-form models.

Figure A.1: True and predicted paths of infections given the output path
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How important are risk-avoidance behaviors for preventing the spread 
of COVID-19? Answering this question is difficult because risk-avoidance 
behaviors may be correlated with non-behavioral risks (such as 
occupational risk) and because COVID-19 prevalence is poorly measured 
due to limited testing. We study the prevalence of COVID-19 infections 
among state governors and members of the U.S. Congress. These 
politicians face similar occupational risks and are frequently tested. 
Yet we find large differences in COVID-19 prevalence along party lines: 
Republican politicians are three times as likely as Democratic ones to 
have ever reported a COVID case. The association between COVID-19 and 
party affiliation is not due to demographic differences, differences in state 
riskiness, or differential campaign strategies. Given well-documented 
differences in risk attitudes and preventive behavior along political lines, 
the differential COVID-19 rate we document is consistent with the view 
that behavioral risk is a key determinant of COVID-19 infections.
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1 Introduction

Efforts to contain the COVID-19 pandemic are premised on the theory that infection risks
can be reduced through behavioral modifications, including face masks, six-foot distancing,
and substitution to online interactions. These behavioral changes have disrupted employ-
ment, reduced mobility, and hindered learning (Montenovo et al., 2020; Chetty et al., 2020;
Goolsbee and Syverson, 2020; Kaufman et al., 2020; Gupta et al., 2020). Behavioral modifi-
cations have been widely but unevenly adopted, and they remain controversial because they
are costly and their protective efficacy has not been proven.

Research based on aggregate data suggests that masks may reduce COVID-19 infections
(Betsch et al., 2020; Van Dyke, 2020). A small trial conducted during a period of low preva-
lence in Denmark found small, imprecise effects of providing masks (Bundgaard et al., 2020).
Studying the effect of risk avoidance on prevalence is difficult because COVID-19 testing is
highly rationed, and risk-avoidance are likely correlated with non-behavioral (workplace,
co-morbidity, and family structure) risk factors that might also explain prevalence.

This study examines the connection between risk avoidance and COVID-19 prevalence
in the population of Governors, U.S. Senators, and U.S. Representatives. An observational
study in this population eases some of the difficulties in studying risk avoidance and COVID
prevalence. These politicians plausibly face comparable non-behavioral risks because they all
hold the same job, reducing concerns about uncontrolled confounding. Further, prevalence is
better measured among politicians because they are tested more regularly than the general
population.

Like other studies (Betsch et al., 2020; Van Dyke, 2020), we lack individual measures of
risk avoidance. We therefore turn to political party affiliation as a plausible proxy for risk
avoidance behaviors. The connection between party affiliation and COVID-19 risk avoidance
is supported by previous research. In surveys, Republicans are less likely to report social
distancing and less likely to consider COVID-19 a serious health risk (Allcott et al., 2020;
Kushner Gadarian et al., 2020). Social distancing and mask wearing are less common in
areas with a higher share of Republican voters (Allcott et al., 2020; Gollwitzer et al., 2020).
Green et al. (2020) show that the tweets of U.S. Representatives and Senators show a par-
tisan divide, with Republicans less likely to emphasize threats to public health early in the
pandemic. Social distancing policies were imposed later in states with Republican gover-
nors (Adolph et al., 2020). The Democrat-controlled House of Representatives has stricter
COVID-precautions in place than the Republican-controlled Senate; for example, allowing
remote voting (DeBonis, 2020; Grisales, 2020). Anecdotal reports indicate that, among na-
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tional politicians, Republicans are less likely than Democrats to consistently wear masks
(Everett, 2020).

We find that 10.1% of Republican politicians and 3.3% of Democrat politicians have
had a confirmed case of COVID-19. We investigate several alternative explanations for
the elevated COVID-19 prevalence among Republican politicians. Adjusting for age, gender,
race/ethnicity, education, and population density does not alter the association. If anything,
Democrats tend to represent areas with higher population density and greater geographic
susceptibility to COVID-19. It is possible that more Democrats were infected earlier in the
pandemic, when testing was less common, but we show that in every month since April,
Republicans have been more likely than Democrats to have ever had COVID-19. We present
evidence that differential campaign style is unlikely to explain Republican’s higher COVID-19
prevalence. Taken together, our results are consistent with the view that personal protective
behaviors can have a large impact on COVID-19 prevalence. Though others such as Reimann
(2020) have observed that Republicans make up a disproportionate share of COVID-19-
infected politicians, our primary contribution is to show that this difference is not explained
by many plausible factors, including geographic differences or incentives to campaign. We
are also the first to systematically measure gubernatorial COVID cases.

