The availability of large datasets has sparked interest in predictive models with many possible predictors. Using six examples of data from macroeconomics, microeconomics, and finance, this column argues that it is not usually possible to identify sparse models by selecting a handful of predictors from these larger pools. The idea that economic data are informative enough to identify sparse predictive models might be an illusion.
Domenico Giannone, Michele Lenza, Giorgio Primiceri, 08 February 2018
Most Read
-
Égert, de La Maisonneuve, Turner
-
Huber
-
Chaudhary, Viswanath-Natraj
-
Frey, Presidente
-
Lafrogne-Joussier, Levchenko, Martin, Mejean
-
Burgess, Sievertsen
-
Eichengreen, O'Rourke
-
Mitze, Kosfeld, Rode, Wälde
-
Heldring, Robinson
-
Allen
Blogs&Reviews
-
Carraro, Cœuré, Dhand, Eichengreen, Mills, Rey, Sapir, Schwarzer
-
Evenett
-
Fullerton, Levinson
-
Hoffmann, Moench, Pavlova, Schultefrankenfeld
-
Reichlin, Adam, McKibbin, McMahon, Reis, Ricco, Weder di Mauro
Don't Miss
Events
-
23 - 24 May 2022 / hybrid I Vienna / Oesterreichische Nationalbank (OeNB) and SUERF - The European Money and Finance Forum
-
14 - 17 June 2022 / University of Pisa, Dep. Economics and Management / University of Pisa, Dep. Economics and Management
-
22 - 24 June 2022 / Lucca, Italy /
-
5 - 15 July 2022 / Warwick/Coventry / University of Warwick
-
11 - 13 July 2022 / / National Council of Applied Economic Researach (NCAER)
CEPR Policy Research
-
Gobillon, Solignac
-
Giglio, Maggiori, Stroebel, Weber
-
Summers, Fatás
-
Favero, Galasso
-
Butt, Churm, McMahon, Morotz, Schanz
-
Eichengreen, Avgouleas, Poiares Maduro, Panizza, Portes, Weder di Mauro, Wyplosz, Zettelmeyer
-
Baldwin, Beck, Bénassy-Quéré, Blanchard, Corsetti, De Grauwe, den Haan, Giavazzi, Gros, Kalemli-Ozcan, Micossi, Papaioannou, Pesenti, Pissarides , Tabellini, Weder di Mauro
-
Baldwin, Nakatomi
-
Thimann
-
Goodhart, Perotti