2 Data and Methods

Data: Our sample includes all Governors, House Representatives, and Senators serving as
of December 1, 2020.1 Information on gender, age, race, and education came from CQ Press
(2020) for Senators and House Representatives and from Wikipedia for Governors. We de-
fined the political territory as the state for Senators and Governors and as the congressional
district for House Representatives, and we computed the corresponding population density
using using shape files from US Census Bureau (2020b) and population data from US Census
Bureau (2020a). To measure electoral competition, we usedFiveThirtyEight (2020)’s August
1, 2020 predicted probability that each incumbent would be re-elected in 2020. In some
analyses, we define an “uncontested" sub-sample of Senators and House Representatives who
either lost the primary, were not running for re-election in 2020, or who were engaged in
a race where the forecasted win rate was more than 99%. Governors are excluded from
these analyses because forecasts are not available. Throughout, we classify two indepen-
dent Senators as Democrat because they caucus with Democrats, and one libertarian House

1The California 50th, Georgia 5th, and Texas 4th districts were vacant at data collection, leaving us with
432 House Representatives.
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Representative as Republican because he caucuses with Republicans.
We obtained data on the COVID-19 status of Senators and House Representatives from

GovTrack (2020), which maintains a list of which members of Congress have reported a
positive test, along with references for the positive test, which we checked. We collected
data on COVID-19 status of Governors using Google news searches for Governor’s name
combined with the term “COVID positive". We coded Governors as COVID-19 positive if
we found at least one article reporting that the Governor had a COVID-19 case.2 The main
outcome variable in our analysis is a binary measure of whether the politician had a (publicly
disclosed) COVID-19 infection by December 3, 2020.

Methods: We measure unadjusted and adjusted mean differences in COVID-19 preva-
lence between Republican and Democratic politicians. One concern with unadjusted mean
differences is that the gap in COVID-19 prevalence may arise not only from differences in
risk avoidance but also from pre-existing differences in the characteristics of the Republi-
can and Democrat politicians (Holtgrave et al., 2020; Cutler and Lleras-Muney, 2006). A
separate concern is that Republicans are more likely to represent states and districts with
low-population density, and less likely to represent coastal states. Since the early pandemic
was severe in high-density and coastal areas, the association between prevalence and political
party could be due to geographic factors rather than preventive behaviors (Allcott et al.,
2020).

We address these concerns in two ways. First, we compare COVID-19 prevalence politi-
cians from the same state but different political parties. Second, we estimate linear prob-
ability models of COVID-19 infection against dummies for political party, political office,
demographic controls, population density, and state fixed effects. These models adjust
for demographic as well as geographic differences. Standard errors are estimated using a
heteroskedasticity-robust variance matrix that allows for dependence at the state level.

3 Results

Table 1 shows the prevalence of COVID-19 by political party and political office. Overall,
COVID-19 prevalence is 10.1% among Republican politicians and 3.3% among Democratic
politicians. Among House Representatives, prevalence is 9% for Republicans and 3.4% of
Democrats. In the Senate, 15.1% of Republicans and no Democrats had been infected.
Among state governors, prevalence is 8% in both parties.

2Articles reporting one governor’s case often listed other COVID positive governors, providing a cross-
check.
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Figure 1: COVID-19 prevalence by state and party, among national politicians
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Notes: Figure reports the percentage of governors, representatives, and senators whom we count
as ever having had COVID-19, separately by state and party. COVID counts are from GovTrack
(2020); gubernatorial data were hand-collected by the authors from news reports. We treat
politicians independent politicians who caucus with the Democratic party as Democrats. The
figure is limited to the 38 states which have both Democratic and Republican politicians, and
states are sorted by the difference between Republican and Democratic rates. In Illinois-Texas
(17 states), COVID-19 prevalence is higher among Republicans than Democrats. In Vermont-
New Hampshire (17 states) the proportions are equal. In California-Utah (four states), COVID-
19 prevalence is higher among Democrats than Republicans.
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Table 1: SARS CoV-2 Cases among Representatives, Senators, and Governors, by party

Party Republican Democratic All

Representatives 18 / 199 8 / 233 26 / 432
9.0% 3.4% 6.0%

Senator 8 / 53 0 / 47 8 / 100
15.1% 0.0% 8.0%

Governors 2 / 25 2 / 25 4 / 50
8.0% 8.0% 8.0%

All 28 / 277 10 / 305 38 / 582
10.1% 3.3% 6.5%

Notes: Table reports COVID counts / total number of politicians. COVID counts are from
GovTrack (2020); gubernatorial data were hand-collected by the authors from news reports. We
treat independent politicians who caucus with the Democratic party as Democrats, and we code
1 Libertarian as a Republican because he caucuses with Republicans.

The unadjusted differences in Table 1 could be misleading if Republicans locate in states
with higher COVID-19 caseloads. Figure 1 shows COVID-19 prevalence among Democratic
and Republican national politicians within each state for the set of 38 states where there are
both Republican and Democratic national politicians. Among these 38 states, prevalence is
higher among Republicans in 17 states, equal in 17 states (where prevalence is zero), and
higher among Democrats in the remaining four states.

Both unadjusted and within state contrasts could be confounded by differences in the
characteristics of Democrats and Republicans. Table 2 reports covariate averages for Demo-
crat and Republican politicians, and shows that the parties have different gender, age,
race/ethnicity, and gender composition.

Table 3 presents covariate adjusted estimates of the difference in prevalence between
Republicans and Democrats based on linear regressions. The first column shows that preva-
lence is 6.8% points (p = 0.002) higher among Republicans in a model that controls for
political office but no additional covariates. The second column shows that, after adding
state fixed effects, prevalence is 9.2% points (p=0.002) higher among Republicans. Relative
to base rate of 3.2% among Democrats, this difference implies that COVID-19 is four times
more prevalent among Republicans. The third column adds controls for population density,
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Table 2: Covariates, by political party

Republicans Democratics Difference

Mean (SD) Mean (SD) Mean [SE]) p-value

House 0.72 (0.45) 0.76 (0.43) -0.05 [0.04] 0.212
Senate 0.19 (0.39) 0.15 (0.36) 0.04 [0.03] 0.237
Population density 89.00 (157.61) 1066.61 (2578.36) -977.61 [147.95] <0.001
Female 0.09 (0.29) 0.36 (0.48) -0.27 [0.03] <0.001
Age 58.75 (10.63) 60.18 (12.21) -1.44 [0.95] 0.130
Bachelor’s degree 0.32 (0.47) 0.17 (0.38) 0.15 [0.04] <0.001
Graduate degree 0.52 (0.50) 0.62 (0.49) -0.10 [0.04] 0.015
Joint education <0.001
White (not Hispanic) 0.95 (0.21) 0.65 (0.48) 0.30 [0.03] <0.001
Hispanic 0.03 (0.18) 0.12 (0.32) -0.09 [0.02] <0.001
African American 0.01 (0.08) 0.17 (0.37) -0.16 [0.02] <0.001
Joint race/ethnicity <0.001

Joint significance <0.001

Notes: Table reports the means and, in parentheses, standard deviations of the indicated variables, by
political party, as well the difference in means and its standard error. The final column is the p-value of
the hypothesis that the parties have equal means. We also report p-values for tests of joint significance
of groups of variables and all variables.

adjusting for the fact that Republicans tend to represent low-density districts. The fourth
column adds demographic controls (age, education, gender, and race). These controls make
very little difference.

Beyond observed covariates, Republicans and Democrats may have pursued different
campaign strategies in 2020 and these strategies may have led to different occupation related
COVID-19 risks. Many Republicans held in-person rallies while Democrats pursued non-
traditional campaign events with more social distancing (Reuters Staff, 2020). To guard
against confounding from differential campaign strategies, we re-estimate the full model in a
sample limited to Senators and Representatives who are not in contested elections, defined
as elections where the predicted win probability from FiveThirtyEight (2020) is less than
99 percent. Although the politicians in the limited sample have little incentive to engage in
risky campaigning, the estimates in the fifth column shows that the Republican differential
remains large at 11.7 % points (p=.026). This finding is robust to alternative definitions of
the uncontested sample; see Supplemental Table 4.

Another concern is that Republicans have been infected late in the epidemic when testing
was widely available, while Democrats were infected earlier when testing was in short sup-
ply. Elevated Republican prevalence might reflect better measurement rather than genuine
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Table 3: Adjusting for demographics and state fixed effects does not alter the Republican-
COVID association

(1) (2) (3) (4) (5)

Republican-Democrat Differential 0.068 0.092 0.091 0.089 0.117
(0.021) (0.028) (0.028) (0.029) (0.051)

Sample size 582 582 582 582 291

Sample All All All All Uncontested
Controls for ...
Position Yes Yes Yes Yes Yes
State fixed effects No Yes Yes Yes Yes
Population density No No Yes Yes Yes
Demographics No No No Yes Yes

Notes: Table reports the coefficient on Republican from a linear probability model of ever-
COVID-19 on Republican and the indicated controls. Position controls are dummy variables for
senator or representative, omitting governor. The demographic controls are age, dummy vari-
ables for education categories (bachelors’s degree, higher than bachelor’s), female, and race cate-
gories (African America, Hispanic, White; the omitted category is Asian/Native/not disclosed).
“Uncontested" sample is limited to Representatives and Senators and excludes politicians whose
predicted probability of reelection is less than 99 percent. We report heteroskedasticity-robust
standard errors, clustered on state, in parentheses.

Figure 2: COVID-19 prevalence by date and party, among national politicians
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Notes: Figure reports the percentage of governors, representatives, and senators whom we count
as ever having had COVID-19, separately by party and day. See text for definitions and sources.
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difference in exposure. Figure 2 plots the cumulative fraction of Republicans or Democrats
testing positive for COVID-19 by day. Republican prevalence is higher than Democratic
prevalence throughout the pandemic, casting doubt on this explanation.

4 Conclusion

Among Governors, Senators, and Representatives, Republicans are three times as likely as
Democrats to have reported a COVID-19 case by December, 2020. In principle this higher
COVID-19 prevalence could reflect differences in the baseline risks facing Republicans and
Democrats, differences in testing or reporting, or differences in preventive behaviors. We have
shown that several possible sources of differential risk do not explain the higher COVID-19
rate among Republicans. The gap is not accounted for by Republican-Democratic differences
in demographics, district population density, or state-specific unobservables. We also show
that the gap is unlikely to be explained by differential testing over time or campaign riskiness.

We conclude that a likely explanation for higher COVID-19 prevalence among Repub-
licans politicians is that Republicans are less likely to engage in precautionary behavior.
Under this explanation, the differential prevalence that we document may reflect the com-
bined effect of the politicians’ individual behavior as well as the behavior of their extended
network, including family, staff, and constituents. This conclusion is subject to two impor-
tant limitations. First, we do not observe individual politicians’ behaviors, and so cannot
confirm that politicians engaging in more precautionary behavior are less likely to report a
COVID-19 case. Second, our sample of politicians need not be representative of the gen-
eral public. It is possible that politicians—who travel frequently and interact with diverse
constituencies—may face greater risks than the general population. Risk avoidance strategies
may have a larger protective effect for politicians than they would for the general population.
Furthermore, politicians are not demographically representative of the population: they are
much older than the general population, and much more likely to be male and white (Ruggles
et al., 2021).

Although our study does not provide evidence about the importance of any particular
behavior such as mask wearing or six-foot distancing, it suggests that collectively these
behaviors can have a large effect on COVID-19 risks.
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Supplemental material
Figure 3: Distribution of incumbent’s predicted win probabilities

Among 419 incumbents seeking re−election, 
   187 predicted more than 99% likely to win
   232 predicted more than 98% likely to win
   280 predicted more than 95% likely to win
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Notes: Sample consists of incumbent representatives and senators seeking re-election. Figure
plots the distribution of predicted win probabilities as of August 1, 2020, from FiveThirtyEight
(2020).
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Table 4: Robustness to alternative definitions of uncontested elections

(1) (2) (3) (4) (5)

Republican-Democrat Differential 0.089 0.117 0.102 0.113 0.088
(0.029) (0.051) (0.043) (0.035) (0.028)

Sample size 582 291 300 384 434

Win cutoff Any 99% 99 % 95% 95%
Include primary losers Yes No Yes No Yes

Notes: Table reports the coefficient on Republican from a linear probability model of ever-
COVID-19 on Republican dummy, as well as the following additional controls: dummy for
senator (and representative in column 1), age, dummy variables for education categories (bach-
elor’s degree, higher than bachelor’s), female, and race categories (African America, Hispanic,
White; the omitted category is Asian/Native/not disclosed), and state fixed effects. The sample
in column (2)-(5) always excludes governors, includes incumbents who lost their primary as
indicated, and is limited to politicians either not seeking reelection or with a predicted win rate
above the indicated cutoff, based on reelection probabilities from FiveThirtyEight (2020). We
report heteroskedasticity-robust standard errors, clustered on state, in parentheses.
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